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Abstract

We present a novel multi-modal data fusion technique us-
ing topological features. The method, TopFusion, leverages
the flexibility of topological data analysis tools (namely per-
sistent homology and persistence images) to map multi-
modal datasets into a common feature space by forming
a new multi-channel persistence image. Each channel in
the image is representative of a view of the data from
a modality-dependent filtration. We demonstrate that the
topological perspective we take allows for more effective
data reconstruction, i.e. imputation. In particular, by per-
forming imputation in topological feature space we are able
to outperform the same imputation techniques applied to
raw data or alternatively derived features. We show that
TopFusion representations can be used as input to down-
stream deep learning-based computer vision models and
doing so achieves comparable performance to other fusion
methods for classification on two multi-modal datasets.

1. Introduction
Data comes in many forms and modalities including time

series, images, and text. The field of data science has seen
continued improvements and new state-of-the-art perfor-
mance for each of these modalities individually for several
tasks. The problem of how to best handle heterogeneous
data sets including multiple modalities or collections of re-
lated measurements, however, remains open. The goal of
data fusion is to fuse multi-modal datasets together for au-
tomated or manual decision making [14]. As such, the chal-
lenge of data fusion could be framed as trying to represent
multiple data sources into a single space that can be ana-
lyzed with, for example, machine learning models.

In this work we present a novel data fusion method

which uses tools from topological data analysis (TDA) [9,
33] to embed multiple modalities into a common feature
space independent of the data type. We leverage an image-
based representation of topological features, persistence im-
ages [1] (PIs), to take advantage of machine learning’s cur-
rent strength in computer vision problems. There are now a
wide variety of persistent homology filtrations, each appro-
priate to certain modalities. This means that our approach is
applicable in a number of scenarios. By utilizing a variety
of filtration techniques, the same core homological features
(with different interpretations) are extracted from disparate
data sources thereby providing a natural map into a common
space. When presented with multiple data types or sources,
we create a "multi-channel" PI by stacking the collection
of PIs derived across the different filtrations. We then ap-
ply deep learning-based computer vision models to these PI
stacks.

We investigate the performance of our topological fusion
technique, TopFusion, for classification and robustness to
incomplete data. TopFusion is tested on two multi-modal
datasets; Wearable Stress Affect Detection (WESAD) [29]
and Audio Visual MNIST (AV-MNIST) [32]. On both
datasets, we demonstrate comparable classification accura-
cies to state-of-the-art approaches when trained and tested
on complete data (e.g. all modalities or sensors are present
for test data). The strong discriminatory power of the topo-
logical features for AV-MNIST is in part supported by a
novel image scanning filtration approach presented in Sec-
tion 2.3.3 based on zigzag persistence. We further evaluate
the utility of TopFusion when presented with incomplete
data. We consider both the setting where one modality is ab-
sent in the validation experiments and where one sensor (in
a collection of sensors) fails to collect measurements during
validation. We show that by applying existing data impu-
tation techniques [6] in a topological feature space, rather
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than in the raw data space, one sees stronger performance
recovery suggesting that TopFusion captures more strongly
discriminative, robust features.

In summary, our contributions in this paper include:
• We propose a new framework, TopFusion, for multi-

modal learning which maps a common feature space
based on persistent homology features.

• We show that computer vision models trained on the
output from TopFusion achieve competitive perfor-
mance with equivalent models trained with other fu-
sion techniques.

• Our tests of robustness to missing data show that by
utilizing a common topological space, models which
use TopFusion output are more robust to missing data.

