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A. Canonization Details

Linear → BN: In Eqs. (A.1) - (A.5), we show more de-
tailed steps required to fuse Linear → BN components into
a single affine transformation, as outlined in Eq. (4) in the
main paper:

f(x) = BN(Linear(x)) (A.1)

= BN(w⊤
L x + bL) (A.2)

= wBN

(w⊤
L x + bL − µ√

σ + ϵ

)
+ bBN (A.3)

=
wBN√
σ + ϵ

(w⊤
L x + bL − µ) + bBN (A.4)

= (
wBN√
σ + ϵ

wL︸ ︷︷ ︸
wnew

)⊤x +
wBN√
σ + ϵ

(bL − µ) + bBN︸ ︷︷ ︸
bnew

(A.5)

BN → Linear: In Eqs. (A.6) - (A.9), we show more de-
tailed steps required to fuse BN → Linear component chains
into a single affine transformation, as outlined in Eq. (6) in
the main paper:

f(x) = Linear(BN(x)) (A.6)

= w⊤
L

(
wBN

( x − µ√
σ + ϵ

)
+ bBN

)
+ bL (A.7)

= w⊤
L

(wBNx − wBNµ√
σ + ϵ

+ bBN

)
+ bL (A.8)

=
w⊤

LwBN√
σ + ϵ︸ ︷︷ ︸
wnew

x−w⊤
LwBNµ√
σ + ϵ

+ w⊤
L bBN + bL︸ ︷︷ ︸

bnew

(A.9)

Padding Issue in BN → Linear Canonization: If the
linear layer is a Convolutional layer with constant valued
padding, the bias of the linear layer after canonization can
no longer be shown as a scalar:

f(x) = Conv(Pad(BN(x))) (A.10)

= Conv(Pad(
wBN√
σ + ϵ

x − wBNµ√
µ+ ϵ

+ bBN )) (A.11)

= Conv(
wBN√
σ + ϵ

Pad(x) + Pad(− wBNµ√
σ + ϵ

+ bBN ))

(A.12)

= wL ∗
( wBN√

σ + ϵ
Pad(x) + Pad(− wBNµ√

σ + ϵ
+ bBN )

)
+ bL (A.13)

=
(
w⊤

L

wBN√
σ + ϵ

)
∗ Pad(x)

+wL ∗ Pad(− wBNµ√
σ + ϵ

+ bBN ) + bL
(A.14)

=
(
w⊤

L

wBN√
σ + ϵ

)
︸ ︷︷ ︸

wnew

∗ Pad(x)

+ Conv(Pad(− wBNµ√
σ + ϵ

+ bBN ))︸ ︷︷ ︸
bnew

(A.15)

In the equations above, ∗ stands for convolution. The
new bias term is a full feature map, as opposed to a scalar
as in linear layers without padding. The feature map does
not depend on input x and is computed by putting a fea-
ture map (of the same size as x) with all features equal to
−wBNµ√

σ+ϵ
+bBN through the original linear layer. Notice that

if the padding value is nonzero, then the padding value of
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the canonized layer must be scaled by
√
σ+ϵ

wBN

We now give a simple example to help illustrate the prob-
lem and the proposed solution. Specifically, we set BN pa-
rameters µ = 0, σ = 1, ϵ = 0, wBN = 1, bBN = 1. Fur-
thermore we define a single Convolutional filter with zero

padding of width 1, wL =

[
1 1
1 1

]
and no bias, bL = 0.

Finally, we choose to show the case of a simple 3× 3 input
feature map

x =

1 2 3
2 3 4
3 4 5

 (A.16)

Pad(BN(x)) =


0 0 0 0 0
0 2 3 4 0
0 3 4 5 0
0 4 5 6 0
0 0 0 0 0

 (A.17)

wL ∗ Pad(BN(x)) =


2 5 7 4
5 12 16 9
7 16 20 11
4 9 11 6

 (A.18)

=


1 3 5 3
3 8 12 7
5 12 16 9
3 7 9 5

+


1 2 2 1
2 4 4 2
2 4 4 2
1 2 2 1

 (A.19)

