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Abstract

Despite the unchallenged performance, deep neural net-
work (DNN) based object detectors (OD) for computer
vision have inherent, hard-to-verify limitations like brit-
tleness, opacity, and unknown behavior on corner cases.
Therefore, operation-time safety measures like monitors
will be inevitable—even mandatory—for use in safety-
critical applications like automated driving (AD). This pa-
per presents an approach for plausibilization of OD detec-
tions using a small model-agnostic, robust, interpretable,
and domain-invariant image classification model. The
safety requirements of interpretability and robustness are
achieved by using a small concept bottleneck model (CBM),
a DNN intercepted by interpretable intermediate outputs.
The domain-invariance is necessary for robustness against
common domain shifts, and for cheap adaptation to diverse
AD settings. While vanilla CBMs are here shown to fail
in case of domain shifts like natural perturbations, we sub-
stantially improve the CBM via combination with trainable
color-invariance filters developed for domain adaptation.
Furthermore, the monitor that utilizes CBMs with trainable
color-invarince filters is successfully applied in an AD OD
setting for detection of hallucinated objects with zero-shot
domain adaptation, and to false positive detection with few-
shot adaptation, proving this to be a promising approach for
error monitoring.

1. Introduction
Recent advancements in Deep Neural Networks (DNNs)

have made DNN-based object detectors increasingly preva-
lent in AD assistance systems [33]. The accurate detec-
tion and classification of objects in the surrounding envi-
ronment is essential for AD assistance systems, as it facili-
tates safe navigation of vehicles on the road [15]. However,
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Figure 1. Proposed interpretable, model-agnostic monitoring ap-
proach for identification of false positive person detections. It uses
an interpretable concept bottleneck model (CBM) as independent
classifier on the color-invariant representations (CI-repr) of the ob-
ject detections (here: for class person). For details see Section 3.

DNNs used for object detection are susceptible to safety-
relevant errors in many scenarios [29, 37, 39], in particular
when the driving scenes are very different from the training
sets [19, 36] or there is an adversarial attack [55]. Exam-
ples of safety-relevant errors are misclassification of traf-
fic participants, and false proposal of detections (false pos-
itives) like “hallucinated objects”. False positives, if un-
treated, may not only cause uncomfortable driving experi-
ence due to sudden jerks, but also hazards like rear crashes.
Hence, for real world deployment of DNNs in OD for AD,
operation-time system-level measures for error identifica-
tion and treatment are inevitable, as reflected in upcoming
AD safety standards like ISO/TR 4804 [21].

A DNN monitor, also called network observer [21] or
runtime monitor [16], provides a score or decision about
trustworthiness of a DNN output, based on inputs, outputs,
and/or internal processing information of the DNN [44].
Alarms and low trustworthiness scores can be subsequently
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used to, e.g., discard, correct, or reevaluate the OD predic-
tion, or to propagate the low trustworthiness to later pro-
cessing stages. While model-specific monitors can be opti-
mized for errors of a specific DNN, they need to be adapted
on each update of that model, which may be costly and
error-prone. The same holds for monitors based on trust-
worthiness estimations trained into the DNN outputs, like
uncertainty estimates [20]. Hence, it is desirable to com-
plement with model-agnostic monitors that only use the
DNN inputs and/or bounding box (bbox) outputs. Model-
agnostic approaches share that they check against plausibil-
ity constraints, like temporal consistency [47] or semantic
relations [12]. However, such constraints must be avail-
able, appropriate, and sufficient. A well-known straight-
forward one is that the OD predictions shall coincide with
ones of an independent model [22]. In practice, this faces
the challenges of providing a (mostly) independent real-
time prediction model, which does not add unnecessary
complexity to the safety assessment, but still is domain-
invariant, i.e. works in diverse AD settings given only cheap
adaptations. The idea of this work is to combine methods
from explainable artificial intelligence [43] (for indepen-
dence and safety assessability) and domain adaptation [50]
(for domain-invariance) into a monitoring architecture to
achieve this.

