
Uncovering the Inner Workings of STEGO for
Safe Unsupervised Semantic Segmentation

Alexander Koenig Maximilian Schambach Johannes Otterbach

Merantix Momentum
{firstname.lastname}@merantix.com

Abstract

Self-supervised pre-training strategies have recently
shown impressive results for training general-purpose fea-
ture extraction backbones in computer vision. In combi-
nation with the Vision Transformer architecture, the DINO
self-distillation technique has interesting emerging proper-
ties, such as unsupervised clustering in the latent space and
semantic correspondences of the produced features without
using explicit human-annotated labels. The STEGO method
for unsupervised semantic segmentation contrastively dis-
tills feature correspondences of a DINO-pre-trained Vision
Transformer and recently set a new state of the art. How-
ever, the detailed workings of STEGO have yet to be disen-
tangled, preventing its usage in safety-critical applications.

This paper provides a deeper understanding of the
STEGO architecture and training strategy by conduct-
ing studies that uncover the working mechanisms behind
STEGO, reproduce and extend its experimental validation,
and investigate the ability of STEGO to transfer to different
datasets. Results demonstrate that the STEGO architecture
can be interpreted as a semantics-preserving dimensional-
ity reduction technique.

1. Introduction
Semantic segmentation is the task of assigning pixel-

wise class labels to an image. Its applications range from
scene understanding for autonomous navigation [19, 43],
environmental monitoring [2,4], to medical imaging [32,34]
to name a few. Current state-of-the-art deep learning-based
semantic segmentation approaches are trained in a super-
vised fashion and thus require a large amount of training
data, i.e., explicit pixel-wise target labels, also known as
segmentation maps. However, freely available open-source
datasets with dense segmentation labels for industrial ap-
plications are scarce and costly to obtain as opposed to
per-image class labels such as those used in popular image
datasets like ImageNet [33], CIFAR [25], or MNIST [15].

To alleviate this shortcoming, researchers recently
turned to self-supervised learning methods to retrieve se-
mantic information from images without using human-
annotated labels. The field recently gained traction with
self-supervised representation learning algorithms such as
SimCLR [10], BYOL [18], and SwAV [8], with which fea-
ture extraction backbones can be learned without the ex-
plicit use of target labels. The image representations gen-
erated by these backbones can then be used for various
downstream tasks. Among those algorithms, the DINO pre-
training strategy [9] is particularly notable. Combined with
the recent Visual Transformer (ViT) architecture [16], the
DINO pre-training objective produces semantically consis-
tent patch-wise image embeddings that can be effectively
used for various downstream tasks such as image classifica-
tion [9], part co-segmentation [3], video instance segmen-
tation [9], or neural rendering [39]. In the remainder, we
refer to a ViT trained using the DINO pre-training strategy
as the DINO backbone, or simply, DINO. These feature ex-
traction backbones also facilitate self-supervised semantic
segmentation. For instance, the STEGO architecture and
training strategy [20] builds on DINO and post-processes
its expressive features through a self-supervised correlation
loss, which distills feature correspondences. Despite be-
ing compute-efficient by freezing the DINO backbone, the
STEGO approach demonstrates impressive capabilities on
unsupervised semantic segmentation benchmarks.

Given the promises of these methods, it is essential to
understand their transferability to real-world settings be-
fore deployment to ensure reproducibility, robustness, and
safety. However, looking closely at STEGO, we strug-
gled to reproduce some of the results reported in the orig-
inal publication [20]. Additionally, self-supervised learn-
ing mechanisms are intricate and still poorly understood.
In particular, experimental evaluation has yet to clearly
separate contributions in ablation studies and benchmark
performance across multiple datasets to ensure robust per-
formance in safety-critical applications. Concerning self-
supervised segmentation using STEGO, we identified some

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3789

missing benchmark results and ablation studies investigat-
ing the contribution of this new approach in more detail.

In this paper, we provide a deeper understanding of the
STEGO architecture and training strategy to ensure its well-
informed usage and motivate further development. Particu-
larly, our contributions are as follows.

1. We reproduce and extend STEGO’s experimental vali-
dation, demonstrating a stronger baseline performance
of the DINO backbone than reported in the STEGO pa-
per [20] and reporting missing evaluation metrics for a
more comprehensive evaluation.

2. We disentangle STEGO’s working mechanisms and at-
tribute its superior unsupervised performance to both
dimensionality reduction of the backbone’s embed-
dings and a non-linear projection that yields more se-
mantically clustered representations.

3. We compare STEGO with well-established dimension-
ality reduction techniques across different dimensions
and datasets, revealing STEGO’s better suitability for
unsupervised clustering and providing insights into its
sensitivity to the target dimension.

2. Background
2.1. Related Works

Methods addressing label scarcity in deep semantic seg-
mentation can broadly be taxonomized into weakly super-
vised, and unsupervised methods [36]. Weakly supervised
algorithms for semantic segmentation often rely on coarse
supervision, e.g., by training a segmentation model only
through image-level annotations [1,42] or bounding box la-
bels [30]. Other weakly supervised approaches use incom-
pletely labeled segmentation datasets, also known as semi-
supervision [27].

