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Figure 1. Network architecture for the underlying Point Trans-
former [11] we use in POINTCROP, CSC [5], and SUPERVISED-
TRANSFORMER.

1. Point Transformer Architecture Overview
We use the same underlying Point Transformer [11]

architecture for POINTCROP, CSC, and SUPERVISED-
TRANSFORMER. Figure 1 shows an overview of the archi-
tecture, which is a simplified version of the segmentation
architecture proposed by [11]. We first encode the input
point cloud using a one-layer MLP with hidden and output
dimensions of 32. Next, we apply two blocks, each con-
sisting of a transition down and a point transformer layer.
The MLP used in the middle of the network has two lay-
ers with hidden and output dimensions of 128. Finally, we
apply another two blocks, each consisting of a transition up
and a point transformer layer. For the point transformer lay-
ers, we always use a dimension of 32. All other parameters
in the network (e.g., k used in knn for the transition down
module) are the same as in the original paper [11].

2. Implementation Details
For the momentum encoder [4], the centering operation,

and the weight decay used in POINTCROP, we follow a
cosine scheduler with the same parameters as DINO [1].
We train our model using a learning rate of 0.0005 and the
Adam optimizer [6] with default parameters. Before com-
puting the cross entropy loss for POINTCROP, we apply
temperature parameters to the teacher and student outputs
with the same values as used by DINO [1]. However, unlike

DINO [1], for the teacher temperature, we do not use a co-
sine scheduler or warm-up epochs [9]; i.e., the temperature
is simply fixed. For the projection head in POINTCROP [1]
we use the output dimension of 2000 (class concepts) with-
out fine-tuning the parameter. To train the SUPERVISED-
TRANSFORMER, we use a learning rate of 0.0001 along
with the Adam optimizer (default parameters) [6]. For the
focal loss [7] in SUPERVISEDTRANSFORMER, we follow
the suggestion in the original paper and set the γ parameter
to 2. Finally, for all experiments in this paper, we used the
categories in Matterport3D [2] based on the ’mpcat40’ la-
bels. Note the diversity and the difficulty of this collection
compared to the curated 18 ’nyu40’ labels used in typical
3D object detection pipelines [8, 10]. The categories we
have used are: lighting (i.e lamps), sink, appliances, fire-
place, shower, blinds, towel, cushion, objects, curtain, chair,
furniture, chest of drawers, picture, cabinet, shelving, bath-
tub, sofa, plant, gym equipment, bed, stool, seating, clothes,
toilet, tv monitor, table, mirror.

3. Additional Quantitative Results
3.1. Mean Average Precision Plots

Figure 2 shows the mean average precision (mAP) plots
for mAPgeo at various IoU thresholds and Chamfer distance
(CD) thresholds of 5%, 10%, 20%, and 40%. For both IoU
and CD thresholds, we use a range of soft to strict thresh-
olds. Our 3D subscene retrieval model POINTCROPRANK
outperforms all models across all threshold values. The re-
sults confirm that our model can retrieve 3D subscenes that
are more similar to the query subscenes in terms of geome-
try and object arrangements.

3.2. Replacing IoU with Distance and Angle

The second matching criterion for precision metrics Pcat
and Pgeo considers the IoU of each query object and its cor-
responding candidate in a world coordinate frame. During
evaluation, the candidate is rejected as a match if the IoU
between the pair is 0. We observe that for some down-
stream applications, this may be a strict evaluation metric.



Figure 2. 3D subscene retrieval on 50 test set queries. We evaluate the retrieved results using different methods based on geometric and
object arrangement similarity with the query subscene. More concretely, we use mAPgeo and compare models at various IoU and Chamfer
Distance (CD) thresholds. The top row plots correspond to CD thresholds of 5% and 10% (left to right). The bottom row shows plots for CD
thresholds of 20% and 40%. Our model POINTCROPRANK (blue) outperforms all models including the supervised TRANSFORMERRANK

(orange) across all thresholds.