While standard opaque DNNs excel in computer vision
tasks, assessability according to current standards and leg-
islation demands for interpretability [13, 23]. Otherwise, it
becomes challenging for developers, users and, in partic-
ular, safety assessors to comprehend the reasoning behind
predictions [2, 52]. In contrast, human understanding relies
on semantic, i.e., natural language, concepts and their rela-
tions [41, 54]. For instance, from a human perspective, the
validity of labeling an object as a car can be verified through
the presence of high-level concepts, such as license plates,
wheels, and windows. This makes Concept Bottleneck
Models (CBMs) [27] a promising candidate to unite assess-
ability and performance: A CBM is a classification DNN
that is intercepted by a layer of intermediate outputs, which
are trained to correspond to interpretable concepts.

However, as shown in this work, CBMs suffer from in-
sufficient domain-invariance. This restricts applicability to
diverse AD settings, and also means that the costly labels
for CBM concept training cannot be reused for similar tar-
get domains. Hence, we suggest to leverage Color-invariant
Convolution (CIConv) filters [30], a method from domain
adaptation, to remove irrelevant features from the CBM in-
put that can cause domain-shift issues. As a bonus, biases
based on color, e.g., skin-color, are ruled out by design.

Our approach for model-agnostic plausibilization is as
follows (see Fig. 1): Given an OD class prediction for an
image region (e.g., a bbox), we check whether the class
coincides with the prediction of a small CIConv-CBM-

classifier. If they differ, e.g., the OD proposes a person,
but the CIConv-CBM rejects this, an alarm is raised. Our
main contributions are:

(i) We introduce a novel method for model-agnostic, ro-
bust, flexible, and human assessible operation-time
plausibilization of OD detections.

(ii) We show that the used novel combination of CBMs with
CIConvs yields interpretable classifiers that achieve
competitive task-performance, and substantially im-
proved robustness of concept representations against
domain-shifts, like natural corruptions [35]. As a bonus,
concept data sets can, thus, be cheaply reused when
training for different target domains.

(iii) The approach is evaluated on different AD OD settings
(two datasets, detectors, and object classes), with do-
main shift from monitor training data. Results prove ef-
fectivity in identifying hallucinated objects, and—after
few-shot fine-tuning—general OD false positives.

2. Related Work

Model-agnostic False Positive Identification for OD
Various works have been proposed to verify the existence of
detected objects by object detectors, either based on DNN
trustworthiness outputs or plausibilization against given
constraints. A common trustworthiness score provided by
DNNs are uncertainty estimates. For example, Gaussian
YOLOv3 [5] identifies false positives by calculating bbox
localization errors. For a thorough overview, the reader is
referred to [6]. Unfortunately, uncertainty estimation either
relies on modifications of the DNN (e.g., specialized archi-
tectures [7,24], output calibration [14]) or is model-agnostic
but expensive (e.g., ensembling). Autoencoders have also
been employed to reveal false positives [46]. The recon-
struction error constraint does not rely on a trustworthi-
ness output, however, falls short on desired interpretability.
More simple constraints like temporal consistency as in [47]
alleviate this, but are less powerful. Many other methods
focus on sensor fusion-based verification, such as using the
Dempster-Shafer Theory to estimate the existence proba-
bility of objects in the environment [1] and verifying de-
tection plausibility with roadside sensors [10]. Khesbak et
al. [25] utilize a sequential process of checks to ensure that
both detections are in agreement before concluding the ob-
ject’s existence. Additionally, Vivekanandan et al. [48] ap-
ply energy-based optimization methods to analyze the con-
sistency of object detections in multiple sensor streams and
identify false positives. In contrast to sensor fusion-based
approaches, our method does not rely on additional data
sources. To the best of our knowledge, this represents the
first model-agnostic method capable of operation-time OD
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plausibilization that provides human-understandable expla-
nations.

A different approach is pursued by the vast field of out-
of-distribution (OOD) detection methods [18]: The idea is
that a DNN is more prone to errors on samples or objects
scarcely represented in the training data. However, this, by
design, is only a proxy target for false positive detection,
and, in particular, does not cover in-distribution errors.

Concept Bottleneck Models In 2020, Koh et al. pro-
posed Concept Bottleneck Models [27]. Unlike end-to-end
DNN training for image classification, CBMs first learn a
set of human-interpretable labels, and then use them for
prediction. Concept labels can be binary [27] or seman-
tic segmentations [32]. Besides interpretability, intercept-
ing human-interpretable concepts offers the ability to inter-
vene with prediction generation by adjusting the concept
outputs [27], e.g., for inspection purposes [27].

