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A. Appendix
In the appendix, we provide additional information and

results complementing the main manuscript. Beginning
with Section A.1, details about the models, datasets, as well
as technical minutae on the computation of Layer-wise Rel-
evance Propagation (LRP) attributions are presented. This
is followed by Sections A.4 and A.5, where more results on
the evaluation of explanations are given regarding faithful-
ness and complexity, respectively. Finally, in Section A.6,
additional results for the measurement of context scores of
concepts are shown and discussed.

A.1. Technical Details

In the following, the models and datasets are presented,
as well as details about the used LRP rules and their imple-
mentation.

Models and Datasets The UNet [21] model is imple-
mented using the segmentation models pytorch
framework [14] and consists of a VGG-13 [25] encoder with
BatchNorm layers, and weights pre-trained on ImageNet
[22]. The model is trained for 100 epochs with a batch size
of 40 on the CityScapes [7] dataset with an initial learning
rate of 10−3 using the Adam optimizer. The learning rate is
reduced to 10−4 after 50 and 5 · 10−5 after 75 epochs. Im-
ages are resized to a height of 256 and width of 512 pixels
and normalized using a mean of (0.485, 0.456, 0.406) and
standard deviation of (0.229, 0.224, 0.225) over the three
RGB color dimensions1. During training, we further apply
random cropping to 256 × 256 pixels, a random horizon-
tal flip (50 % probability), brightness, saturation, hue and
contrast perturbation (20 % strength, 50 % probability), as
well as adding random Gaussian noise (zero mean, variance

1as proposed at https://pytorch.org/vision/stable/
models.html

between 10 and 50, 50 % probability). The final training
results in a pixel-wise accuracy of 74.7 % and a mean inter-
section over union score of 35.1 %.

The DeepLabV3+ [6] model is based on the PyTorch im-
plementation [10] with a ResNet-50 [12] backbone and pre-
trained on the Pascal VOC 2012 dataset.

The YOLOv6 model is based on the PyTorch implemen-
tation of the authors [16] and corresponds to the “small”
variant named YOLOv6s trained on the MS COCO 2017
dataset [17].

Similarly, the YOLOv5 model is based on the PyTorch
implementation of [9] and corresponds to the “medium”
variant named YOLOv5m trained on MS COCO 2017.

LRP Canonization Canonization procedures restructure
a model into a functionally equivalent architecture to which
established attribution LRP-rules can be applied [20]. Can-
onization efforts typically concentrate on replacing the
BatchNorm layer [11, 13] or handling skip connections [5]
as in the ResNet architecture [12].

Regarding canonization, BatchNorm layers are merged
into the preceding linear layer for all models. This way,
significant improvements in terms of explanations can be
achieved [19].

Further, in the Bottleneck modules of DeepLabV3+
(based on the ResNet) and YOLOv5, as well as the
RepVGGBlock module (based on [8]) of the YOLOv6, ac-
tivations of different parallel operations are merged using a
sum operation. Here, a Sum module is inserted to handle
the summation, and to which a Norm-rule can be applied to
normalize relevances during the relevance backpropagation
step, as available in [4] and discussed in [5].

The authors of [8] also present a canonization pro-
cedure for the RepVGGBlock module of YOLOv6,
which merges all linear operations of the module into
a single convolutional layer, which we apply to layer

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html


model.backbone.stem.

LRP Rules Multiple rules for LRP were defined in the
literature [15]. The LRP-ε rule is based on the basic de-
composition rule (see Equation (1)) and is given as

R
(l, l+1)
i←j =

zij
zj + ε · sign(zj)

Rl+1
j (A.1)

with zij describing the contribution of neuron i to the ac-
tivation of neuron j, and aggregated pre-activations zj =∑

i zij . The LRP-ε rule ensures that each neuron receives
the attribution value (fraction), that it contributed to the out-
put. The added parameter ε ∈ R+ stabilizes the division
of the denominator, and “dampens” contradicting contribu-
tions for |zij | ≫ |zj |, as discussed in [18]. However, ε is
usually set to a small value, e.g. 10−6 in [4], resulting in
noisy attributions for deep networks due to large relevance
values from contradicting contributions |zij | ≫ |zj |. In
classification networks, the LRP-ε rule is often chosen for
the dense layers, whereas increasingly stabilizing rules (pre-
sented in the following) are chosen for convolutional layers.
In the YOLOv6 model implementation, single BatchNorm
layers with label rbr identity in RepVGGBlockmod-
ules exist without neighbouring linear layers. We apply the
LRP-ε rule for these individual BatchNorm layers.