On the other hand, unsupervised semantic segmentation
algorithms use no explicit labels. A core idea behind unsu-
pervised semantic segmentation is clustering dense visual
descriptors of an image into perceptual groups. Some algo-
rithms frame this task as a graph partitioning problem, ei-
ther on the input image [37] or, more recently, on deep ViT-
features [29]. Furthermore, standard k-means-style cluster-
ing [3], or matrix factorization [12] of features from pre-
trained backbones were successfully used to detect related
ontologies for unsupervised semantic segmentation. Other
methods use self-supervision to learn visual descriptors for
unsupervised segmentation. For instance, PiCIE [11] clus-
ters pixel-level features by optimizing a self-supervised loss
that enforces invariance to photometric and equivariance to
geometric transformations. Self-supervision is also often
used for feature distillation of pre-trained backbones before
clustering. For example, the MaskContrast [40] algorithm

uses a pre-trained network to extract a binary mask of an
image’s main object, also referred to as saliency estima-
tion, contrastively trains a separate network that maximizes
agreement of the pixel embeddings with the extracted ob-
ject mask, and finally clusters the pixel embeddings using
k-means. MaskDistill [41] uses object masks from clus-
tered ViT-features as pseudo-ground-truth labels to train a
second network on high-confidence segmentation masks.
While previous feature distillation approaches introduce a
proxy network, the STEGO [20] algorithm directly utilizes
a ViT backbone, distills the produced latent features, and
clusters them into distinct ontologies – promising a simple
and efficient training strategy.

2.2. STEGO Architecture

The architecture of the STEGO pipeline is given in Fig-
ure 1. The approach uses an ImageNet-pre-trained DINO
backbone [9] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches, also called
tokens. Multiple Transformer layers then process these to-
kens. Finally, the ViT’s output tokens are reshaped into a
DViT-dimensional image-like feature map fViT. The STEGO
architecture adds three main modules on top of DINO. First,
an optional bilinear upsampling layer is added to upsample
the feature map by a factor of 8 to regain the original input
image resolution. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The probes eval-
uate the feature quality of the segmentation head’s output.
A stop-gradient operation ensures that the simultaneous op-
timizations of both probes and the segmentation head do
not influence each other and that supervised label informa-
tion propagates neither into the segmentation head nor the
backbone. Finally, the output is optionally refined using a
Conditional Random Field (CRF) [24].

As shown in Figure 2, the STEGO segmentation head
consists of several linear layers and a non-linear ReLU [17]
activation function. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT, and specify DSTEGO = 70.

3790

Operation Read
Image

Patch
Image

Embed
Tokens

Output
Tokens

Reshape
Tokens

Upsample
Tokens

Segment.

Head

Linear Probe /
Cluster Probe

CRF
Refine

Output
Outputs 1 402 402 402 1 1 1 1 1
Channels 3 3

Height 320 8 1 1 40 320 320 320 320
Width 320 8 1 1 40 320 320 320 320

…

S

CP

DINO

LP

Contrastive
Loss

Cross
Entropy

k-means +
Hungarian

Stop-Gradient

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2
Figure 1. Architecture of the STEGO validation pipeline. The top of the figure shows abstractions of the operations and their training
losses. The table indicates each operation’s outputs and their dimensions. x is the input image, DINO is the frozen ViT backbone, fViT is an
image-like feature map (i.e., reshaped ViT tokens), S is the segmentation head, and the Linear Probe (LP) and Cluster Probe (CP) evaluate
the segmentation head output fSTEGO and map to Nc class probabilities. The stop-gradient module ensures that the optimizations of S, LP,
and CP do not influence each other and that label information can neither propagate into S nor DINO. We display the validation pipeline,
which uses 320×320 images. The training pipeline processes 224×224 images, does not upsample the ViT feature map fViT, and does not
use CRF by default.

Segmentation Head S

Linear Layer

Linear Layer ReLU Linear Layer

Input Output

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO NC

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO NC

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO NC

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO NC

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO NC

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background
2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO NC

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x0, b) = �
X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

Figure 2. Architecture of the non-linear segmentation head S. The
module projects the dimension of a vector from DViT to DSTEGO.

2.3. STEGO Training Strategy

Hamilton et al.’s [20] contrastive framework is based on
ViT token pairs as opposed to image pairs which are often
used in the context of contrastive self-supervised training
strategies in computer vision [9, 10]. Hamilton et al. define
token pairs using the cosine similarity of two ViT tokens:
A pair is considered positive when the cosine similarity of
two tokens exceeds a certain threshold; otherwise, they are
considered negative. Their contrastive correlation loss is
used to train the segmentation head and push the features of
positive token pairs towards alignment, corresponding to a
cosine similarity of 1, while negative pairs are pushed to-
wards a cosine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x′) and obtain the corresponding
DINO feature maps (fViT, f

′
ViT) as well as segmentation head

outputs (fSTEGO, f
′
STEGO). Subsequently, they calculate the

cosine similarities between all token pairs fViT and f ′ViT to
obtain a feature correspondence tensor CViT. Each entry
CViT,hwij ∈ [−1, 1] in the feature correspondence tensor is
the cosine similarity between a token in fViT and a token in
f ′ViT where (h,w) and (i, j) represent the spatial locations
of the tokens in the two feature maps, respectively. Anal-
ogously, they calculate the correspondence tensor CSTEGO
of the segmentation head outputs (fSTEGO, f

′
STEGO). Their

contrastive correlation loss

Lcorr(x,x
′, b) = −

∑

hwij

(CViT,hwij − b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CViT ex-
ceeds the threshold b in the case of a positive token pair
and towards –1 otherwise. The parameter b can be inter-
preted as a form of negative pressure. The paper mentions
several strategies to stabilize the loss and prevent collapse,
such as spatial centering of the correspondence tensor CViT
and zero-clamping of the correspondence tensor CSTEGO.