2. Background
2.1. Data Fusion

There are three types of data fusion: Early, Late, and In-
termediate [19]. Early data fusion is the process of fusing
data sources before doing analysis. For example, [17] pro-
poses two possible approaches for early fusion technique.
The first approach is combining data by removing the corre-
lation between two sensors. The second approach is to fuse
data at its lower dimensional common space. A major draw-
back of early data fusion lies in the difficulty of combining
multiple data sources with significant differences such as
continuous or discrete. Late data fusion, where an individ-
ual model is used for each modality and their outputs are
analyzed or used for input to downstream machine learning
pipelines. A problem with this approach is the unavoidable
complexity of first choosing models for each data source
and then stitching the outputs of these models with the input
for the last model. The third type of fusion, intermediate, is
a mix of both early and late data fusion, where some data
modalities are fused earlier and fed into a model and others
at a later point in the pipeline. This allows for more flexibil-
ity and the fusion procedure; however, again the complexity
of the pipeline has only increased. In this work we use early
data fusion with a preprocessing step that brings the modal-
ities to a common (topological) feature space independent
of the data type.

2.2. Missing Data Imputation

Missing data is a challenge commonly encountered in
the multi-modal setting. For example, the sensor associated
with a particular modality could go out leaving us with only
a partial measurement. In such a setting we need to estimate
the missing data in our feature vector space for input to our
machine learning model. One way to do this is to enter
estimates (impute) the missing data based on the data from
other sensors as well as previous data. There are three main
cases of missing data presented in [20]; in this work we use

the most general case since we are artificially removing data
with no correlation to the other modalities.

There are many methods for data imputation ranging
from simply replacing the missing values with a constant
to deep learning methods [15]. In this work we use the
common supervised learning method of k-Nearest Neigh-
bors (kNN), which has been shown to often outperform even
the complex deep neural network methods as well as being
relatively computationally efficient [10, 15].

2.3. Topological Data Analysis

The field of Topological Data Analysis (TDA) studies the
shape of data to gain understanding of the underlying sys-
tem. In this work we leverage two tools from TDA: persis-
tent homology and zigzag persistence. Both of these tools
are filtrations that study the changing simplicial homology
of abstract simplicial complexes as representations of a data
source. The output of these filtrations is a persistence dia-
gram Dp that captures the topology of the data in dimension
p. A more thorough background on TDA, and persistent ho-
mology specifically, can be found in [8, 21, 27]. We lever-
age several commonly used techniques which are presented
conceptually in the body of the paper and refers the reader
to appendices (found in the supplemental material) for more
technical details. The method presented for applying zigzag
persistence to images is novel and therefor we include more
details in the main paper.

2.3.1 Sublevel Set Filtration on Functions

In this work one of the filtration frameworks we leverage is
called sublevel set filtration. As the name implies, this ap-
proach extracts topological features based on the level sets
of a function assuming the function satisfies some general
and standard conditions [4]. Under these assumptions, the
relationships between extrema can be described in terms of
the first two homologies, e.g. connected components and
holes. The appendix (see supplemental material) provides
an example of how we map the sublevel sets of a function
of a single variable to a persistence diagram. By consider-
ing time series and images as functions of one or two vari-
ables, respectively, we can use sublevel set filtration to de-
rive topological features from those modalities. More de-
tails and formalization of the sublevel set filtration tech-
niques used can be found in Appendix (see supplemental
material).

2.3.2 Vietoris-Rips Filtration on Time Series Data

For time series data where there is a reasonable assump-
tion of an underlying dynamical system, albeit potentially
unknown, there is an alternative way of capturing topolog-
ical features. To employ this alternative filtration, the one-
dimensional time series is first converted to a point cloud
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using a technique referred to as a time-delayed embedding
[26] rooted in the rich theory of Takens’ theorem [30]. Af-
ter converting your time series to a point cloud, topological
features can be extracted using the Vietoris-Rips (VR) fil-
tration. The VR filtration is a prominent tool in persistent
homology where a nested sequence of simplicial complexes
is formed based on a similarity parameter [7,33]. In the case
of point-cloud data, the similarity parameter that the filtra-
tion is based on is typically distance. Again, we provide a
more rigorous presentation of the VR filtration in Appendix
(see supplemental material).