Alternatively, the LRP-γ rule is defined as

R
(l, l+1)
i←j =

zij + γz+ij

zj + γ
∑

k z
+
kj

Rl+1
j (A.2)

with positive parameter γ ∈ R+ and (·)+ = max(0, ·). The
function of the LRP-γ rule is to favor positive contributions
and at the same limit the unbounded growth potential of
positive and negative relevance in the backpropagation step.
Note, that the term γ

∑
i z

+
ij (for strictly positive zj) effec-

tively corresponds to the ε in Equation (1), but scaled to the
magnitude of contributions z+ij . The LRP-γ rule has thus
been found to be effective in reducing noisy attributions,
and the amount of “filtering” can be controlled by one pa-
rameter γ, which is by default set to γ = 0.25 in the zennit
framework [4]. However, if zj < 0, the denominator can
become numerically unstable if |zj | ≈ γ

∑
i z

+
ij . Therefore,

we use the generalized version presented in [3], and either
favor positive contributions for zj > 0 or negative contribu-
tions for zj < 0, depending on the sign of zj :

R
(l, l+1)
i←j =


zij+γz+

ij

zj+γ
∑

k z+
kj

Rl+1
j if zj > 0

zij+γz−
ij

zj+γ
∑

k z−
kj

Rl+1
j else

. (A.3)

The LRP-z+ rule represents a third rule, defined as

R
(l, l+1)
i←j =

z+ij∑
k z

+
kj

Rl+1
j (A.4)

by only taking into account positive contributions z+ij . The
LRP-z+ rule can be seen as the most stable or least noisy at-
tribution method, representing Equation A.2 with γ → ∞.
To receive explanations with high human interpretability
and low amounts of noise, explanations are thus computed
with the LRP-z+ rule applied to all convolutional layers of
the models. For the YOLOv6 an exception is made for
visual examples, as the LRP-γ rule also provides stable
heatmaps, showing higher faithfulness at the same time, as
discussed in 4.1.

Finally, it is established practice to apply the LRP-♭ rule
to the first layer [15, 18] in order for the attributions to be-
come invariant against normalizations applied in inpu space
and making them more human-readable by minimally re-
ducing heatmap fidelity. The LRP-♭ rule is hereby defined
as

R
(l, l+1)
i←j =

1∑
k 1

Rl+1
j . (A.5)

Using the LRP-♭ rule, the relevance of upper-level neuron
j is equally distributed to all connected lower-level neurons
disregarding any influence of learned weights or input fea-
tures. For all models, the LRP-♭ rule is applied to the first
convolutional layer to smooth the attribution map in input
space and yield robust concept localization.

Software CRP for Localization Models (L-CRP) as an
extension to Concept Relevance Propagation (CRP) is
implemented based on the open-source CRP framework
zennit-crp2 [1] toolbox for PyTorch and LRP frame-
work zennit [4].

A.2. Explanation Examples Using L-CRP

In the following, two additional L-CRP explanation ex-
amples are shown, which extend the LRP heatmaps shown
in Figure 2.

The first example shown in Figure A.1 corresponds to
the sheep detection of the YOLOv5 model in Figure 2.
Here, the traditional LRP heatmap indicates that parts of
the sheep are relevant, such as the head or the fur part in the
center of the bounding box. By applying L-CRP to layer
layer4.0.conv3, we achieve an understanding of what
exactly is the model using in terms of concepts here. By
analyzing the top-2 most relevant concepts, we learn that
the model perceives, e.g., the white fur pattern of the sheep
(concept 450) or the frontal face with ears protruding on
both sides (concept 173).