= wnew ∗ Pad(x) + wL ∗ Pad(BNBias) + bL
(A.20)

where and BNBias =

1 1 1
1 1 1
1 1 1

 is the feature map

composed of values equal to −wBNµ√
σ+ϵ

+ bBN

B. Canonization of Relation Networks
Architecture: Relation Networks [4] are the state-of-the-
art model architecture for the CLEVR dataset. It uses two
separate encoders for image and text input. For the im-
age, a simple convolutional neural network is used with 4
blocks, each containing a Convolutional layer, followed by
a ReLU activation function and a BN layer. The text input
is processed by a LSTM. The pixels from the feature map
from the last Convolutional block from the image encoder
are pair-wise concatenated along with their coordinates and
the text encoding. This representation is then passed to a
4-layer fully connected network, summed up and then pro-
cessed by a 3-layer fully connected network with ReLU ac-
tivation.

Canonization: Relation Networks, as implemented by
the authors of [1], use Batch Norm (BN) layers at the end

of each block not directly after Convolutional layers. There-
fore, we suggest to merge the BN layers with the Convolu-
tional layers at the beginning of the following block. The
BN layer of the last block of the image encoder can be
merged into the following fully connected layer. However,
attention as to be paid to make sure only weights operating
on activations coming from the image encoder are updated,
as outlined below. The proposed canonization of Relation
Networks is visualized in Fig. A.1

Challenge: In relation networks, the last BN layer of the
image encoder has to be merged into a linear layer of the
succeeding block, which takes as input a concatenation of
image pairs, text and indices. Therefore, only the weights
responsible for the activations coming from the image en-
coder have to be updated.

Incoming Activations:

x = concat

180︷ ︸︸ ︷[
[x1]︸︷︷︸
24

, [coord1]︸ ︷︷ ︸
2

, [x2]︸︷︷︸
24

, [coord2]︸ ︷︷ ︸
2

, [question]︸ ︷︷ ︸
128

]
(A.21)

Only x1 and x2 pass the BN layer, i.e., indices 0 : 24 and
26 : 50 have to be updated. Here, the indexing i : j sig-
nifies the elements with indices from i to j − 1, where the
first element is indexed with 0. In order to update only the
relevant part of the weights of the linear layer wL, we have
to split them into:

wL = concat
[
[w0:24

L ]︸ ︷︷ ︸
x1

, [w24:26
L ]︸ ︷︷ ︸

coord1

, [w26:50
L ]︸ ︷︷ ︸
x2

, [w50:52
L ]︸ ︷︷ ︸

coord2

, [w52:180
L ]︸ ︷︷ ︸
text

]
(A.22)

Using Eq. (A.9), each relevant weight part can than be up-
dated as follows:

w0:24
Lnew

=
w0:24

L
⊤
wBN√

σ + ϵ
(A.23)

w26:50
Lnew

=
w26:50

L
⊤
wBN√

σ + ϵ
(A.24)

This gives a new weight matrix:

wLnew = concat
[
[w0:24

Lnew
]︸ ︷︷ ︸

x1

, [w24:26
L ]︸ ︷︷ ︸

coord1

, [w26:50
Lnew

]︸ ︷︷ ︸
x2

, [w50:52
L ]︸ ︷︷ ︸

coord2

, [w52:180
L ]︸ ︷︷ ︸
text

]
(A.25)

Similarly, the new bias can be calculated as:

bLnew = w0:24
L blinBN + w26:50

L blinBN + bC (A.26)

with blinBN = bBN − wBN ·µ√
σ+ϵ



Figure A.1. Canonization of Relation Network. (Left): Part from the original Relation Network. (Right): Suggested canonization for the
corresponding part of Relation Networks. BN layers are merged into the Convolutional layer at the beginning of the following block. The
BN layer of the last block is merged into the following fully connected layer. However, only weights operating upon activations coming
from the image encoder are updated, as outlined in Eq. (A.25).

C. Composites
The composites, i.e., pre-defined layer-to-rule assign-

ments as suggested in the literature, that we used in the pa-
per, are described in Tab. A.1.

Table A.1. Details for composites used in our experiments.