Method AUC[dist+CD] AUC[angle+CD] AUC[dist+angle+CD] AUC[dist+angle+Cat+CD]

ORACLECATRANK 5.88 5.75 4.88 4.88
ORACLECATRANK[+IOU] 8.58 8.99 8.07 8.07
ORACLEGKRANK 5.52 5.22 4.03 4.03
TRANSFORMERRANK 16.14 16.03 14.88 9.46

RANDOMRANK 2.49 1.87 1.60 0.16
CSCRANK 14.73 14.71 13.32 8.52
POINTCROPRANK 22.53 23.05 20.98 11.52

Table 1. Comparing 3DSSR models using various matching criteria. The top group shows models that use oracle categories or are super-
vised with category labels. The bottom group shows the self-supervised models along with a random baseline. Our model POINTCRO-
PRANK outperforms all models using various metric combinations.



Method AUC[dist+CD] AUC[angle+CD] AUC[dist+angle+CD] AUC[dist+angle+Cat+CD]

TRANSFORMERRANK 20.34 19.91 18.50 12.44

CSCRANK 14.89 14.71 13.76 8.56
POINTCROPRANK 21.01 20.74 19.26 10.79

Table 2. Training on ScanNet, evaluating on Matterport3D. Our POINTCROPRANK outperforms CSCRANK across all metrics and is
competitive with TRANSFORMERRANK. Note that, unlike the bottom group, TRANSFORMERRANK utilizes category-label supervision
during training.

Method mAP[CD] mAP[CD + Cat]

ORACLECATRANK 7.81 7.81
TRANSFORMERRANK 40.48 27.17

RANDOMRANK 1.96 0.39
CSCRANK 25.88 15.07
POINTCROPRANK 64.92 32.49

Table 3. Single 3D object retrieval results.

Therefore, we suggest two additional metrics: radial dis-
tance (dist) and angular difference (angle) for each corre-
sponding query and target object, normalized by the query
object’s radius and 90 degrees respectively. Note that the
radius here is computed relative to the centroid of the an-
chor objects (i.e., the origin of the world coordinate frame).
Table 1 reports the Area Under the Curve (AUC) for mean
average precision (mAP) across 50 test queries at various
distance and angle thresholds. All experiments use a Cham-
fer Distance (CD) threshold of 10%. POINTCROPRANK
outperforms all models including ones that have access to
oracle categories.

3.3. Generalization Across Different Datasets

We evaluate the generalization capabilities of the self-
supervised models, POINTCROPRANK and CSCRANK
across another dataset. To do so, we train POINTCRO-
PRANK and CSCRANK on ScanNet [3] (no category label
supervision) and evaluate the trained models on the 50 Mat-
terport3D [2] test queries. We follow the same procedure
for TRANSFORMERRANK except that this model benefits
from category-label supervision on ScanNet [3]. To per-
form training, we prepare ScanNet [3] exactly the same way
we prepared Matterport3d [2] and do not change any hyper-
parameters for any of the models. Table 2 shows results
using various matching criteria. We observe that our model
POINTCROPRANK outperforms CSCRANK across all met-
rics and is very competitive to the supervised TRANS-
FORMERRANK.

3.4. Evaluation on 3D Object Retrieval

In the main paper, we showed that better classification
accuracy for a point cloud encoder does not necessarily im-
ply better 3D subscene retrieval using that encoder. Con-
sider a user querying a single 3D object (e.g. ‘chair’). Re-
trieving objects from the database by relying on categories
alone is problematic because there are many types of chairs
(e.g. living room chairs, dining table chairs, swivel chairs,
etc). Our downstream applications benefit from retrieving
geometrically similar objects within a category. To make
this clearer, Table 3 shows single 3D object retrieval results
(top 10) with Chamfer distance (CD) alone and CD together
with category labels (taking the mean over 50 test queries).
The results suggest our POINTCROP outperforms all mod-
els across the two metrics.