The second example shown in Figure A.2 corresponds
to the bus segmentation of the DeepLabV3+ model in Fig-
ure 2. Here, the traditional LRP heatmap indicates that all

2Available at the GitHub repository https://github.com/
rachtibat/zennit-crp.

https://github.com/rachtibat/zennit-crp
https://github.com/rachtibat/zennit-crp


Figure A.1. Concept-based explanation with L-CRP for object de-
tection using the YOLOv5 model. (Top): LRP heatmap for detec-
tion of a sheep. The heatmap marks the center of the body as well
as head. (Bottom): Inspecting the two most relevance concepts in
layer 7.conv using L-CRP shows, that the model perceives the
bright fur texture (concept 450) as well as the frontal face with ears
protruding to either side (concept 173).

parts of the bus are relevant, strongly resembling the pre-
dicted segmentation itself. By applying L-CRP to layer
layer4.0.conv3, we achieve an understanding of what
exactly is the model using in terms of concepts. Investigat-
ing the top-2 most relevant concepts, shows that the model
perceives, e.g., the wheels of the bus (concept 1254) or the
school bus color combination of yellow with black (concept
599).

A.3. Ablation Study: Relevance Initialization

As discussed in Section 3.3, for the explanation of seg-
mentation models, the high dimensionality of the output
tensor allows for different relevance initilization schemes.
In literature, the predominantly used approach is to sim-
ply explain the output logits as they are [2]. However, in
principle, the softmax probabilities or even a uniform ini-
tialization with ones is possible. In order to achieve a better
understanding, we compare in the following different ini-
tializations in terms of the faithfulness evaluation metric ap-
plied in Section 4.1.

Specifically, for softmax initialization, we modify Equa-

Figure A.2. Concept-based explanation with L-CRP for semantic
segmentation using the DeepLabV3+ model. (Top): LRP heatmap
for segmentation of a bus. The heatmap strongly resembles the
segmentation output and marks the whole bus. (Bottom): Inspect-
ing the two most relevance concepts in layer layer4.0.conv3
using L-CRP shows, that the model perceives the bus wheels (con-
cept 1254) as well as the typical school bus color combination of
yellow and black (concept 599).

tion (4) to

RL
(p,q,c)(x|θ) = δcyσ(p,q,c) (f(x))1(p,q)(x|y) (A.6)

with softmax function σ applied over the class dimension
c. Please note, that the indicator function 1(p,q)(x|y) only
keeps values corresponding to the highest class value. Anal-
ogously, uniform initilization is given by

RL
(p,q,c)(x|θ) = δcy1(p,q)(x|y). (A.7)

The faithfulness results for the UNet model trained on
CityScapes are shown in Table 1, and indicate, that for most
methods, logit initialization leads to the most faithful ex-
plantions, followed by softmax initialization.

Changing the initialization ultimately changes the con-
tribution of each output pixel to the resulting input feature
attribution score. In an extreme case, an initially negative
logit could be initialized as a positive softmax probability
or a value of one. Then, for this particular output pixel, all
attributions are (falsely) flipped in sign. Further, the con-
tribution of an output pixel with a logit close to zero could



Table 1. Evaluation of faithfulness for different relevance initial-
ization schemes (logits|softmax|uniform) with various concept at-
tribution approaches (higher scores are better)).

concept flipping concept insertion

LRP-z+ 4.24| 4.21 | 4.20 4.64| 4.60 | 4.60
LRP-γ 4.51| 4.29 | 4.24 5.16| 4.94 | 4.88
LRP-ε 4.54| 3.73 |3.57 5.38| 4.57 | 4.40
GradCAM 4.41| 3.51 | 3.41 5.27| 4.34 | 4.22
gradient 4.45| 3.53 | 3.42 5.25| 4.32 | 4.20

be amplified very strongly, when initialized with a value of
one. Thus, most methods perform best with logit initialza-
tion followed by softmax initialization (that is a compro-
mise between logit and uniform weighting). In the UNet
model, no background class exists, which usually receives
a high value when the model is uncertain. Therefore, es-
pecially the absence of the background class in the UNet
model leads to strong fluctuations of all other output log-
its. Interestingly, different relevance initialization schemes
have no significant effect for the DeepLabV3+ model, since
a background class exists for the VOC2012 dataset that ab-
sorbs the model uncertainty leading to logits that do not vary
strongly in magnitude.