The choice of image pairs (x,x′) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: the
image with itself (x,x), the image with one of its 7 nearest
neighbors (x,xknn), and the image with a randomly chosen
one (x,xrand). While the first two image pairs provide a

3791

positive training signal, since many token pairs have similar
features, the latter one contributes mostly negative signals
because most token pairs will likely be dissimilar, assuming
the dataset is large and diverse. Finally, the overall loss

L =
∑

i∈{self,knn,rand}
λiLcorr(x,xi, bi) (2)

is calculated as the weighted sum of the correlation losses
of the three individual pairs. Overall, the STEGO loss intro-
duces six hyperparameters, λself, λknn, λrand, bself, bknn, and
brand, which require careful tuning.

3. Reestablishing Baselines
Hamilton et al. show that STEGO significantly outper-

forms other unsupervised segmentation algorithms such as
PiCIE [11] on the Cocostuff-27 [7] dataset. Notably, they
demonstrate that STEGO outperforms the DINO baseline,
where segmentation is performed on the DINO features di-
rectly. However, our preliminary experiments had indicated
that the performance of the DINO backbone alone is al-
ready highly competitive, i.e. the DINO backbone produces
highly semantic features – an observation in line with the
original presentation [9]. This discrepancy motivated us
to conduct a controlled reproducibility study of the result
stated in the original STEGO paper [20].

3.1. Experimental Setup

Evaluation, datasets, metrics. Recent works on self-
supervised learning evaluate the expressivity and general-
izability of features on several downstream tasks. Com-
mon evaluation protocols in computer vision involve train-
ing linear or k-NN classifiers using the ImageNet bench-
mark [9, 10] or semantic segmentation challenges [18]. We
adhere to the protocol in the original presentation to evalu-
ate the features produced by the STEGO segmentation head.

Hamilton et al. [20] evaluate the segmentation head fea-
tures in two styles. First, they propose an unsupervised
cluster probe, i.e. a cosine similarity-based k-means al-
gorithm [28] that detects NC clusters in the segmentation
head’s representation space. The identified clusters are
mapped to human-interpretable labels using a linear sum
assignment solved via the Hungarian algorithm [26] on the
ground-truth labels. Second, they assess the general feature
quality using a supervised linear probe, i.e. a linear layer
processing the extracted fixed segmentation head outputs,
which is trained via a standard cross-entropy loss with la-
bels from the ground-truth segmentation map.

To stay consistent with the original work, we use the
Cocostuff-27 [7], Cityscapes [13], and Potsdam-3 [22]
datasets for all of our experiments. We report the valida-
tion mean Intersection over Union (mIoU) and accuracy as
the primary evaluation metrics to be directly comparable to

Parameter
Configuration

Actual Reported

Dataset Cocostuff Cityscapes Potsdam *
Train steps 7000 7000 5000 -
Batch size 32 32 16 32
Crop type 5-crop 5-crop No crop 5-crop
Backbone ViT-B ViT-B ViT-S ViT-B
0-clamp - - True True
Pointwise True False True True
DSTEGO 90 100 70 70
λrand 0.15 0.91 0.63 *
λknn 1.00 0.58 0.25 *
λself 0.10 1.00 0.67 *
brand 1.00 0.31 0.76 *
bknn 0.20 0.18 0.02 *
bself 0.12 0.46 0.08 *

Table 1. Training configuration extracted from the pre-trained
models of STEGO and configuration reported in the paper [20].
The first 5 parameters are generic training parameters that also
apply to our “non-STEGO experiments” (i.e., our baseline exper-
iments from Section 3 and the experiments in Section 4). The re-
maining parameters are STEGO-specific training parameters. We
show only parameters that are different between the datasets or
deviate from the original paper’s information. For the remaining
parameters, we refer readers to our supplementary material. Note
that “-” means the information was unavailable in the code or the
paper, and “*” means multiple results were reported.

the original presentation. We follow the exact evaluation
procedure from the STEGO repository by reporting results
on the validation set and cherry-picking models performing
best on the validation unsupervised mIoU benchmark.

Model configuration. Tab. 1’s middle column shows
the actual training configuration we retrieved from each
dataset’s pre-trained STEGO model shipped with the pa-
per’s source code1. The table’s right-most column mentions
the parameters given in their report. Notably, some infor-
mation in the actual configuration differs from the data re-
ported in the original publication.