To train CBMs, it is necessary to have semantically rich
annotated data sets [42], such as CUB [49] or Broden(+) [3,
53], that provide labels for all desired concepts. Several
studies have proposed solutions to address the costly label-
ing for CBMs by reducing the number of required sam-
ples, such as weakly supervised multi-task learning with
concepts [4], concept distillation using an attention-based
distillation model [45], and combining supervised and unsu-
pervised concepts through adversarial learning [40]. In con-
trast to these methods, we aim to reuse results from high-
quality, non-scarce data for new target domains. Post-Hoc
CBMs [56] is a recent approach that uses concept activation
vectors (CAV) [26] or the multi-modal CLIP model [38] to
automatically create a concept dataset. However, Post-Hoc
CBMs does not fully address the problems of the CBMs
since CAV still requires densely annotated concept data and
it can only be applied with CLIP image encoder.

It has been demonstrated that CBMs can achieve pre-
diction performance competitive with end-to-end methods
[27, 32], and excel in terms of confidence calibration [32]
and robustness to background shifts [27]. In addition, our
method is capable of extracting concepts that remain effec-
tive under various realistic image distortions and weather
conditions, a crucial trait for practical AD scenarios.

3. Approach for OD Monitoring
Our approach aims to predict for each detection of an

OD whether this is to be considered implausible, i.e., “spu-
rious”. The OD is treated as black box that produces pre-
dictions consisting of bbox coordinates, and an object class.
Given the predictions of the OD for an input image, the sub-
sequent plausibility checker consists of the following steps
for each detection, illustrated in Fig. 1:

1) Crop generation: The bbox is cropped from the orig-
inal image, and resized to uniform size.

2) CIConv: The CIConv creates a single-channel, color-
invariant representation (CI-repr) of the crop.

3) CBM: The CI-repr is fed through a multi-class clas-
sification CBM trained to recognize the same object
classes as the OD.

4) Plausibility check: The CBM prediction is compared
to the originally predicted class, raising an alarm if
they differ.

The setup for the CIConv and the CBM are explained in the
following.

3.1. Concept Bottleneck Models

For our monitoring application we need to realize a
multi-class classification of the detection crops with respect
to those object classes that should be checked for errors.
Standard DNN classifiers consist of one opaque module that
receives inputs and provides the final prediction. Instead,
we use a Concept Bottleneck Model architecture as intro-
duced by Koh et al. [27] to modularize this into two sub-
sequent DNNs with interpretable intermediate output (see
Fig. 1):

1) concept extractor: multi-label binary classification of
input image into pre-selected, task-related concepts;
output: presence scores for each concept.

2) multi-class classification of concepts’ presence score
vector into object classes of interest.

The output layer of the concept-extractor which produces
the concept presence scores is also called concept bottle-
neck layer. The overall models can be chosen compara-
tively small, as was already shown in [27] who used mod-
els up to the size of a ResNet-18 [17] as concept extrac-
tor, followed by a 3-layer fully connected DNN. This small
size ensures small computational overhead of our method,
as (1) inference of the model is neglegible compared to a
state-of-the-art object detector, (2) inference only needs to
be done for each considered bounding box, not the complete
image, and (3) processing of predicted bounding boxes can
be parallelized. For training, we rely on the joint model
training scheme that was shown to perform best in [27]:
The CBM ist trained end-to-end with a multi-task loss, i.e.,
a weighted sum of the classification losses for the concept
and the final outputs, both using logistic regression.

3.2. Color-Invariant Representations

Geirhos et al. [9] discovered in 2018 that ImageNet-
trained convolutional neural networks (CNNs) are sig-
nificantly biased towards recognizing textures instead of
shapes, unlike human behavioral evidence. Using fine-
tuning with a stylized version of ImageNet they were able
to remove the texture bias of the CNNs. As a result, the net-
works both improved accuracy and robustness against var-
ious image distortions. Inspired by this, our approach for
robustifying concept representations against domain shifts
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also relies on (partly) removing texture features like color
from the learned representations. Unlike aforementioned
study, we automatically remove color and illumination fea-
tures from all inputs using respective pre-filters.

