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1. Full Configuration

We showed the model configuration in detail in our main
contribution. We noticed that the original STEGO configu-
ration varies for the three datasets. Tab. 1 shows some re-
maining noteworthy parameters in STEGO’s configuration,
which are the same for all datasets.

2. Accuracy Results

In the main paper, we report the mIoU results of the dif-
ferent frameworks. Here, we also provide supplementary
information on the accuracy metric in Figure 1. Our obser-
vations from our previous discussion also translate to the
accuracy plots. Hence, we solely display the results for
completeness without further discussion.

3. Non-linear Dimension Reduction Baseline

Our previous analysis compared STEGO with the lin-
ear dimensionality reduction techniques, PCA, RP, and the
DINO baseline. Since STEGO is a non-linear projection,
comparing it to a non-linear dimension reduction method
is interesting. Initially, we investigated Uniform Manifold
Approximation and Projection (UMAP) [4], which builds
a fuzzy topological representation of the data in the origi-
nal space and, via cross-entropy, searches a new represen-
tation that approximates this topology in a lower dimen-
sional space. Despite improved scalability of the UMAP
algorithm over other non-linear dimension reduction algo-
rithms like t-SNE [6], UMAP was prohibitively expensive
to compute across all datasets and different embedding di-
mensions (e.g., there are = 0.8 billion 768-dimensional ViT
training tokens for the Cocostuff dataset alone). A recently
proposed optimization-free and faster algorithm, Hierarchi-
cal Nearest Neighbor Embedding (h-NNE) [5], approaches
the problem by first building a clustering hierarchy of the
data in high dimensions. Afterward, the method hierarchi-
cally projects the data into a lower dimensional space, pre-
serving 1-nearest neighbor relationships.

Parameter Value
Loader crop type Center
Extra clusters 0
Optimizers Adam [2]
Linear and cluster probe learning rates 0.005
Segm. head learning rate 0.0005
Segm. head dropout probability 0.1
Feature samples 11
Negative samples 5

Table 1. Remaining model configuration for STEGO. These are
the original parameters from the paper, also used in our study.
Only the last four parameters are specific to the training of the
segmentation head — the others also apply to our DINO, PCA, and
RP baselines. Hamilton ef al.’s [1] code repository contains more
information on the parameters.

We fit h-NNE on a randomly sampled subset of 1 million
ViT training tokens, project the entire training and valida-
tion set into lower dimensions, and fit the linear and clus-
ter probes on these projected embeddings. Figure 2 shows
the results for the Cityscapes dataset. In Figure 2 (a,b), the
h-NNE algorithm shows similar performance on the linear
probing downstream task as STEGO, PCA, and RP across
a wide range of dimensions. For the unsupervised cluster
probe in Figure 2 (c), we see approximately equal mloU
performance compared to the PCA baseline, while the accu-
racy of the cluster probe trained on the h-NNE projections in
Figure 2 (d) outperforms the PCA, RP baselines, although
the variance of the h-NNE results appears more significant.

In summary, these preliminary results show that the
non-linear projection with the h-NNE algorithm yields lit-
tle to no benefit over the linear projection methods in the
tested benchmarks. However, we assume that clustering
the h-NNE projected output with k-means might not be the
most suitable unsupervised downstream evaluation. The h-
NNE algorithm already provides a hierarchy of clusterings.
Hence, in future work, one could directly map the clusters
detected by h-NNE to the human-interpretable labels with
the Hungarian algorithm [3].
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Figure 1. Validation accuracy of different dimensionality reduction techniques. Readers are referred to Figure 2 for a color-coded legend.
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Figure 2. Cityscapes validation results from our main contribution and Figure 1 with overlaid h-NNE [5] results.
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