2.3.3 Zigzag Persistence on Image Data

This section provides an introduction to zigzag persistent
homology [3] and how it is a generalization of persistent
homology. We also develop a method for applying zigzag
persistence to study image data through directional scans.

Persistent homology is limited by its requirement that
each Abstract Simplicial Complex (ASC) is a subset of the
previous ASC to form the persistence module. This means
at each step we can not remove simplices in the sequence of
ASCs and can only add new simplices. There are many real-
world applications of TDA where we have a parameterized
sequence of ASCs with simplices both entering and exiting
the ASC throughout the sequence making the use of persis-
tent homology not possible. To solve this issue zigzag per-
sistence [3] was developed. Zigzag persistence allows for
an arbitrary subset directions in the ASC sequence where
there is no inclusion direction rule:

K0↔ K1↔ K2↔ . . .↔ K`, (1)

where↔ denotes one of the two inclusion maps: ↪! or ↩.
A special case of Eq. (1) is when the left and right inclusions
alternate or zigzag. We artificially construction this special
zigzag case by interweaving the original ASCs with either
unions or intersections of adjacent ASCs, which forms the
ASCs

K0 ↪! K0,1 ↩ K1 ↪! . . . ↪! K`−1,` ↩ K`. (2)

for unions with Ki,i+1 = Ki∪Ki+1 or

K0 ↩ K0,1 ↪! K1 ↩ . . . ↩ K`−1,` ↪! K` (3)

for intersections with Ki,i+1 = Ki∩Ki+1.
The inclusion maps between simplicial complexes are

extended to linear maps between homology groups result-
ing in the zigzag persistence module tracking the changing
homology of Eq. (2) or (3) just as was the case for standard
persistent homology. For the case of the union in Eq. (2),
the zigzag persistent homology module is

Hp(K0) ↪! Hp(K0,1) ↩ . . . ↪! Hp(K`−1,`) ↩ Hp(K`). (4)

By leveraging the same algebra as is used in standard
persistence homology we track persistence pairs where
(when) homology features are born and die based on the
zigzag persistence module with some loss on the intuition
as our parameterization function has changed. Specifically,
we again track the persistent homology using a persistence
diagram Dp consisting of half-open intervals (persistence
pairs) [b,d); however, we use the indices of the ASCs as the
birth and death times in substitution of the filtration param-
eter. For example, if there is one-dimensional homology
(i.e., a loop) that appears at K2 and persists until it disap-
pears at K3, we represent this as the persistence pair [2,3).
In the case of a class appearing or disappearing at the union
(or intersection) complex Ki,i+1, we use the half index pair
i, i+1. If a topological feature persists in the last ASC in
the zigzag persistence module we set its death past the last
index with the pair `,`+1, where ` is the number of ASCs
(without interwoven unions or intersections).

In many works zigzag persistence is used for studying
temporal changes in data [23, 24, 31]; however, here we
leverage zigzag persistence for “scanning" single-channel
images. For this method we slide a window of width w
along the image in a direction.
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Figure 1. Zigzag persistence example on a 10x10 image of the
number 7 in both the vertical and horizontal direction.

For each window Wi we can create an ASC Ki by taking
a node set P as the pixel indices that have a value greater
than a threshold s. For the toy example the image in binary
and as such we set the threshold as s = 0.5. For images
with multiple color channels one could apply these scans
for each color separately or look at the grey scale image.
For each pair of pixels p j, pk ∈ P we add 1-simplices to the
ASC Ki if k− j = 1 (i.e., if the two pixels are adjacent).
We do not add any higher dimensional simplices as we are
only interested zero-dimensional homology. Applying this
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procedure to the windows as they are slid across the image
results in a sequence of ASCs which we apply unions to to
create the zigzag persistence module. Calculating the per-
sistence pairs results in persistence diagrams D0 for each
direction which summarize the “shape" of the image.