Composite Layer Type Rule

LRP-ϵ+ Convolutional α1β0-rule
Fully Connected ϵ-rule

LRP-α2β1 Convolutional α2β1-rule
Fully Connected ϵ-rule

LRP-Custom (RN)
First Convolutional box-rule
Other Convolutionals α1β0-rule
Fully Connected α1β0-rule

D. Pascal VOC 2012 Experiments
D.1. Dataset Description

Pascal Visual Object Classes (VOC) 2012 dataset has
images from 20 categories, including 5717 training sam-
ples and 5823 validation samples with bounding box anno-
tations, along with a private test set. From those, 1464 train-
ing samples and 1449 validation samples are annotated with
binary segmentation masks. As opposed to ILSVRC2017,
the images are much more diverse in composition. Many
images contain multiple instances of several categories. The
dataset does not suffer from the center-bias mentioned for
ILSVRC2017. In the experiments, we use the validation
samples with segmentation masks. Due to the robustness of
models to input perturbations, the faithfulness correlation
scores are very low, even entirely zero for some models. In
order to obtain more meaningful results, we report faithful-

ness correlation scores with bigger perturbations compared
to the ILSVRC2017 experiments.

D.2. Models

We evaluate explanations on VGG-16, ResNet-18,
ResNet-50, EfficientNet-B0, EfficientNet-B4, DenseNet-
121 and DenseNet-161. We fine tune models using the
full training set, using pre-trained models from the PyTorch
model zoo. We use stochastic gradient descent as the learn-
ing algorithm, with a cosine annealing learning rate sched-
uler [3]. We use sum of binary cross entropy losses as the
loss, and train the networks until convergence. We opted to
use a smaller learning rate for pretrained parameters.

D.3. Results

The results are shown in Tables A.2 - A.8. The results
suggest that canonization increases performance in the lo-
calization metrics. The randomization metric is generally
improved for the LRP-ϵ+ and LRP-α2β1 rules, however it
lowers the randomization scores of Excitation Backprop ex-
plainers (equivalent to LRP-α1β0). For the robustness met-
rics, canonization helps for Excitation Backpropagation.
However, it makes robustness scores improve by a bigger
margin for all methods for DenseNet models. Similar to
the results for ILSVRC2017, DenseNet models seem to be
affected negatively in their complexity scores when canon-
ized. For other model architectures, complexity measures
are also uniformly improved by canonization.

E. MS-Coco 2014 Experiments
E.1. Classes

In our experiments we considered the following 10
classes that were picked randomly:

“person”, “bear”, “umbrella”, “suitcase”, “kite”,
“surf board”, “wine glass”, “carrot”, “toilet”, “tv”.



Table A.2. Results for Pascal VOC XAI evaluation with VGG-16. Arrows indicate whether high (↑) or low (↓) are better. Best results are
shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.59 0.60 0.04 0.04 0.21 0.22 0.33 0.34 0.40 0.41 1.00 1.00 0.24 0.20 0.26 0.21
LRP-α2β1 0.75 0.86 0.04 0.03 0.27 0.27 0.38 0.44 0.40 0.41 0.53 0.64 0.53 0.53 0.80 0.78
LRP-ε+ 0.59 0.68 0.05 0.05 0.25 0.26 0.36 0.40 0.46 0.47 0.49 0.49 0.51 0.51 0.80 0.78

Table A.3. Results for Pascal VOC XAI evaluation with ResNet-18. Arrows indicate whether high (↑) or low (↓) are better. Best results
are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.53 0.57 0.03 0.04 0.22 0.23 0.31 0.33 0.40 0.41 0.96 0.97 0.17 0.15 0.19 0.16
LRP-α2β1 0.70 0.77 0.03 0.03 0.23 0.23 0.34 0.39 0.36 0.39 0.65 0.64 0.48 0.48 0.77 0.77
LRP-ε+ 0.56 0.63 0.03 0.03 0.22 0.22 0.31 0.34 0.39 0.41 0.68 0.68 0.46 0.45 0.77 0.76

E.2. Dataset Description

The MS Coco 2014 dataset has images from 80 cate-
gories, including about 83000 training and 4100 validation
samples with segmentation mask annotations, along with a
private test set. This dataset is also much more diverse com-
pared to ILSVRC2017 and does not suffer from the center-
bias.