The data in Tab. 1 offers other interesting insights. The
STEGO embedding dimension DSTEGO is different for all
datasets, and the dimension reported in the paper only
matches the Potsdam dataset. The training configuration for
the Potsdam dataset differs from the other ones, i.e. using
a smaller backbone, fewer training steps, no five-cropping
of training images, and a smaller batch size. Furthermore,
the loss hyperparameters are remarkably different for each
dataset. We also report the hyperparameters for the Potsdam
dataset here, which are not given in the original paper [20].

1github.com/mhamilton723/STEGO

3792

Method

Cocostuff Cityscapes Potsdam

Unsupervised
Cluster probe

Supervised
Linear probe

Unsupervised
Cluster probe

Supervised
Linear probe

Unsupervised
Cluster probe

Supervised
Linear probe

Acc mIoU Acc mIoU Acc mIoU Acc mIoU Acc mIoU Acc mIoU

STEGO (theirs) 56.9 28.2 76.1 41.0 73.2 21.0 - - 77.0 - - -
STEGO (ours) ✓56.9 ✓28.2 ✓76.1 ✓41.1 ✓73.2 ✓21.0 89.6 28.0 ✓77.0 62.6 85.9 74.8
DINO (theirs) 30.5 9.6 66.8 29.4 - - - - - - - -
DINO (ours) †42.4 †13.0 †75.8 ‡44.4 52.6 15.2 ‡91.3 ‡34.9 71.3 54.3 84.5 72.8

Table 2. Validation results of reproducibility study showing accuracy (“Acc”) and mIoU in % for the different evaluation styles and datasets.
Values reported in the original paper [20] are marked “theirs”, and missing ones are denoted with “-”. Our results evaluating the pre-trained
models are marked “STEGO (ours)”. “DINO (ours)” is a re-training of the probes directly on the DINO backbone. Successful reproduction
is denoted with ✓ and a stronger DINO performance than reported in [20] is indicated with † and ‡. All evaluations post-process with CRF.

We use the “actual configuration” retrieved from the pre-
trained models without performing additional hyperparam-
eter optimizations to remain comparable with Hamilton et
al.’s [20] results. Our source code is publicly available2 and
only applies minimal changes to the original code, e.g., for
more extensive logging, which are clearly highlighted.

3.2. Results and Discussion

Tab. 2 displays the results of our reproducibility study
across all three benchmarking datasets. First, we show that
using the pre-trained STEGO models provided by the au-
thors, we are able to reproduce the results from the pa-
per (highlighted with ✓), which validates our evaluation
pipeline. Moreover, we paint a more comprehensive picture
by reporting missing metrics for the Cityscapes and Pots-
dam datasets.

Second, we directly evaluate the features produced by
the DINO backbone by re-training the cluster and linear
probe on the backbone while fixing all other training set-
tings. We find that the DINO baseline results are consis-
tently better than those provided in the paper [20] (high-
lighted with †). This is surprising as we use the evalua-
tion pipeline provided by the authors and do not introduce
changes that could influence the training performance.

Notably, for linear probe-style evaluation, the DINO
baseline performs approximately on par with the STEGO
approach, sometimes even outperforming STEGO (high-
lighted with ‡). This result means that the features produced
by DINO and the STEGO segmentation head exhibit similar
linear separability. DINO demonstrates a remarkable abil-
ity to provide semantically meaningful features and gener-
alize to different datasets despite being pre-trained solely
on ImageNet [33], while Hamilton et al. [20] fine-tuned the
segmentation head on the respective datasets. DINO’s per-
formance is particularly noteworthy, given the significant

2github.com/merantix-momentum/stego-studies

domain shifts between ImageNet and Potsdam’s aerial im-
agery and ego-camera footage from Cityscapes.

However, as shown in Tab. 2, the STEGO embeddings
are better suited for the unsupervised cluster probe task than
the raw DINO features. Hamilton et al. argue that “[d]ue to
the feature distillation process, STEGO’s segmentation fea-
tures tend to form clear clusters” (page 6, [20]). While more
“distinct clusters” (page 1, [20]) could explain STEGO’s su-
perior k-means clustering performance, there might be ad-
ditional possible explanations.

First, STEGO can adapt to a domain shift to the new data
distribution since it includes a trainable segmentation head.
It needs to be clarified what the contribution of the STEGO
loss for adapting to new datasets really is, as opposed to the
DINO pre-training objective, which could also be used to
fine-tune the backbone. For instance, can one fine-tune the
ViT backbone – either entirely, using adapters [21], or addi-
tional linear heads – using the DINO loss on a new dataset
and obtain a performance competitive with STEGO? As
Caron et al. [9] show, DINO provides semantically mean-
ingful representations. The DINO loss is better understood
due to its pervasion in the community and involves less hy-
perparameter tuning.

Second, STEGO’s dimensionality reduction from DViT
to DSTEGO (a factor of ≈ 8 for Cocostuff and Cityscapes)
could in itself be a reason for a higher unsupervised cluster-
ing performance. The k-means algorithm used for cluster-
ing minimizes the sum of squared distances between each
data point and its cluster centroid. Due to the curse of di-
mensionality, distances between data points in higher di-
mensions become exponentially larger and more uniform.
This observation also holds for the cosine distance-based
variant of k-means applied in the STEGO paper. Less
significant distances make it harder to identify clusters in
higher dimensional spaces. Hence, it could be that STEGO
preserves the semantics of DINO features while projecting
them into a lower-dimensional space where k-means per-

3793

forms better. Again, the question remains whether a similar
result could be obtained by training a feature downsampling
layer or segmentation head using the DINO strategy.