A.4. Faithfulness

In Section 4.1.1, we propose to measure the faithfulness
of concept attributions using various approaches based on
relevance or activation. In this section, more detailed results
for the discussion in Section 4.1.1 are presented. Specif-
ically, we show additional results for the concept flipping
and concept insertion experiment for different layers of the
UNet, DeepLabV3+, YOLOv5 and YOLOv6 model in Fig-
ure A.3. Here, every convolutional layer of the UNet, every
second convolutional layer of the DeepLabV3+, and every
fourth convolutional layer of the YOLO architectures is an-
alyzed, resulting in approximately 20 layers for each model.
Here, the AOC or AUC over the resulting curves are mea-
sured for 100 randomly chosen predictions, and the mean
values are plotted with the Standard Error of Mean (SEM)
in semi-transparent color. The overall AOC or AUC scores
(of all layers) are given in parenthesis.

Figure A.3 visualizes that the AOC or AUC scores can
vary strongly between layers of an attribution method. This
is due to shortcut connections in the network, illustrating
that some layers are used more strongly than others. Taking
the UNet as an example, it shows that the further the layer in
the encoder (up to layer 10), the lower the overall relevance.
This indicates, that a large part of features is detected using
the lower-level layers.

A.5. Complexity

In Section 4.1.2, we measure and discuss the complexity
of concept attribution scores for relevance and activation-
based approaches by two means. Firstly, the standard de-
viation of class concept attribution scores is computed, and
secondly, the amount of concepts needed to form 80 % of
all attributions is measured. The lower the variation and the
smaller the number of concepts to study, the easier it is to
understand concept-based explanations.

In the following, we present in Figure A.5 more de-
tailed results of the complexity analysis discussed in Sec-
tion 4.1.2. Here, the same layers of the models as in pre-
vious Section A.4 are investigated. Regarding the analysis,
concept attribution scores are collected over all predictions
of the test dataset. Thereafter, in order to be interpretable as
percentage scores, concept attributions are normalized to an
absolute sum of one.

In the first experiment, the mean standard deviation σt

of concept attribution scores Rj(xi) for each class t is mea-
sured as

σt =
1

nc

nc∑
j

√√√√ 1

ns − 1

ns∑
i

(
Rj(xi)− R̄j

)2
(A.8)

with mean attribution R̄j = 1
ns

∑ns

i Rj(xi) over ns class
samples and nc concepts. To form a final deviation score σ,
the mean over all nt classes is computed as σ = 1

nt

∑nt

t σt.
As shown in Figure A.5, it is visible, that especially in

lower-level layers gradient and LRP-ε attributions tend to be
noisy, which is expected, as this has also been observed for
input-level heatmaps [23]. However, gradient and LRP-ε
can also show noisy attributions in higher-level layers, e.g.,
in layer 20 of the UNet model. This indicates, that the
commonly applied heuristic [18] for LRP heatmaps to use
more faithful methods such as LRP-ε in higher-level layers,
and more stable, but less faithful methods (e.g. LRP-z+) in
lower-level layer, might not always lead to stable concept-
based explanations.

In the second experiment, the fraction of concepts form-
ing 80 % of attributions is calculated. Here, attributions are
firstly sorted according to their magnitude in descending or-
der. Thereafter, the cumulative distribution is computed,
and the smallest number of channels computed for which
the cumulative value is smaller than 80 %. Finally, the frac-
tion is computed via division by the total number of chan-
nels. This value depends, e.g., on the feature specificity of
concepts. For example, relevances are rather focused on a
small set of concepts if they have a very specific function,
compared to when all concepts are rather generic, leading
to a uniform relevance distribution as all concepts are being
used.
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Figure A.3. Evaluating the faithfulness of concept attributions. (Left): Concept flipping experiment. (Right): Concept insertion experiment.
The higher the Area Over Curve (AOC) or Area Under Curve (AUC), the more faithful the attribution method. The faithfulness scores over
all layers is given in parenthesis.
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Figure A.4. Measuring the explanation complexity of concept attributions. (Left): Mean standard deviation of relevances/attributions per
class. The deviation over all layers is given in parentheses. (Right): Number of concepts to form 80 % of all attributions. The concept
number over all layers is given in parentheses. The lower the scores, the lower the complexity and the easier to read explanations.