E.3. Models

We evaluate explanations on VGG-16, ResNet-18,
EfficientNet-B0 and DenseNet-121. Similar to the Pascal
VOC dataset, we fine tuned models using pre-trained mod-
els from the PyTorch model zoo. We use stochastic gradi-
ent descent as the learning algorithm. We use sum of bi-
nary cross entropy losses as the loss, and train the networks
for until convergence. We opted to use a smaller learning
rate for pretrained parameters. We excluded hard examples
while training and during the evaluations.

E.4. Results

The results are shown in Tables A.9 - A.12. The results
suggest that for MS COCO, canonization helps explana-
tions in all metrics, except for Faithfulness and Randomiza-
tion metrics where results are not consistent across model
architectures.

F. ILSVRC2017 Experiments

F.1. Classes

In our experiments we considered the following 50
classes that were picked randomly:

“Bernese mountain dog”, “Christmas stocking”,
“Gila monster”, “Shetland sheepdog”, “Windsor tie”,
“amphibian”, “ant”, “bubble”, “cassette”, “ci-
cada”, “collie”, “crossword puzzle”, “dalmatian”,
“eft”, “file”, “flute”, “goldfish”, “gorilla”, “gown”,
“grasshopper”, “green snake”, “gyromitra”, “ham-
mer”, “hen of the woods”, “indigo bunting”, “kimono”,
“magnetic compass”, “mongoose”, “mountain tent”,
“otterhound”, “palace”, “patio”, “pencil sharpener”,
“platypus”, “pomegranate”, “pool table”, “redshank”,
“refrigerator”, “rhinoceros beetle”, “screw”, “screw-
driver”, “shoe shop”, “shopping basket”, “stage”,
“standard poodle”, “stethoscope”, “toaster”, “tree frog”,
“vase”, “wolf spider”.

F.2. Additional Results

In Tables A.13 - A.19 we show additional results for our
experiments with the ILSVRC2017 dataset. Specifically,
in addition to the architectures evaluated in the main pa-
per, we present results for ResNet50, EfficientNet-B4 and
DenseNet-161. Moreover, we include results for Faithful-
ness Correlation [2] and Max Sensitivity [6].



Table A.4. Results for Pascal VOC XAI evaluation with ResNet-50. Arrows indicate whether high (↑) or low (↓) are better. Best results
are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.55 0.63 0.04 0.04 0.20 0.23 0.30 0.35 0.38 0.42 0.96 0.93 0.20 0.17 0.21 0.18
LRP-α2β1 0.73 0.81 0.03 0.03 0.24 0.24 0.38 0.41 0.39 0.39 0.60 0.62 0.48 0.49 0.74 0.73
LRP-ε+ 0.60 0.69 0.04 0.04 0.24 0.25 0.35 0.39 0.44 0.44 0.60 0.57 0.46 0.46 0.75 0.74

Table A.5. Results for Pascal VOC XAI evaluation with EfficientNet-B0. Arrows indicate whether high (↑) or low (↓) are better. Best
results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.55 0.69 0.01 0.02 0.13 0.18 0.26 0.37 0.30 0.41 1.00 0.99 0.43 0.39 0.50 0.43
LRP-α2β1 0.73 0.76 0.00 0.00 0.18 0.11 0.37 0.34 0.39 0.34 0.63 0.51 0.58 0.58 0.80 0.79
LRP-ε+ 0.51 0.72 0.02 0.02 0.17 0.19 0.30 0.39 0.41 0.43 0.59 0.67 0.46 0.49 0.77 0.77

G. Additional CLEVR-XAI Results
In Table A.20, we show additional results for our

CLEVR-XAI experiments. Specifically, in additional to
pos-l2-norm-sq pooling, we also present results for max-
norm pooling.

H. Attribution Heatmaps
In Figures A.2 - A.8 we show attribution heatmaps for

three samples using various XAI methods, both with and
without model canonization using the ILSVRC2017 dataset
for different model architectures. Similarly, in Figures A.9 -
A.10 we show attribution heatmaps for different XAI meth-
ods with and without canonization for Relation Networks
using pos-l2-norm-sq pooling and max-norm pooling.