The STEGO paper [20] does not explore these issues ex-
perimentally. Particularly, the research community has yet
to disentangle the mechanisms behind STEGO’s superior
performance in the unsupervised clustering case with ex-
perimental results. In the remainder of this paper, we take
a closer look at STEGO and test whether the method can
be interpreted as a dimensionality-reduction technique that
preserves DINO’s semantic feature correspondences.

4. Disentangling STEGO’s Working Principles
We work towards disentangling the functional mecha-

nisms behind STEGO by re-training the segmentation head
with different output dimensions DSTEGO. Consequently,
we draw conclusions from STEGO’s performance on the
linear and cluster probe downstream tasks. These ablations
also give practitioners an intuition for how sensitive STEGO
is towards its output dimension DSTEGO and serve as an-
other reproducibility experiment. Previously, we argued
that STEGO may be interpretable as a semantics-preserving
dimensionality reduction technique. Hence, we compare
STEGO with two standard methods that can reduce the di-
mensionality of the high-dimensional ViT features.

4.1. Dimensionality Reduction Baselines

Principal component analysis. Principal component
analysis (PCA) [31] is a well-established unsupervised di-
mensionality reduction technique. First, PCA identifies a
set of orthogonal vectors, known as principal components,
that capture the most variance in the dataset. Secondly, the
algorithm uses the top-k principal components to linearly
project the dataset into a lower-dimensional space.

Figure 3 shows the cumulative explained variance of the
principal components of the DINO embeddings for all three
investigated datasets. For Cityscapes, PCA can explain
roughly 75 % of the dataset’s variance using only roughly
33 % of the number of components. For the other datasets,
more components are required to explain the same variance.
The steep cumulative explained variance curve, especially
for Cityscapes, indicates great potential for dimensionality
reduction techniques operating on the ViT features.
Random Projection. Another compute-efficient dimen-
sionality reduction technique commonly used in the ma-
chine learning context is Random Projection (RP) [5, 14],
which linearly transforms high-dimensional feature vectors
into a randomly chosen subspace. We use Gaussian RP,
which initializes the projection matrix with orthogonal col-
umn vectors drawn from a normal distribution. The algo-
rithm approximately retains pair-wise distances with high
probability [23], which makes RP well-suited for clustering
with k-means [6].

0 DViT

16
DViT

4
DViT

2
3DViT

4
DViT

Number of Components

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

la
in

ed
 V

ar
ia

nc
e

Cityscapes
Potsdam
Cocostuff

Figure 3. Cumulative explained variance of the principal compo-
nents of DINO features for all datasets. We fit PCA on at most
5000 randomly selected training images, i.e., ≈ 3M ViT-tokens, to
keep the memory consumption tractable. The x-axis is normalized
as different embedding dimensions are used for the three datasets.

4.2. Results and Discussion

Figure 4 shows our results, which analyze the embedding
dimension hyperparameter of various unsupervised seman-
tic segmentation techniques. As previously noted, we use
three methods to reduce the dimensionality of the DINO
features: the segmentation head of STEGO, PCA, and RP.
In the latter two cases, we swap out STEGO’s segmentation
head and train the linear and cluster probes on the PCA-
or RP-transformed output directly while keeping the rest of
the training and validation pipeline fixed. We observe sev-
eral interesting results.

For linear probing in Figure 4 (a–c), STEGO can reduce
the dimensionality with little loss in performance up to ap-
proximately DSTEGO. This means that STEGO is an effi-
cient non-linear dimensionality reduction technique. How-
ever, through an ablation across multiple dimensions, we
confirm our experimental result from Tab. 2, indicating that
STEGO provides little, if any, performance benefit over the
DINO baseline for linear probe-style evaluation. By analyz-
ing STEGO’s performance at the unreduced DINO dimen-
sion, i.e., DSTEGO = DViT, we can isolate the segmentation
head’s dimensionality reduction from its non-linear projec-
tion. Notably, features produced by the STEGO segmen-
tation head at the unreduced dimension are less or equally
linearly separable than DINO features. Hence, the segmen-
tation head does not project DINO’s features in a useful way
for linear probing. However, it should be noted that the hy-
perparameters of the STEGO training strategy are not fine-
tuned and thus are strictly only compatible with the original
output dimension DSTEGO. Hence, the reduced performance
at the full dimension could also be due to hyperparameter
instability. Finally, STEGO performs better or at least on
par with the linear dimensionality reduction techniques on
the linear probing task.

