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A. Training Setup
Unless specified, we utilize SGD optimizer with a base

learning rate of 1 × 10−2 for all the networks with ResNet
backbones and AdamW optimizer with a base learning rate
of 1 × 10−4 for other backbones. The training is sched-
uled with a linear warm-up policy with 1500 iterations. The
backbones are pretrained with ImageNet-1k [4]. We use a
batch size of 8 for the training across the datasets and train
the network with 80k iterations with crop size of 1024×512.
During training, we also apply common data augmenta-
tion methods like random flip and photometric distortion
from [1] to increase the data variety. We do not apply meth-
ods like auxiliary head or stage-wise learning rate decay for
simplification, although they may contribute to better net-
work generalization or training stability. Since there exists
higher uncertainty of the networks when the input data dis-
tribution drifts from the source, we repeat the training three
times and report the average value of each class.

B. Class Taxonomies
In our work, four different class hierarchies are used for

the evaluation. Detailed class taxonomy for Cityscapes [2]
is provided in Fig. B.1. Fig. B.2 depicts a simplified class
hierarchy for Mapillary [3], while Fig. B.3 and Fig. B.4
show the behavior-based class taxonomy and VRU-based
class taxonomy for the ablation study. We discard the
classes under void in Mapillary and relabel them as ignore.

C. Additional Evaluation Results
We provide additional evaluation results on ACDC [5]

and BDD100k dataset [6] with visualization in Fig. C.1,
which correspond to the quantitative results that we observe
in the domain shift section.
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Figure B.1. Class taxonomy of Cityscapes, ACDC and BDD100k
datasets.
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Figure B.2. Simplified class taxonomy of the Mapillary dataset (v1.2); void classes are remapped to ignore during training and validation.
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Figure B.3. Behavior-based class taxonomy used for the ablation study from the Mapillary dataset (v1.2); void classes are remapped to
ignore during training and validation.
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Figure B.4. Class taxonomy that addresses VRUs used for ablation study from the Mapillary dataset (v1.2); void classes are remapped to
ignore during training and validation.



Input DLv3+ ResNet50 Swin-Tiny ConvNeXt-Tiny SegNeXt-L

a) CERTrain% ↓ 60.65 39.47 27.17 28.82
IoUTrain% ↑ 0.0 6.59 33.19 70.72

b) CERTrain% ↓ 6.71 27.74 31.39 37.54
IoUTrain% ↑ 0.0 45.97 67.71 60.60

c) CERTrain% ↓ 13.59 29.54 28.57 55.31
IoUTrain% ↑ 7.11 66.80 34.68 39.97

d) CERBus% ↓ 7.83 10.13 17.68 9.59
IoUBus% ↑ 51.73 58.59 80.68 90.41

e) CERTruck% ↓ 37.29 59.41 11.83 10.93
IoUTruck% ↑ 34.90 30.59 59.95 86.83

f) CERTruck% ↓ 2.96 5.05 1.34 0.83
IoUTruck% ↑ 0.0 7.67 0.0 0.0

g) CERBus% ↓ 1.23 0.64 0.79 4.69
IoUBus% ↑ 0.0 0.0 0.0 91.83

Figure C.1. Evaluation results on ACDC and BDD100k dataset. The neural networks are trained on Cityscapes dataset and evaluate in a
domain shift setup. We observe severe impact from the varying label policy that affects the evaluation on BDD100k dataset based on IoU
metric in comparison to ACDC dataset. Best viewed in color.