Table A.6. Results for Pascal VOC XAI evaluation with EfficientNet-B4. Arrows indicate whether high (↑) or low (↓) are better. Best
results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.68 0.77 0.0 0.0 0.14 0.13 0.33 0.36 0.37 0.37 0.97 1.00 0.32 0.36 0.37 0.43
LRP-α2β1 0.71 0.75 0.0 0.0 0.12 0.08 0.27 0.32 0.31 0.33 0.46 0.42 0.62 0.61 0.93 0.91
LRP-ε+ 0.54 0.77 0.0 0.0 0.15 0.16 0.28 0.40 0.36 0.42 0.51 0.57 0.51 0.51 0.88 0.85

Table A.7. Results for Pascal VOC XAI evaluation with DenseNet-121. Arrows indicate whether high (↑) or low (↓) are better. Best results
are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.63 0.59 0.02 0.04 0.11 0.25 0.25 0.37 0.28 0.48 0.98 0.75 0.60 0.20 1.07 0.22
LRP-ε+ 0.70 0.63 0.02 0.04 0.18 0.24 0.34 0.36 0.39 0.44 0.35 0.44 0.63 0.50 1.08 0.77
LRP-α2β1 0.83 0.73 0.01 0.03 0.16 0.24 0.31 0.39 0.32 0.41 0.38 0.36 0.64 0.51 1.11 0.76

Table A.8. Results for Pascal VOC XAI evaluation with DenseNet-161. Arrows indicate whether high (↑) or low (↓) are better. Best results
are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.80 0.58 0.01 0.05 0.05 0.23 0.11 0.35 0.17 0.47 0.99 0.77 0.57 0.19 0.84 0.21
LRP-ε+ 0.67 0.63 0.02 0.05 0.17 0.22 0.34 0.36 0.40 0.44 0.32 0.49 0.62 0.48 1.06 0.74
LRP-α2β1 0.82 0.74 0.01 0.03 0.16 0.21 0.31 0.39 0.33 0.41 0.52 0.45 0.64 0.50 1.13 0.74

Table A.9. Results for MS Coco XAI evaluation with VGG-16. Arrows indicate whether high (↑) or low (↓) are better. Best results are
shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.58 0.58 0.03 0.03 0.25 0.25 0.26 0.26 0.32 0.33 1.00 1.00 0.23 0.19 0.25 0.21
LRP-α2β1 0.74 0.86 0.03 0.01 0.32 0.35 0.32 0.39 0.35 0.37 0.53 0.61 0.52 0.52 0.79 0.79
LRP-ε+ 0.58 0.66 0.05 0.05 0.29 0.32 0.29 0.34 0.41 0.42 0.50 0.47 0.50 0.50 0.79 0.78

Table A.10. Results for MS Coco XAI evaluation with ResNet-18. Arrows indicate whether high (↑) or low (↓) are better. Best results are
shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.51 0.55 0.03 0.03 0.23 0.22 0.25 0.26 0.33 0.33 0.97 0.98 0.16 0.15 0.17 0.16
LRP-α2β1 0.69 0.76 0.02 0.02 0.25 0.25 0.28 0.32 0.32 0.34 0.69 0.67 0.45 0.46 0.73 0.73
LRP-ε+ 0.54 0.60 0.03 0.03 0.23 0.24 0.25 0.27 0.33 0.34 0.73 0.73 0.42 0.41 0.72 0.71



Table A.11. Results for MS Coco XAI evaluation with EfficientNet-B0. Arrows indicate whether high (↑) or low (↓) are better. Best results
are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.56 0.70 0.00 0.0 0.17 0.20 0.23 0.30 0.28 0.35 1.00 0.99 0.40 0.35 0.47 0.39
LRP-α2β1 0.73 0.77 0.00 0.0 0.21 0.11 0.31 0.30 0.34 0.31 0.64 0.54 0.56 0.56 0.77 0.77
LRP-ε+ 0.53 0.73 0.01 0.0 0.22 0.22 0.27 0.34 0.38 0.39 0.61 0.67 0.40 0.43 0.70 0.71

