A Novel Benchmark for Refinement of Noisy Localization Labels in Autolabeled Datasets for Object Detection

Supplementary Material

Andreas Bär¹* Jonas Uhrig^{2 3}* Jeethesh Pai Umesh^{1 †}* Marius Cordts² Tim Fingscheidt¹ ¹Technische Universität Braunschweig, Germany ²Mercedes Benz AG, Germany ³University of Freiburg, Germany *Equal contribution [†]Work done during an internship at Mercedes Benz AG, Germany

{andreas.baer, j.umesh, t.fingscheidt}@tu-bs.de {jonas.uhrig, marius.cordts}@mercedes-benz.com

1. More Details About the Losses

We introduce the smooth L_1 loss [1] and the generalized intersection-over-union (gIoU) loss [2].

The smooth L_1 loss is defined as

$$J^{\text{smooth}} = \begin{cases} \Delta - \frac{\theta}{2}, & \text{if } \Delta \ge \theta, \\ \frac{1}{2 \cdot \theta} \Delta, & \text{otherwise,} \end{cases}$$
(1)

with $\Delta = |\boldsymbol{y} - \overline{\boldsymbol{y}}|$ or $\Delta = |\boldsymbol{y} - \widetilde{\boldsymbol{y}}_k|$ depending on the LLRN type and iteration k. We use $\theta = 1$.

Further, let $\mathcal{Y}_{\overline{o}}$, $\widetilde{\mathcal{Y}}_{\overline{o}}$, and $\overline{\mathcal{Y}}_{\overline{o}}$ contain all pixel positions $(h, w) \in \mathcal{I}$ that are enclosed by the object localization represented as $\boldsymbol{y}_{\overline{o}}$, $\widetilde{\boldsymbol{y}}_{\overline{o}}$, and $\overline{\boldsymbol{y}}_{\overline{o}}$, respectively. In addition, let $\mathring{\boldsymbol{y}}_{\overline{o}} = \left((\mathring{h}_{\overline{o}}^{(\mathrm{L})}, \mathring{\boldsymbol{w}}_{\overline{o}}^{(\mathrm{L})}), (\mathring{h}_{\overline{o}}^{(\mathrm{R})}, \mathring{\boldsymbol{w}}_{\overline{o}}^{(\mathrm{R})}) \right)$, with top-left corner $(\mathring{h}_{\overline{o}}^{(\mathrm{L})}, \mathring{\boldsymbol{w}}_{\overline{o}}^{(\mathrm{L})})$ and bottom-right corner $(\mathring{h}_{\overline{o}}^{(\mathrm{R})}, \mathring{\boldsymbol{w}}_{\overline{o}}^{(\mathrm{R})})$ be the smallest possible enclosing box of two object localizations referring to an object with identifier \overline{o} , e.g., $\boldsymbol{y}_{\overline{o}}$ and $\overline{\boldsymbol{y}}_{\overline{o}}$. The top-left (L) and bottom-right (R) corners of $\mathring{\boldsymbol{y}}_{\overline{o}}$ are then computed by

$$\begin{pmatrix} \mathring{h}_{\overline{o}}^{(\mathrm{L})}, \mathring{w}_{\overline{o}}^{(\mathrm{L})} \end{pmatrix} = \left(\min(h_{\overline{o}}^{(\mathrm{L})}, \overline{h}_{\overline{o}}^{(\mathrm{L})}), \max(w_{\overline{o}}^{(\mathrm{L})}, \overline{w}_{\overline{o}}^{(\mathrm{L})}) \right), \\ \left(\mathring{h}_{\overline{o}}^{(\mathrm{R})}, \mathring{w}_{\overline{o}}^{(\mathrm{R})} \right) = \left(\min(h_{\overline{o}}^{(\mathrm{R})}, \overline{h}_{\overline{o}}^{(\mathrm{R})}), \max(w_{\overline{o}}^{(\mathrm{R})}, \overline{w}_{\overline{o}}^{(\mathrm{R})}) \right).$$

$$(2)$$

Similar as before, $\hat{\mathcal{Y}}_{\overline{o}}$ contains all pixel positions $(h, w) \in \mathcal{I}$ that are enclosed by the object localization represented as $\mathring{\boldsymbol{y}}_{\overline{o}}$. Bringing all together, we define the gIoU between two localizations of the same object with identifier \overline{o} as