Following the approach developed by [30], our CBM
first layer is replaced by a Color-Invariant Convolution (CI-
Conv) layer, which is a trainable, color-invariant edge de-
tector. The authors of [30] utilize the invariant edge detec-
tors from [11] that were derived from the Kubelka-Munk
theory for material reflections [28]. The theory provides
an approximate formula to describe the light spectrum re-
flected from an object into the viewing direction, depending
on the original light source and the object material reflectiv-
ity. From this, different mappings (the CIConv variants) can
be approximated that map an RGB image to a one-channel
image representation which is invariant to one or several
of: scene geometry (shadows, viewing direction, position
of light source), Fresnel reflections, illumination intensity,
or color. All CIConv variants come with a parameter σ (the
width of the Gaussian used for edge detection in the for-
mula) that determines the trade-off between preserved detail
and noise robustness of the resulting representation. Since
the CIConvs are differentiable with respect to σ, the opti-
mal value of σ can be trained jointly with the other CBM
parameters via backpropagation.

This work uses the CIConv variant W from [30] that
focuses on invariance with respect to illumination and
achieved best results in preliminary comparative experi-
ments.

The effect of the CIConv-layer on the input data is vi-
sualized using the Simple Concept Database (SCDB) [34].
SCDB is a synthetic dataset and consists from the randomly
placed large geometric shapes on the black background.
These large shapes display random rotations, varying sizes,
and a range of colors. The dataset also contais small geo-
metric shapes in a variety of colors, shapes, locations and
orientations. Two predefined classes. C1 and C2 are repre-
sented by distinct combinations of small geometric shapes
within the larger shapes.

CBM and CBM with the CIConv-layer were trained on
the SCDB training dataset and assessed on the test dataset.
Small geometric shapes form the concepts of the bottleneck
layer for both CBM and CBM with the CIConv-layer. The
results indicate that the CBM with the CIConv-layer sur-
passes the performance of the CBM, as the concepts are
exclusively based on shape-based concepts. As shown in
Fig. 2, the CBM with the CIConv-layer produces robust and
informative edge maps of geometric shapes, regardless of
background color, shape, location, and orientation.

For implementation details the reader is referred to [30].

Before CIConv-layer After CIConv-layer

Figure 2. Example images from the SCDB test dataset: the left
column displays samples from the test dataset, while the right col-
umn displays visualizations after processing through the CIConv-
layer.

4. Experiments
In the following subsections we first showcase the bene-

fits of our proposed domain-invariant CBMs with respect to
robustness against domain shifts (Section 4.1). Then, this
is tested in an end-to-end fashion on two real-world, AD-
related data sets and state-of-the-art OD DNN models, and
for two kinds of OD errors, namely object hallucinations
and general false positives (Section 4.2). Settings common
to both studies are detailed below.

CIConv-CBM Settings Throughout all experiments, we
adopt as CIConv-CBMs architecture the baseline from [27],
who use a ResNet-18 [17] as concept extractor, followed by
a 3-layer fully connected DNN. This enables comparabil-
ity, and yields a very small classifier that proved itself on
tasks similar to AD object classification. The CIConv is re-
alized using variant W from [30]. For training both vanilla
CBMs and CIConv-CBMs, we adopted the joint training
scheme suggested in [27]: All parameters, including those
of the CIConv, are trained jointly against the multi-task loss
of correctly predicting presence of concepts and the final
class of image patches. Loss criteria are weighted as in the
original work.

Concept Settings For our evaluations, we concentrated
on the object classes car and person (respectively pedes-
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Concepts CBM CIConv-CBM
Head 93.6% 93.1%
Arm 93.4% 93.0%
Torso 91.6% 91.1%
Leg 91.4% 90.4%

Hand 92.6% 92.5%
Wheel 93.2% 93.2%

Window 92.7% 92.0%
Headlight 93.6% 92.2%

Door 93.6% 93.2%
License Plate 95.4% 94.8%

Table 1. Comparison of concept classification accuracy between
vanilla concept extractor (CBM) and color-invariant concept ex-
tractor architecture with CIConv layer (CIConv-CBM) on Broden
test data. Bold numbers highlight the superior concept extractor
for each concept.