Table A.12. Results for MS Coco XAI evaluation with DenseNet-121. Arrows indicate whether high (↑) or low (↓) are better. Best results
are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.65 0.58 0.01 0.04 0.13 0.29 0.22 0.29 0.25 0.39 0.85 0.78 0.57 0.20 1.02 0.23
LRP-ε+ 0.64 0.64 0.01 0.03 0.17 0.31 0.25 0.32 0.29 0.40 0.61 0.48 0.62 0.47 1.14 0.78
LRP-α2β1 0.82 0.74 0.00 0.01 0.16 0.31 0.24 0.34 0.25 0.37 0.48 0.38 0.62 0.50 1.14 0.77

Table A.13. Results for ILSVRC2017 XAI evaluation with VGG-16. Arrows indicate whether high (↑) or low (↓) are better. Best results
are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.57 0.59 0.06 0.06 0.35 0.36 0.68 0.70 0.70 0.71 1.00 1.00 0.22 0.18 0.23 0.20
LRP-α2β1 0.70 0.84 0.05 0.03 0.38 0.39 0.65 0.77 0.63 0.67 0.59 0.66 0.31 0.34 0.34 0.37
LRP-ε+ 0.51 0.62 0.09 0.08 0.36 0.39 0.64 0.71 0.69 0.71 0.57 0.54 0.19 0.21 0.21 0.24

Table A.14. Results for ILSVRC2017 XAI evaluation with ResNet-18. Arrows indicate whether high (↑) or low (↓) are better. Best results
are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.55 0.57 0.03 0.04 0.29 0.29 0.66 0.67 0.68 0.69 0.97 0.97 0.16 0.14 0.18 0.15
LRP-α2β1 0.67 0.76 0.04 0.03 0.32 0.32 0.69 0.75 0.65 0.67 0.65 0.61 0.21 0.26 0.22 0.28
LRP-ε+ 0.51 0.58 0.04 0.04 0.30 0.30 0.65 0.69 0.69 0.70 0.70 0.70 0.14 0.15 0.15 0.16

Table A.15. Results for ILSVRC2017 XAI evaluation with ResNet-50. Arrows indicate whether high (↑) or low (↓) are better. Best results
are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.72 0.64 0.02 0.04 0.24 0.36 0.65 0.71 0.66 0.69 0.95 0.93 0.36 0.17 0.42 0.18
LRP-α2β1 0.71 0.81 0.04 0.01 0.37 0.37 0.72 0.77 0.66 0.67 0.59 0.61 0.25 0.30 0.27 0.33
LRP-ε+ 0.57 0.67 0.05 0.04 0.37 0.37 0.70 0.74 0.72 0.71 0.61 0.60 0.15 0.18 0.16 0.19



Table A.16. Results for ILSVRC2017 XAI evaluation with EfficientNet-B0. Arrows indicate whether high (↑) or low (↓) are better. Best
results are shown in bold. We analyzed the low faithfulness correlation scores and found that the model was very robust towards input
perturbation, with output values remaining unaffected.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.85 0.70 0.00 0.0 0.24 0.27 0.79 0.72 0.73 0.67 0.99 1.00 0.42 0.33 0.48 0.37
LRP-α2β1 0.75 0.77 0.00 0.0 0.29 0.20 0.79 0.73 0.72 0.65 0.57 0.51 0.48 0.49 0.52 0.54
LRP-ε+ 0.50 0.73 0.01 0.0 0.28 0.30 0.69 0.79 0.75 0.75 0.61 0.65 0.12 0.21 0.13 0.23

Table A.17. Results for ILSVRC2017 XAI evaluation with EfficientNet-B4. Arrows indicate whether high (↑) or low (↓) are better. Best
results are shown in bold. We analyzed the low faithfulness correlation scores and found that the model was very robust towards input
perturbation, with output values remaining unaffected.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.84 0.77 0.0 0.0 0.20 0.19 0.64 0.69 0.68 0.66 0.90 1.0 0.30 0.35 0.33 0.40
LRP-α2β1 0.77 0.79 0.0 0.0 0.15 0.13 0.53 0.67 0.61 0.64 0.43 0.4 0.61 0.53 0.68 0.59
LRP-ε+ 0.56 0.77 0.0 0.0 0.13 0.24 0.56 0.76 0.62 0.70 0.54 0.5 0.14 0.23 0.15 0.26