A.6. Context

In Section 4.2, we compute context scores C of concepts
by measuring the number of concept attributions that cor-
respond to the background of detected objects in the spatial
dimension, as described by Equation (7). We firstly evaluate
the computed context scores comparing the use of latent ac-
tivation maps, latent relevance maps (using LRP, GradCAM
and Spatial Sensitive Grad-CAM (SS-GradCAM)), as well
as input heatmaps (using Guided GradCAM and L-CRP),
and thereafter show how to interact with the model and test
its reliance on background features. For both parts, we in
the following present additional information.

GradCAM Implementation The idea of GradCAM is to
upscale latent attribution maps to visualize the importance
of single input features [24]. These latent attributions maps
are generated by computing a weighted average of the pos-
itive latent activation maps a+(p,q,i) (of width W and height
H) with channel dimension i and spatial dimensions p and
q. Specifically, latent GradCAM feature maps are given as

RGradCAM
(p,q) (xj) =

∑
i

wi(xj)a
+
(p,q,i)(xj) (A.9)

with weights wi(xj) = 1
Z

∑
m,n g(m,n,i)(xj) representing

the mean channel gradient over the spatial dimension with
size Z = H ×W . To localize a single neuron l, all weights
with i ̸= l are set to zero.

Extending GradCAM, SS-GradCAM takes into account
the spatial gradient information [27], leading to

RSS-GradCAM
(p,q) (xj) =

∑
i

wi(xj)a
+
(p,q,i)(xj)s(p,q,i)(xj)

(A.10)
with s(p,q,i)(xj) =

|g(p,q,i)(xj)|
maxm,n |g(m,n,i)(xj)| .

Further, [24] proposes Guided GradCAM achieving
more fine-grained feature maps by multiplying the upscaled
GradCAM map with input heatmaps computed through
Guided Backpropagation [26].

Context Score Evaluation The context scores are evalu-
ated by computing background sensitivity scores S for each
concept via Equation (8). The background sensitivity is
hereby measured by perturbing the background of objects
and tracking the change in concept attribution.

Ideally, we expect that concepts with a high context score
C will also result in a high background sensitivity S. There-
fore, we assume of faithful context scores to result in a high
correlation ρ as well as a small Root Mean Square Deviation
(RMSD) value between context and background sensitivity
scores. The correlation ρ is calculated as

ρ =
∑
i

(Ci − C̄)(Si − S̄)√∑
j(Cj − C̄)2

√∑
k(Sk − S̄)2

(A.11)

Table 2. Comparing computed context scores with measured back-
ground sensitivity. Ideal is a low Root Mean Square Deviation
(RMSD) and high correlation.

RMSD (%) correlation (%)

L-CRP (ours) 17.5 69.4
LRP 19.9 66.8
Guided GradCAM (wi = 1) 22.6 65.0
Guided GradCAM 24.4 43.0
SS-GradCAM (wi = 1) 24.9 64.1
SS-GradCAM 24.6 40.1
GradCAM (wi = 1) 40.5 65.1
GradCAM 25.2 24.7
activation 40.5 65.1

with means C̄ = 1
m

∑
i Ci and S̄ = 1

m

∑
i Si over m eval-

uated concepts. The RMSD is further given as

RMSD =

√
1

m

∑
i

(Ci − Si)2 . (A.12)

The final correlation and RMSD values per model shown in
Table 2 are computed by taking the mean over three layers.