Classes CBM CIConv-CBM
Person 89.3% 87.4%

Car 91.4% 90.3%

Table 2. Comparison of object class prediction accuracy be-
tween vanilla CBM and CBM with color-invariant concept extrac-
tor (CIConv-CBM) on Broden test data. Bold numbers indicate
the highest object class prediction accuracy for each classes.

trian, ped). We defined the concepts in the bottleneck layer
by selecting the five most representative object part con-
cepts for car and person objects in the Broden dataset [3].
For car, the selected concepts were wheel, window, head-
light, door, and license plate; for person respectively
pedestrian (ped), they were head, arm, torso, leg, and
hand. CBM model concept extractors are trained on the
Broden dataset.

4.1. Learning Robust Concept Representations

Accuracy In the first phase of our study on robust concept
representation learning, we compared the color-invariant
concept extractor and the vanilla concept extractor with re-
spect to both concept extractor accuracy (see Tab. 1) and
overall CBM classification task accuracy (see Tab. 2) on the
Broden test dataset. In terms of concept extraction and task
prediction, the CIConv-CBM performs only slightly worse
than the vanilla CBM, with all-in-all competitive perfor-
mance.

Robustness While accuracy is competitive, we then fur-
ther assessed the impact of introducing CIConvs on robust-
ness with respect to domain shift, in particular realistic im-
age corruption. Image corruption is a widespread prob-
lem that results from environmental factors, such as occlu-
sions on the camera lens due to rain, mud, or frost; image

blurs due to rapid camera movement; and different forms
of noise corruption due to hardware and software issues.
Therefore, for the CBM to be usable in autonomous driving,
it should be robust and generalizable under these different
conditions. For this we evaluated the task prediction accu-
racy of both CBM variants on test images from the Broden
dataset, corrupted with a broad range of realistic image cor-
ruptions [35]. Each corruption can be adjusted for different
severity from levels 1 to 5, and we selected a severity of
3, which we deemed to be both realistic and challenging.
Examples of different corruptions applied to a Broden test
image are shown in Fig. 3. The results are shown in Tab. 3.

Person Car
Corruptions CBM CIConv-CBM CBM CIConv-CBM

Clean 89.3% 87.4% 91.4% 90.3%
Brightness 33.88% 85.69% 64.92% 88.77%
Contrast 33.03% 85.60% 52.17% 87.46%

Fog 34.62% 84.74% 69.38% 87.30%
Frost 34.9% 74.84% 69.50% 80.12%

Gaussian Blur 35.16% 75.19% 70.04% 81.73%
Compression 35.06% 83.84% 69.74% 87.55%

Saturate 34.91% 85.65% 68.89% 89.27%
Shot Noise 34.27% 65.53% 42.13% 74.55%

Snow 35.27% 65.37% 68.33% 77.90%

Table 3. Object class prediction accuracy comparison between
vanilla CBM and CBM with CIConv layer on Broden test data
with applied corruptions (severity=3). Bold numbers highlight the
best prediction performance for each class and corruption type.

The object class prediction accuracy results in Tab. 3
demonstrates that CBM with CIConv layer can predict the
concepts even in heavy corruptions. Conversely, the predic-
tion accuracy derived from a vanilla CBM exhibit consid-
erably poor performance when compared to the CBM with
CIConv layer. Integrating the color-invariant CIConv layer
can enhance the CBMs’ ability to learn robust and gener-
alizable representations, enabling their applicability to real-
world problems, such as autonomous driving.

4.2. Plausibilization with Domain-invariant CBMs

The goal of these experiments was to evaluate the capa-
bility of our monitor setup to identify different error types of
ODs in realistic setups. To evaluate this we considered the
precision, recall, and F1-score of our monitor alarms. Preci-
sion here translates to the percentage of the monitor alarms
that actually referred to an error of the considered type; and
recall means the percentage of the considered errors that
were indicated by alarms of our monitor. While low preci-
sion means more cases of unnecessary (potentially costly)
error recovery actions, low recall means that many poten-
tially safety-relevant errors remain undetected. Hence, high
recall is desirable for safety-relevant applications, but also
smaller recall values between 0.2 and 0.1 can mean an in-
crease in safety.
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Gaussian Blur Compression Saturate Shot Noise Snow

Figure 3. An image from the Broden test dataset, the original clean version, and corrupted ones by different noise model (severity=3).