Here we provide an example demonstrating how to per-
form zigzag persistence to scan single image data. Specif-
ically, the example we use is a 10× 10 pixel image of the
number 7 shown in Fig. 1.

In Fig. 1 we do scans in both the vertical and horizontal
directions and use a window width of 1 pixel. However,
we could do many more window widths and directions by
rotating the image.

In our example in Fig. 1 in the vertical direction (from
top down) at pixel pb = 1 a single component is born. This
component persists until reaching the bottom of the image
at pd = 9. We summarize this as the persistence pair [1,9).

In the horizontal direction from left to right we begin at
pixel pb = 2 at the top of the seven where our first com-
ponent is born. The second separate component is born
at p′b = 4 at the bottom of the seven. These two compo-
nents combine at p′d = 7 resulting in the persistence pair
[4,7) following the Elder Rule. At the next pixel pd = 8 the
only component left also dies resulting in the persistence
pair [2,8).

This example demonstrates how zigzag persistence cap-
tures information about then shape of the level set of the
image that is not captured by other persistent homology fil-
trations. For example, sublevel set persistence would only
show a single component in dimension 0.

2.3.4 Persistence Images

Persistence images [1] are a stable method for vectorizing
the topological features summarized in persistence diagram
for applications. The vectorization of topological features
has been an active area of research to accommodate the
integration of these features into machine learning frame-
works. While there are many alternative representations,
we have chosen PIs because they naturally integrate into
conventional neural network architectures. At high level,
PIs are formed by overlaying distributions centered on each
point in a PD, summing those distributions to form a sur-
face, and then discretizing the surface to form an image.
Greater detail, and the parameter selection paradigm used,
are provided in Appendix (see supplemental material).

3. Topological Data Fusion Using TopFusion

Our method, TopFusion, involves moving all the data
sources of a multi-modal dataset to a universal input space.
This is the space of persistence diagrams, which can be eas-
ily vectorized using persistence images to matrices of the

same size. These can then be stacked together for input to a
machine learning model.

Data Source 1 Data Source 2 Data Source m

Results

... ... ...

...

...

PIs 2 PIs mPIs 1

PI Fusion

Model

Figure 2. General method pipeline for studying multi-modal data
using persistence image fusion.

We outline this procedure in Fig. 2. We begin with m data
sources, x1(t) . . .xm(t), and extract the persistent homol-
ogy using a method determined by their particular datatype.
For example, time series are typically studied using zero-
dimensional sublevel set persistence and Vietoris-Rips fil-
trations of their time-delay embeddings [21, 22, 25, 28],
while image data is typically studied using one-dimensional
sublevel set persistence [2, 13]. The output of this process
is a set of PD capturing the persistent topological features
found within the data. These PDs are vectorized into PIs
and then stacked together into a tensor. In this work we
apply this framework for multi-modal data sets that can
have multiple types of filtrations resulting in several PIs for
each data source. The PIs for each data source can then
be stacked together in the fusion step which results in a
3-tensor data structure which can be used for downstream
applications.

A benefit of this representation is that it allows for many
standard neural network architectures (e.g. convolution
neural networks) that are used to learn on multi-channel im-
ages to be natively applied to the stacked PI tensor. The
only requirement for applying this early topological fusion
framework is an appropriate method of calculating persis-
tent homology given the data type. However, as the field
of TDA matures this becomes less of an issue as more ad-
vanced topological methods for studying data types con-
tinue to be developed.

4. Experiments
Here we describe the experiments on two datasets we ran

using TopFusion. The first is the Wearable Stress and Affec-
tion Dataset (WESAD), which is composed of 10 biological
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signals recorded using both a wrist and chest wearable sen-
sor. The second dataset is the Audio Visual-Modified Na-
tional Institute of Standards and Technology (AV-MNIST)
as a multi-modal version of the popular MNIST dataset.