Table A.18. Results for ILSVRC2017 XAI evaluation with DenseNet-121. Arrows indicate whether high (↑) or low (↓) are better. Best
results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.66 0.62 0.01 0.03 0.15 0.31 0.53 0.73 0.58 0.72 0.75 0.89 0.57 0.17 1.05 0.19
LRP-α2β1 0.82 0.81 0.01 0.02 0.25 0.33 0.68 0.81 0.64 0.71 0.40 0.44 0.65 0.28 1.30 0.31
LRP-ε+ 0.67 0.66 0.01 0.03 0.26 0.33 0.71 0.77 0.70 0.74 0.39 0.48 0.63 0.19 1.23 0.21

Table A.19. Results for ILSVRC2017 XAI evaluation with DenseNet-161. Arrows indicate whether high (↑) or low (↓) are better. Best
results are shown in bold.

Complexity Faithfulness Localization Random. Robustness
↑ Spars. ↑ Corr. ↑ AoPC ↑ RMA ↑ RRA ↓ Logit ↓ Avg. Sens. ↓ Max Sens.

canonized no yes no yes no yes no yes no yes no yes no yes no yes

EB 0.86 0.61 0.00 0.03 0.05 0.30 0.25 0.71 0.46 0.71 0.86 0.90 0.56 0.17 0.80 0.18
LRP-α2β1 0.81 0.82 0.01 0.01 0.25 0.32 0.67 0.82 0.65 0.71 0.34 0.45 0.65 0.29 1.29 0.33
LRP-ε+ 0.64 0.66 0.02 0.03 0.25 0.32 0.70 0.76 0.70 0.74 0.36 0.47 0.62 0.18 1.19 0.19



Table A.20. Results for CLEVR-XAI with Relation Network using max-norm pooling. Arrows indicate whether high (↑) or low (↓) are
better. Best results are shown in bold.

↑ Complexity ↑ Faithfulness ↑ Local. (RRA) ↑ Local. (RMA) ↓ Robustness ↓ Random.
Questions canonized no yes no yes no yes no yes no yes no yes

Simple EB 0.92 0.79 0.50 0.50 0.66 0.63 0.56 0.38 1.34 1.29 1.00 1.00
LRP-Custom 0.69 0.82 0.52 0.52 0.71 0.71 0.34 0.46 1.19 1.24 0.99 0.99

Complex EB 0.91 0.81 0.45 0.44 0.67 0.64 0.74 0.60 1.31 1.22 0.99 0.99
LRP-Custom 0.70 0.82 0.45 0.45 0.55 0.64 0.48 0.63 1.16 1.20 0.98 0.99



Figure A.2. Attribution heatmaps with different XAI methods for VGG-16 model on ILSVRC2017 dataset.



Figure A.3. Attribution heatmaps with different XAI methods for ResNet-18 model on ILSVRC2017 dataset.



Figure A.4. Attribution heatmaps with different XAI methods for ResNet-50 model on ILSVRC2017 dataset. The checkerboard pattern is
due to the downsampling shortcuts in the network. We refer the reader to [5] for details.



Figure A.5. Attribution heatmaps with different XAI methods for EfficientNet-B0 model on ILSVRC2017 dataset.



Figure A.6. Attribution heatmaps with different XAI methods for EfficientNet-B4 model on ILSVRC2017 dataset.



Figure A.7. Attribution heatmaps with different XAI methods for Densenet-121 model on ILSVRC2017 dataset.



Figure A.8. Attribution heatmaps with different XAI methods for Densenet-161 model on ILSVRC2017 dataset.



Figure A.9. Attribution heatmaps for Relation Network on CLEVR-XAI dataset using pos-l2-norm-sq pooling.



Figure A.10. Attribution heatmaps for Relation Network on CLEVR-XAI dataset using max-norm pooling.
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