For the evaluation of the monitor performance, one
should note that naturally not all errors of a kind can be
retrieved by one type of monitor, and an appropriate recall-
precision balance is highly specific to task and system.

Considered Error Types We evaluated retrieval for two
kinds of false positive errors:
• hallucinated objects which refers to bboxes that are as-

signed to an object class but have no overlap with a
ground truth bbox of that class; and

• false positives that include hallucinated objects and lo-
calization errors (too little intersection over union of the
bbox with a ground truth bbox), but no duplicates, which
are automatically removed from our OD outputs by non-
maximum-suppression.

Used Models and Datasets We tested the considered er-
ror types on two diverse, state-of-the-art object detectors,
trained on two different AD-related, real-world object de-
tection datasets:

• YOLOv5 [57] trained on MS COCO [31]1

• SqueezeDet [51] trained on KITTI [8]2

We did a random 1:1 split of the KITTI data into training
and test data, resulting in each 3731 frames.

1Used implementation and weights: https://github.com/
ultralytics/yolov5

2Used implementation and weights: https://github.com/
QiuJueqin/SqueezeDet-PyTorch

4.2.1 Hallucinated Object Identification

Hallucinated object predictions show no overlap with any
ground truth bbox of the same class. Hence, the task of the
CBM is to decide, whether a bbox predicted to be of object
class C does contain any features or part objects associated
with C (no alarm), or not (possibly hallucinated object →
alarm). Since this also was the original training objective of
our Broden-trained (CIConv-)CBM, we applied it without
any fine-tuning, relying solely on its domain-invariance in
order to cope with the domain shift from Broden images to
MS COCO crops.

Results are shown in Tab. 4. For the person object class,
only 4% of the overall ca. 3k supposedly hallucinated ob-
jects were retrieved, for car the more promising number of
more than 10% and acceptable precision. To have a closer
look at the problem we manually inspected more than 50
examples of supposedly hallucinated objects that were not
retrieved by the monitor. This revealed that most “missed”
hallucinated objects actually could be reduced to missing,
inaccurate, or inconsistent labels (see Fig. 4), even for sup-
posedly improved labels for the COCO dataset3. This sug-
gests that the combination of OD DNN with our monitor
might be helpful in data label quality checks.

4.2.2 False Positive Identification

In contrast to only considering hallucinated objects as er-
rors, a prediction may also be a false positive error if does
have an overlap with a ground truth bbox of the same class.

3https://www.sama.com/sama-coco-dataset/
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Ground-Truth Annotations

Object Detections

Figure 4. An example from the COCO dataset. The upper por-
tion displays the ground-truth annotations for the person class,
and the lower portion shows the person predictions generated by
YOLOv5.

Task IoU Precision Recall

Ped 0.5 0.20 0.04
Ped 0.7 0.23 0.04

Car 0.5 0.26 0.12
Car 0.7 0.35 0.12

Table 4. Results for hallucinated object detection on MS COCO

General false positives are defined as cases where the inter-
section over union (IoU) between the predicted and ground
truth box is lower than a threshold. Besides hallucinations,
localization errors can cause this and can arise from shifted,
too small, and too big bboxes.

We evaluated the monitoring performance for a non-
fine-tuned CIConv-CBM monitor on YOLOv5 on the
MS COCO dataset (also for different IoU thresholds to de-
fine the false positives), and for SqueezeDet on the KITTI

Data, Model Task IoU Precision Recall

KITTI, SDet Car 0.7 0.96 0.07
KITTI, SDet (FT) Car 0.7 0.81 0.56

KITTI, SDet Ped 0.5 0.83 0.01
KITTI, SDet (FT) Ped 0.5 0.72 0.95

Table 5. Comparison of fine-tuning (FT) and zero-shot false posi-
tive monitoring for SqueezeDet (SDet) on KITTI easy. Bold num-
bers highlight best-performing method for each metric and task.

dataset. In addition, we also compared the KITTI results
against those of a CIConv-CBM monitor that was fine-tuned
for the identification of false positives of SqueezeDet. For
this, we labeled the bboxes predicted by SqueezeDet for our
KITTI training data (ca. 3731 images) as false positive or
not, and fine-tuned the CBM on this new task dataset of de-
tection crops. Results are shown in Tabs. 5 and 6.