For a visualization of the resulting similarity between
context scores and background sensitivity values, distribu-
tion plots are shown in Figure A.5 and Figure A.6, for L-
CRP, LRP, activation as well as L-CRP and all GradCAM-
based methods, respectively. Here, it becomes apparent,
that using latent activation leads to an over-estimation of
context scores, as they are often significantly higher than
the corresponding background sensitivity values, as, e.g.,
for the three layers of the UNet shown in Figure A.5 (1st
row). It can also be seen, that the higher-level layers show
the best alignment between C and S values (3rd column),
as features are more specialized, becoming better to charac-
terize as either background or foreground concepts.

GradCAM Limitations GradCAM effectively simply
rescales activation maps, as can be seen in Equation (A.9).
The rescaling, however, depends on the unmodified gradi-
ent, which is very faithful, but noisy for Deep Neural Net-
works (DNNs). Therefore, although a concept might be
used, the mean channel gradient (described by weight wi

in Equation (A.9)) can become negative, leading to a flip
of sign in activations from positive to negative, and thus a
context score of zero. Pleas note, such sign flips appear for
all GradCAM variants.

For completeness, we evaluate context scores also with
weights wi = 1 set to one, in order to prevent the sign
flips. As can be seen in Table 2, the correlation gener-
ally improves for CAM-based methods, if weights are set
to wi = 1. For GradCAM, the mean RMSD increases
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Figure A.5. Evaluation of context scores C by comparing these to background sensitivity scores S from latent activation, latent LRP attri-
bution maps maps and L-CRP input attributions. (1st row): Layers features.0, features.5 and features.10 (from left to right)
of the UNet model. (2nd row): Layers layer3.0.conv1, layer4.0.conv3 and layer4.2.conv2 (f.l.t.r.) of the DeepLabV3+
model. (3rd row): Layers 6.cv3, 8.cv3 and 10 (f.l.t.r.) of the YOLOv5 model. (4th row): Layers ERBlock 3.0.rbr dense,
ERBlock 4.0.rbr dense and ERBlock 5.0.rbr dense (f.l.t.r.) of the YOLOv6 model. Contours correspond to 50 % and 80 %
of values using estimated densities via Gaussian kernels of bandwidth 0.4. Ideally, a linear relationship exists as indicated by a dotted gray
line.
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Figure A.6. Evaluation of context scores C by comparing these to background sensitivity scores S from latent GradCAM and SS-
GradCAM attribution maps maps, as well as L-CRP and Guided GradCAM input attributions. (1st row): Layers features.0,
features.5 and features.10 (from left to right) of the UNet model. (2nd row): Layers layer3.0.conv1, layer4.0.conv3
and layer4.2.conv2 (f.l.t.r.) of the DeepLabV3+ model. (3rd row): Layers 6.cv3, 8.cv3 and 10 (f.l.t.r.) of the YOLOv5
model. (4th row): Layers ERBlock 3.0.rbr dense, ERBlock 4.0.rbr dense and ERBlock 5.0.rbr dense (f.l.t.r.) of
the YOLOv6 model. Contours correspond to 50 % and 80 % of values using estimated densities via Gaussian kernels of bandwidth 0.4.
Ideally, a linear relationship exists as indicated by a dotted gray line.



strongly from 25.2 to 40.5%. This follows from the fact,
that context scores are usually over-estimated due to object-
inspecific attributions, and no sign flips happen anymore
acting against over-estimation by decreasing the context
score values. All in all, L-CRP remains the method with
the most faithful context scores.

Context-based Model Interaction In the background
concept flipping experiments in Section 4.2, we interact
with the model based on identified (by the model used)
background concepts. Therefore, three background con-
cepts are flipped successively and the change in the pre-
dicted object logit measured.

In Figure A.7 we show the identified background
concepts in detail with reference samples conditioned
on the respective target. All concepts correspond to
layer ERBlock 5.0.rbr dense of the YOLOv6 model.
Please note, that concepts are flipped in the corresponding
order as in Figure A.7 from top to bottom.

Interestingly, the perturbation of three concepts of in to-
tal 512 leads to missed surfing board predictions. In Fig-
ure A.8, we show four such examples with initial prediction
confidence scores given.
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