The neural network architecture applied to all of these
experiments is a simple Convolution Neural Network
(CNN). This CNN has two convolutional layers, each with
5× 5 filters, and each followed by maximum pooling with
filter size 2× 2, and one fully connected layer. We trained
the CNN for 20 epochs for both experiments.

4.1. Wearable Stress Affect Detection

Our first experiment uses the WESAD dataset [29]. This
dataset is composed of 10 total signals collected from two
sensors: one chest and one wrist sensor. These sensors
measure multiple biological signals. Specifically, the chest
sensor measures three-axis acceleration (ACC), Electrocar-
diogram (ECG), Electromyography (EMG), Electrodermal
Activity (EDA), temperature, and respiration data, and the
wrist signal collects ACC, Blood Volume Pulse (BVP),
EDA, and temperature data. The signals were measured at
different sampling rates ranging from 4 to 700 Hz. While
the signals were collected, the 15 subjects were in one of
three different states of interest: stressed, amused, and base-
line. The goal of this dataset is to use the signals to de-
termine which state the subjects are in using a Leave-One-
Subject-Out (LOSO) train/test split.

Our pipeline for applying our method (see Fig. 2) to the
WESAD dataset is shown in Fig. 3. The first step is to create
window snapshots of the data, which will be classified as
either stressed, amused, or baseline.

We use a window size of w = 150τ , where we select τ

using the mutual information method [11] due to the non-
linear nature of the time series. We also chose to shift the
sliding windows by a distance s = 0.25wmax for each con-
secutive window, where wmax is the largest window size of
any of the signal types. These parameters resulted in a to-
tal of 1620 windows across all subjects. Reasoning for our
window size and shift parameter selection are provided in
the Appendix in the supplemental material.

After generating the windows, we extract topological
features using both zero-dimensional sublevel set filtra-
tion and time-delayed embeddings with VR filtration on
the windowed time series. For the VR filtration ap-
proach we first need to embed the time series using the
time delay-embedding for sampled time series as vi =
[xi,xi+τ , . . . ,xi+(n−1)τ ] ∈Rn, where each vi is a vector in the
result time-delay embedding point cloud χ . We set the di-
mension n using the false nearest neighbors [18] approach
resulting in dimensions n ∈ [3,5] depending on the signal.
A table of all the dimensions and delays for the time-delay
embedding are provided the Appendix (see supplemental
material).

The PIs for each of the filtrations were generated using
the procedure outlined in Appendix (see supplemental ma-
terial). The complete collection of PIs coming from both
the VR and sublevel set filtrations are fused, i.e. stacked,
and then input into a shallow CNN for classification.

4.2. WESAD Results

For the WESAD dataset we used LOSO train/test splits
for each of the 15 subjects and then report the average ac-
curacy. We performed this experiment using just the wrist
data, just the chest data, and the combination of the wrist
and chest data through our PI fusion method as outlined in
Fig. 3. These accuracies are reported in Table 1.

As a first mode of comparison we also calculated the
summary statistics reported in [29] as a point of compared.
We used a support vector machine with an RBF kernel
to classify the states from these statistics with accuracies
shown in Table 1 for the wrist stats, chest stats, and wrist
and chest stats combined.

Table 1. Classification accuracies for WESAD dataset for list data
representations and subsets

Data Accuracy
Uncertainty

(Standard Deviation)
Wrist PIs 71.9 7.2
Chest PIs 82.3 6.8

Wrist and Chest PIs 84.3 5.4
Wrist Stats 63.2 12.9
Chest Stats 54.7 6.7

Wrist and Chest Stats 63.4 12.5

From this analysis it is clear we did not replicate the lev-
els of accuracies originally reported in [29] using the statis-
tics, which were 75.2%, 76.5%, and 79.9% for all wrist, all
chest, and all physio signals, respectively. We believe this
is due to the difficulty of recreating many of the specific
statistics that require pre-processing of the signals. How-
ever, even compared to the reported accuracies our PI fu-
sion approach is outperforming these accuracies for both
the chest PIs and wrist/chest PIs. Furthermore, in [16] a
study applying TDA to the WESAD dataset was done using
persistence landscapes. In their work they achieved on aver-
age 81.35% accuracy for all signals, which is again lower in
comparison to our 84.3% accuracy when using all signals.