Manual inspection of our results showed that identifica-
tion of localization errors, in particular shifted and too small
bboxes, from only the bbox crops is a harder problem than
finding hallucinated objects. The main reason are occlu-
sions and inconsistent ground truth labeling schemes: Many
datasets, including MS COCO and KITTI, box only visible
parts of an object. Hence, a bbox crop containing only half
of an object may be correct, because the remainder of the
object is occluded or outside of the image; or it may be a
localization error (shifted box, too small box). A special
case is objects that are dissected by strong occlusions (e.g.,
tree in front of car). Here we found that labeling often is in-
consistent, sometimes providing two separate ground truth
bboxes, and sometimes merging the far-apart object regions
by one bbox.

While, by design, our crop-based approach cannot well
differentiate occlusion and too short/shifted bboxes, we
found that (1) still acceptable error recovery rates could be
obtained without finetuning (Tabs. 5 and 6), in particular for
high IoU thresholds, and (2) fine-tuning the CBM with few
error samples provides good error identification capability
(more than 50% of errors identified at less than 30% false
alarms), as shown Tab. 5.

Mitigation measures that can be investigated in future
work would be improvement of labeling consistency, or
adding a small margin to the bbox, to provide the fine-tuned
monitor classifier with more context, like parts of the oc-
cluding object.

5. Conclusion

We have presented a novel approach to plausibilize ob-
ject detector predictions during operation using a cheap, in-
terpretable, robust, and model-agnostic monitor. To realize
this, we have substantially increased robustness of the used
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Data, Model Task IoU Precision Recall

COCO, YV5 Ped 0.5 0.31 0.04
COCO, YV5 Ped 0.7 0.40 0.04

COCO, YV5 Car 0.5 0.44 0.12
COCO, YV5 Car 0.7 0.63 0.13

Table 6. Comparison of false positive monitoring results for
YOLOv5 (YV5) on MS COCO for different IoU thresholds in the
false positive definition.

interpretable Concept Bottleneck Models against domain-
shifts, by combining them with color-invariant filter meth-
ods from the field of domain adaptation. This, for one, al-
lows application to highly diverse AD settings, and, sec-
ondly, addresses the CBM problem of data scarcity. The
benefits have been demonstrated in our experimental re-
sults. Moreover, our end-to-end monitoring tests on state-
of-the-art AD settings and OD models suggest that our mon-
itoring is a promising approach to OD error identification
at operation time. As next steps we see the validation of
our approach in a broader experimental setup, extension to
further kinds of OD errors like false negatives, and test-
ing and optimization of the expected real-time capabili-
ties. Also, our qualitative evaluations suggested potential
applications of our setup for label quality checks of ground
truth data. Further interesting future directions could be the
shift from this post-hoc monitoring approach to an ante-hoc
interpretable object detectors, or combination with related
monitoring techniques such as fusion-based and semantic-
constraint-based ones, leveraging the interpretable interme-
diate outputs of the CBM.
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berphul, Lydia Gauerhof, Shervin Raafatnia, and Vittorio
Rocco. Structuring the safety argumentation for deep neu-
ral network based perception in automotive applications.
In Computer Safety, Reliability, and Security. SAFECOMP
2020 Workshops, pages 383–394. Springer International
Publishing, 2020. 1

[45] João Bento Sousa, Ricardo Moreira, Vladimir Balayan, Pe-
dro Saleiro, and Pedro Bizarro. Conceptdistil: Model-
agnostic distillation of concept explanations. arXiv preprint
arXiv:2205.03601, 2022. 3

[46] Noelia Vallez, Alberto Velasco-Mata, and Oscar Deniz.
Deep autoencoder for false positive reduction in handgun de-
tection. Neural Computing and Applications, 33(11):5885–
5895, 2021. 2

[47] Serin Varghese, Yasin Bayzidi, Andreas Bar, Nikhil Kapoor,
Sounak Lahiri, Jan David Schneider, Nico M. Schmidt, Pe-
ter Schlicht, Fabian Huger, and Tim Fingscheidt. Unsuper-
vised temporal consistency metric for video segmentation in
highly-automated driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pages 336–337, 2020. 2

[48] Abhishek Vivekanandan, Niels Maier, and J Marius Zöllner.
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