$$gIoU_{\overline{o}} = \frac{|\mathcal{Y}_{\overline{o}} \cap \overline{\mathcal{Y}}_{\overline{o}}|}{|\mathcal{Y}_{\overline{o}} \cup \overline{\mathcal{Y}}_{\overline{o}}|} - \frac{|\dot{\mathcal{Y}}_{\overline{o}} \setminus (\mathcal{Y}_{\overline{o}} \cup \overline{\mathcal{Y}}_{\overline{o}})|}{|\dot{\mathcal{Y}}_{\overline{o}}|}$$
(3)

and the respective gIoU loss as

$$J^{\text{gIoU}} = \frac{1}{N_{\overline{\mathcal{O}}}} \sum_{\overline{o} \in \overline{\mathcal{O}}} (1 - gIoU_{\overline{o}}) \tag{4}$$

Table 1. Localization label quality for noisy and refined data. Mean intersection-over-union (mIoU) in % between ground truth data \mathcal{D}_{val} and noisy data $\widetilde{\mathcal{D}}_{val}^{(\epsilon)}$, and between ground truth data \mathcal{D}_{val} and refined data $\widehat{\mathcal{D}}_{val}^{(\epsilon)}$ for different noise strengths ϵ are reported. The "single-pass"-row refers to single-pass LLRN-refined labels (our best method), while the "none"-row refers to noisy labels.

Note that the first term in (3) is indeed the intersection over union between $\mathcal{Y}_{\overline{o}}$ and $\overline{\mathcal{Y}}_{\overline{o}}$ and the second term in (3) is a regularizer which penalizes the distance between $\mathcal{Y}_{\overline{o}}$ and $\overline{\mathcal{Y}}_{\overline{o}}$. In particular, the latter yields non-zero values for the special case when $\mathcal{Y}_{\overline{o}}$ and $\overline{\mathcal{Y}}_{\overline{o}}$ do not intersect with each other, where the first term in (3) ends up to be 0 for all non-intersecting cases. Whether $\overline{\mathcal{Y}}_{\overline{o}}$ or $\widetilde{\mathcal{Y}}_{\overline{o}}$ is used, depends on the LLRN type and iteration k.

2. Benchmarking and Qualitative Examples

For easier referencing and to establish a benchmark for localization label errors and their refinement, we make explicit our best mIoU results in Tab. 1 and our best mAP results in Tab. 2. Further, we provide additional qualitative examples for the single-pass LLRN in Fig. 1.

References

- Ross Girshick. Fast R-CNN. In Proc. of ICCV, pages 1440– 1448, Las Condes, Chile, Dec. 2015.
- [2] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In *Proc. of CVPR*, pages 658–66, Long Beach, CA, USA, June 2019. 1

Figure 1. More examples for our localization label refinement (single-pass LLRN approach). Our proposed framework takes a noisy localization label \tilde{y} (red box) as input and outputs a refined localization label \hat{y} (green box).

Table 2. Object detection performance on noisy and refined data. Mean average precision $(mAP_{\kappa}), \kappa \in \{0.5, 0.6, 0.7, 0.8, 0.9\}$, on \mathcal{D}_{val} is reported in (%). We trained the Cascade R-CNN on noisy datasets $\widetilde{\mathcal{D}}_{\text{train}}^{(\epsilon)}$ and refined datasets $\widehat{\mathcal{D}}_{\text{train}}^{(\epsilon)}$ with different (initial) noise strengths ϵ . The "single-pass"-rows refer to single-pass LLRN-refined labels (our best method), while the "none"-rows refer to noisy labels.

	Refinement	Noise strength ϵ					
	method	0	0.1	0.2	0.3	0.4	0.5
$mAP_{0.5}$	single-pass	80.40	80.27	80.77	80.03	80.03	79.10
	none	81.10	80.97	80.53	79.33	77.63	75.23
$mAP_{0.6}$	single-pass	77.07	76.97	77.17	76.53	76.37	75.10
	none	77.87	77.60	76.67	74.57	71.53	66.90
$mAP_{0.7}$	single-pass	70.10	70.17	70.20	69.23	68.33	66.37
	none	71.40	70.13	67.73	63.03	55.90	45.33
$mAP_{0.8}$	single-pass	55.80	55.80	55.40	54.10	51.57	47.50
	none	57.70	54.30	46.97	35.83	23.17	13.30
$mAP_{0.9}$	single-pass	25.27	25.00	23.90	21.77	18.23	12.13
	none	27.77	19.43	7.50	2.63	1.03	0.40