3794

0

10

20

30

40

S
up

er
vi

se
d

Li
ne

ar
 P

ro
be

 m
Io

U

Cocostuff
DSTEGO = 90, DViT = 768

(a)

10

20

30

Cityscapes
DSTEGO = 100, DViT = 768

(b)

20

40

60

Potsdam
DSTEGO = 70, DViT = 384

(c)

3 6 12 24 48 96 192 384 768

Embedding Dimension D

5

10

15

20

25

U
ns

up
er

vi
se

d
C

lu
st

er
 P

ro
be

 m
Io

U

(d)

3 6 12 24 48 96 192 384 768

Embedding Dimension D

5

10

15

20

(e)

3 6 12 24 48 96 192 384 768

Embedding Dimension D

20

30

40

50

60

(f)

STEGO (theirs)
STEGO (theirs) w/o CRF
STEGO

DINO (ours)
DINO (ours) w/o CRF

PCA
RP

Figure 4. Validation mIoU of different dimensionality reduction techniques with cluster- and linear probe-style evaluation across different
embedding dimensions. The ▼ data points are the results from Tab. 2. The • data points show the same results without the CRF post-
processing. All remaining data is without CRF to paint an undistorted picture of the effectiveness of the underlying segmentation pipeline.
The × data points show the results of models trained with different embedding dimensions and dimensionality reduction algorithms.

Figure 4 (d, e) shows that STEGO consistently outper-
forms PCA, RP, and plain DINO across all embedding di-
mensions in the unsupervised clustering task. This demon-
strates that STEGO can robustly project ViT features into
a wide range of target dimensions – even into much lower
ones than suggested in the original paper [20]. Hence, the
segmentation head preserves semantic information for the
clustering task while simultaneously reducing the number
of embedding dimensions. However, STEGO’s superior
performance for unsupervised clustering cannot only be at-
tributed to its dimensionality-reducing aspect since we also
see a performance boost in Figure 4 (d, e) at the original di-
mension DSTEGO = DViT = 768. This observation could
be evidence of Hamilton et al.’s argument of more com-
pact and distinct clusters in features produced by STEGO
that could facilitate better k-means convergence. However,
STEGO’s improvement over DINO may also be due to the
adaptation of the segmentation head to the new training
data distribution. Training the segmentation head or Trans-

former adapter layers [21] using a simpler loss (e.g., the
DINO loss) could potentially achieve comparable perfor-
mance. Nevertheless, we conclude for the unsupervised
downstream task: Besides efficiently reducing the dimen-
sion, STEGO also projects DINO’s output features to rep-
resentations that are more suited for k-means clustering. In
contrast, we did not observe a benefit of STEGO for linear
probing over the DINO baseline at an unreduced dimension.

Figure 4 (d, e) also demonstrates that PCA approxi-
mately retains the unsupervised performance of DINO up
to an embedding dimension of D = 48 – a significant
reduction by a factor of 16 compared to the original di-
mension DViT = 768 of the DINO baseline. Simulta-
neously, in Figure 4 (a–c), the performance of the PCA-
transformed features on the linear probing downstream task
approximately exponentially decreases with lower embed-
ding dimensions (note that the x-axis is in log-scale). From
Figure 3, we know that the first 48 components account
for roughly 40 % of variance explained for Cityscapes and

3795

25 % for Cocostuff. Therefore, lower performance of the
PCA-projected features on the linear probing task is ex-
pected since the transformed features contain much less in-
formation. Surprisingly, the unsupervised clustering per-
formance does not worsen until D = 48 for Cocostuff
and Cityscapes, even though significantly less information
is available. Hence, another factor is at play, improving
performance for lower embedding dimensions. This factor
likely is related to our previous argument that the k-means
algorithm converges better in lower dimensions.

Interestingly, all STEGO results in Figure 4 follow a
similar trend, where the cluster and linear performance
peaks at a dimension DSTEGO ≪ DViT. Furthermore,
Figure 4 (d, e) shows a similar trend for the PCA cluster
performance, which also has a slight upwards trend at ap-
proximately DSTEGO. These results suggest some optimal
configuration for the k-means algorithm, where both effects
– lower dimensions mean less information content, but a
better k-means convergence – balance out, again indicat-
ing that the dimensionality reduction is a critical contribu-
tion to STEGO’s performance in the unsupervised cluster-
ing case. Another explanation for the peak STEGO perfor-
mance could be that the hyperparameters, which Hamilton
et al. [20] identified, work best for DSTEGO and that hyper-
parameter tuning influences the results at other dimensions.

As shown in Figure 4 (a, b, d, e), we are able to repro-
duce the originally reported performance of STEGO with-
out CRF for Cocostuff and Cityscapes. However, the Pots-
dam results in Figure 4 (f) behave quite differently than
those on the more diverse and larger datasets. While in our
previous analysis, we found that all STEGO cluster probe
results show a conceptually similar trend (i.e., performance
peaks at a dimension D ≪ DViT and they robustly outper-
form the baselines), the entire Potsdam curve is shifted to
the left and does not meet the expected performance of the
pre-trained STEGO model. This vastly different behavior
is likely due to two reasons. First, the Potsdam aerial im-
agery dataset is out of distribution input for the ImageNet-
pre-trained DINO backbone, likely leading DINO to pro-
duce lower-quality embeddings. Second, the segmentation
head is trained on significantly fewer data for Potsdam than
Cityscapes and Cocostuff, making it more challenging for
the module to compensate for lower-quality DINO features.
Note that Potsdam is inherently smaller than Cityscapes
and Cocostuff containing only roughly 4.5k training images
as opposed to 15k and 490k pre-processed training images
for Cityscapes and Cocostuff, respectively. Nevertheless, it
is impressive that STEGO achieves over 60% mIoU using
only 6-dimensional embeddings in Figure 4 (f). A likely
reason for much better relative performance at lower di-
mensions is the considerably easier segmentation task hav-
ing only 3 classes for Potsdam, as opposed to 27 for Co-
costuff and Cityscapes. Separating these three classes using

the cluster probe in very high dimensions is challenging,
again supporting our argument that STEGO is an efficient
dimensionality reduction technique.