3.5. Considering Rotational Invariance

All 3DSSR models presented in this paper are invariant
under translations of 3D subscenes. This is a direct con-
sequence of our retrieval strategy (Sec 4.3 in the main pa-
per). During retrieval, we translate each target and query
subscene to a mutual centroid (i.e., the centroid of the an-
chor objects). However, we do not consider the rotational
invariance of the 3D subscenes (around the upward z-axis).
To take this into account, we add a grid search module to
each 3DSSR model to search over 45 degrees rotations of
each subscene. The results in Table 4 indicate that our
POINTCROPRANK achieves higher AUC across all metrics.
Although a simple grid search can achieve good results, in
the future we plan to learn subscene representations invari-
ant under rotations.

4. Additional Qualitative Results
In Figure 3 we show two additional test queries com-

paring our POINTCROPRANK against CSCRANK and the
supervised TRANSFORMERRANK. For the first example,
we observe that both POINTCROPRANK and CSCRANK
find 3 matches at rank 1. However, at rank 2 our model is
able to find a complete match while CSCRANK finds no
correct matches. For the second example, we observe that
our model retrieves a geometrically similar cabinet (in pur-



Method AUC[dist+CD] AUC[angle+CD] AUC[dist+angle+CD] AUC[dist+angle+Cat+CD]

ORACLECATRANK[+IOU] 8.68 9.09 8.09 8.09
TRANSFORMERRANK 15.49 15.40 14.28 8.81

CSCRANK 15.26 15.40 13.84 8.76
POINTCROPRANK 21.01 21.37 19.37 10.48

Table 4. Evaluation with a subscene rotation module. Our POINTCROPRANK achieves higher AUC values across all metrics.

ple) at all ranks. However, the supervised TRANSFORMER-
RANK does not identify a cabinet at ranks 2 and 3. Further-
more, the tables identified by TRANSFORMERRANK do not
seem to be geometrically similar to the query table, except
at rank 2.

We show another two test set queries in Figure 4,
comparing our model against two models that directly
use oracle categories (ORACLEGKRANK and ORACLECA-
TRANK[+IOU]). In the first example, our model identifies
a curtain at all ranks. Furthermore, the retrieved table at
ranks 1 and 3 from our model seem to be geometrically
more similar to the query table. Note that all results from
ORACLEGKRANK seem to have arrangements that do not
match the query subscene. For the second example, we ob-
serve that ORACLECATRANK[+IOU] matches a couch to
the query chair at rank 1. This appears to be an annotation
error in the original Matterport3D dataset [2]. Furthermore,
the lamp and the table from rank 3 of our model are more
similar to the query lamp and the query table compared to
ORACLECATRANK[+IOU]’s result at rank 3. We observe
that ORACLECATRANK[+IOU] retrieves a dining table and
a ceiling lamp at rank 3 which is quite different from the
query subscene.
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Query Method Rank 1 Rank 2 Rank 3

(lamp*, chair, curtain,
lamp)

POINTCROPRANK

CSCRANK

(cabinet*, table) POINTCROPRANK

TRANSFORMERRANK

Figure 3. Qualitative results for two additional test set queries comparing our POINTCROPRANK, the self-supervised CSCRANK, and the
supervised TRANSFORMERRANK. We observe that in the first example both CSCRANK and our model find 3 matches at rank 1. However,
at rank 2 our model finds a full match (4 objects) while CSCRANK finds no matches. For the second example, we note that only our model
is able to retrieve a geometrically similar cabinet (in purple) at all ranks. Here, the supervised TRANSFORMERRANK does not identify
a cabinet at ranks 2 and 3. Moreover, the tables from TRANSFORMERRANK do not seem to be geometrically similar to the query table,
except at rank 2.



Query Method Rank 1 Rank 2 Rank 3
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Figure 4. Qualitative results for two test set queries comparing POINTCROPRANK with approaches that directly use oracle object cate-
gories. For the first example, we note that our model identifies a curtain at all ranks. Furthermore, the retrieved table at ranks 1 and 3 from
ours seem to be geometrically more similar to the query table. For the second example, we observe that ORACLECATRANK[+IOU] suffers
from an annotation error and matches a couch to the query chair at rank 1. Comparing the lamp and the table from rank 3 of our model
against ORACLECATRANK[+IOU], we observe that ORACLECATRANK[+IOU] retrieves a dining table and a ceiling lamp which is quite
different from the query compared to ours.