Finally, due to computational efficiency, we cache the
precomputed DINO features using the Squirrel library [38]
for PCA and RP. Therefore, we apply a slightly different
shuffling than the one used in the case of STEGO. The shuf-
fling styles can influence the performance of the mini-batch
k-means variant and the linear probe results, which might
explain why the PCA and RP results in Figure 4 sometimes
do not match the DINO performance at DViT exactly. Note
that for all STEGO results shown in Figure 4, we run the
original code with the unaltered shuffling strategy.

Minor results in Figure 4 include that all other dimen-
sionality reduction techniques in the linear and cluster probe
downstream task outperform RP. This is somewhat surpris-
ing as RP approximately preserves pair-wise distances. A
possible explanation might be the use of a cosine similarity-
based k-means clustering. Investigating different unsuper-
vised clusterings, such as a standard Euclidian distance-
based k-means or more advanced clustering approaches, is
an interesting direction for future investigations. However,
fitting RP is exceptionally fast and compute-efficient. Fi-
nally, CRF improves performance by a few percent, as indi-
cated in the STEGO paper [20] and other works in the field.

5. Conclusion
This work provided a deeper understanding and evalua-

tion of the recent STEGO method for unsupervised seman-
tic segmentation. We uncovered the working mechanisms
behind the architecture’s segmentation head, highlighted a
remarkable performance of the DINO backbone, and found
that STEGO compares favorably against traditional dimen-
sionality reduction techniques. A limitation of our analysis
is that we did not optimize STEGO’s loss parameters for
each embedding dimension.

Future research should detail the relationship between
the loss parameters and task performance. Additionally, it is
essential to investigate whether self-supervised fine-tuning
of the DINO backbone on new datasets can yield compa-
rable results to STEGO. Lastly, it is interesting to explore
other clustering strategies, such as over-clustering of the
features with k-means as proposed in MaskDistill [41], or
using different clustering algorithms that perform well in
high-dimensional spaces such as h-NNE [35] for which we
show first results in the supplementary material.

Acknowledgements. This work was supported by the Federal
Ministry for Economic Affairs and Climate Action (BMWK) on
the basis of a decision by the German Bundestag as part of the
safe.trAIn project under grant no. 19I21039G.
Contributions. All authors designed the study. A.K. imple-
mented and carried out the experiments. A.K. and M.S. wrote the
manuscript. M.S. and J.O. supervised the work.

3796

References
[1] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic

affinity with image-level supervision for weakly supervised
semantic segmentation. In Conference on Computer Vision
and Pattern Recognition, 2018. 2

[2] Ahmad Alzu’bi and Lujain Alsmadi. Monitoring deforesta-
tion in Jordan using deep semantic segmentation with satel-
lite imagery. Ecological Informatics, 2022. 1

[3] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel.
Deep ViT features as dense visual descriptors. European
Conference on Computer Vision Workshop, 2022. 1, 2

[4] Tanmay Anand, Soumendu Sinha, Murari Mandal, Vinay
Chamola, and Fei Richard Yu. AgriSegNet: Deep aerial
semantic segmentation framework for IoT-assisted precision
agriculture. IEEE Sensors Journal, 2021. 1

[5] Ella Bingham and Heikki Mannila. Random projection in di-
mensionality reduction: Applications to image and text data.
In International Conference on Knowledge Discovery and
Data Mining, 2001. 6

[6] Christos Boutsidis, Anastasios Zouzias, and Petros Drineas.
Random projections for k-means clustering. In Advances in
Neural Information Processing Systems, 2010. 6

[7] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. COCO-
Stuff: Thing and stuff classes in context. In Conference on
Computer Vision and Pattern Recognition, 2018. 4

[8] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. In Ad-
vances in Neural Information Processing Systems, 2020. 1

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In In-
ternational Conference on Computer Vision, 2021. 1, 2, 3, 4,
5

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In International Conference on
Machine Learning, 2020. 1, 3, 4

[11] Jang Hyun Cho, Utkarsh Mall, Kavita Bala, and Bharath
Hariharan. PiCIE: Unsupervised semantic segmentation us-
ing invariance and equivariance in clustering. In Conference
on Computer Vision and Pattern Recognition, 2021. 2, 4

[12] Edo Collins, Radhakrishna Achanta, and Sabine Susstrunk.
Deep feature factorization for concept discovery. In Euro-
pean Conference on Computer Vision, 2018. 2

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
dataset for semantic urban scene understanding. In Confer-
ence on Computer Vision and Pattern Recognition, 2016. 4

[14] Sanjoy Dasgupta. Experiments with random projection. In
Conference on Uncertainty in Artificial Intelligence, 2000. 6

[15] Li Deng. The MNIST database of handwritten digit images
for machine learning research [Best of the Web]. IEEE Sig-
nal Processing Magazine, 2012. 1

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16×16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 1

[17] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep
sparse rectifier neural networks. In International Conference
on Artificial Intelligence and Statistics, 2011. 2

[18] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent – a new
approach to self-supervised learning. In Advances in Neural
Information Processing Systems, 2020. 1, 4

[19] Tianrui Guan, Divya Kothandaraman, Rohan Chandra,
Adarsh Jagan Sathyamoorthy, Kasun Weerakoon, and Di-
nesh Manocha. GA-Nav: Efficient terrain segmentation
for robot navigation in unstructured outdoor environments.
IEEE Robotics and Automation Letters, 2022. 1

[20] Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah
Snavely, and William T. Freeman. Unsupervised semantic
segmentation by distilling feature correspondences. In Inter-
national Conference on Learning Representations, 2022. 1,
2, 3, 4, 5, 6, 7, 8

[21] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In International Conference on Machine
Learning, 2019. 5, 7

[22] Xu Ji, Joao F. Henriques, and Andrea Vedaldi. Invariant
information clustering for unsupervised image classification
and segmentation. In International Conference on Computer
Vision, 2019. 4

[23] William Johnson and Joram Lindenstrauss. Extensions of
Lipschitz maps into a Hilbert space. Contemporary Mathe-
matics, 1984. 6

[24] Philipp Krähenbühl and Vladlen Koltun. Efficient inference
in fully connected CRFs with Gaussian edge potentials. In
Advances in Neural Information Processing Systems, 2011.
2

[25] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical Report, Uni-
versity of Toronto, 2009. 1

[26] Harold W Kuhn. The Hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 1955. 4

[27] Xin Lai, Zhuotao Tian, Li Jiang, Shu Liu, Hengshuang Zhao,
Liwei Wang, and Jiaya Jia. Semi-supervised semantic seg-
mentation with directional context-aware consistency. In
Conference on Computer Vision and Pattern Recognition,
2021. 2

[28] J. B. MacQueen. Some methods for classification and anal-
ysis of multivariate observations. In Berkeley Symposium on
Mathematical Statistics and Probability, 1967. 4

[29] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and
Andrea Vedaldi. Deep spectral methods: A surprisingly
strong baseline for unsupervised semantic segmentation and

3797

localization. In Conference on Computer Vision and Pattern
Recognition, 2022. 2

[30] Youngmin Oh, Beomjun Kim, and Bumsub Ham.
Background-aware pooling and noise-aware loss for
weakly-supervised semantic segmentation. In Conference
on Computer Vision and Pattern Recognition, 2021. 2

[31] Karl Pearson. On lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science, 1901. 6

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention, 2015. 1

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision, 2015. 1,
5

[34] Monjoy Saha and Chandan Chakraborty. Her2Net: A deep
framework for semantic segmentation and classification of
cell membranes and nuclei in breast cancer evaluation. IEEE
Transactions on Image Processing, 2018. 1

[35] M. Saquib Sarfraz, Marios Koulakis, Constantin Seibold,
and Rainer Stiefelhagen. Hierarchical nearest neighbor
graph embedding for efficient dimensionality reduction. In
Conference on Computer Vision and Pattern Recognition,
2022. 8

[36] Wei Shen, Zelin Peng, Xuehui Wang, Huayu Wang, Jiazhong
Cen, Dongsheng Jiang, Lingxi Xie, Xiaokang Yang, and Q.
Tian. A survey on label-efficient deep image segmentation:
Bridging the gap between weak supervision and dense pre-
diction. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023. 2

[37] Jianbo Shi and Jitendra Malik. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2000. 2

[38] Squirrel Developer Team. Squirrel: A Python library that
enables ML teams to share, load, and transform data in a
collaborative, flexible, and efficient way. GitHub. Note:
https://github.com/merantix-momentum/squirrel-core, 2022.
8

[39] Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea
Vedaldi. Neural feature fusion fields: 3D distillation of self-
supervised 2D image representations. In International Con-
ference on 3D Vision, 2022. 1

[40] Wouter Van Gansbeke, Simon Vandenhende, Stamatios
Georgoulis, and Luc Van Gool. Unsupervised semantic seg-
mentation by contrasting object mask proposals. In Interna-
tional Conference on Computer Vision, 2021. 2

[41] Wouter Van Gansbeke, Simon Vandenhende, and Luc
Van Gool. Discovering object masks with transformers for
unsupervised semantic segmentation. In arXiv, 2022. 2, 8

[42] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and
Xilin Chen. Self-supervised equivariant attention mecha-
nism for weakly supervised semantic segmentation. In Con-
ference on Computer Vision and Pattern Recognition, 2020.
2

[43] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip H.S. Torr, and Li Zhang. Rethinking semantic
segmentation from a sequence-to-sequence perspective with
transformers. In Conference on Computer Vision and Pattern
Recognition, 2021. 1

3798