4.2.1 Imputation on WESAD

We also conducted several imputation experiments on the
WESAD dataset to understand how imputation on the fused
PI tensors performed in comparison to both imputation on
the raw data as well as imputation on the statistics. These
imputation experiments are outlined in Fig. 4.
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Figure 3. Pipeline for applying persistence image fusion to the WESAD dataset.
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Wrist Data Wrist Stats

Chest Stats

Stats
Impute

(e) Imputing Chest Stats.

Chest Data Chest Stats
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(f) Imputing Wrist Stats.

Figure 4. Imputation methods for the WESAD dataset.

The imputation approach used and the corresponding ac-
curacies are shown in Table 2. For all of these imputations
the k-NN approach was used as described in Section 2.2.
We have also listed the time needed to perform imputation
for each of the approaches in Table 2 as a metric to demon-
strate computational demand of the various imputation ap-
proaches.

Our first observation is that due to the significant size
of the raw time series data, imputation on the raw data is

by far the most computationally expensive as shown in Ta-
ble 2. Imputation on the stats is the fastest, but it is not
significantly faster than the imputation on the chest PIs. We
found little improvement from the imputed stats for both the
chest and wrist. We also see this trend with imputation on
the raw data with the classification accuracy decreasing in
comparison to the classification on just the wrist and chest
PIs separately. This is likely due to the mis-pairing of data
modalities compounding the accuracy loss.

In comparison to both the raw data and stats imputation,
the imputation on the PI tensors from the chest and wrist
data increases performance. Specifically, by imputing the
chest PIs we saw a 0.5% accuracy increase and for imputed
wrist PIs we saw a 1.5% accuracy increase.

4.3. AV-MNIST

The second dataset we apply our method to is the Audio-
Visual MNIST Dataset (AV-MNIST). This dataset is com-
posed both both spoken audio signals of numbers and image
scans of handwritten numbers from 0 to 9. The goal of this
dataset is to classify the number using both the image and
audio data combined. We apply the TopFusion pipeline to
this dataset using both sublevel set persistence and zigzag
persistence.

For the image data we used both a sublevel set persis-
tence on the raw image itself as well as a zigzag persis-
tence scan of the image as described in section 2.3.3. The
sublevel set persistence results in one persistence diagram
with the zigag persistence resulting in two persistence di-
agram. For the audio signals we first begin by breaking
them into 10 sections (5 shown in figure for illustration pur-
poses) and taking the sublevel set persistence for each. By
stacking all of the resulting 13 PIS together we get a fused
PI of size 13x10x10 for each image-audio pair to feed to
our neural network model for digit classification. We use a
70/30 train/test split chosen using a random shuffle repeated
5 times (random seeds 1 to 5). We report our accuracies as
the mean accuracy over the five random seeds with reported
standard deviation.
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Table 2. Classification accuracies for WESAD dataset for list data representations and subsets

Imputation Fig. Data Accuracy
Uncertainty

(Standard Deviation) Imputation Time (Sec)

4a Imputed Chest PIs 72.4 6.2 3.3
4b Imputed Wrist PIs 83.8 5.8 4.9
4c PIs from Imputed Chest Data 68.2 6.3 145.2
4d PIs from Imputed Wrist Data 80.1 6.1 183.3
4e Imputed Chest Stats 63.4 13.1 0.3
4f Imputed Wrist Stats 52.5 12.8 0.4

AV-MNIST

A
ud

io
Im

ag
e

Windowing Sublevel Set Persistence

Zigzag Persistence 

Sublevel Set Persistence

PI Fusion

+

Classification
0, 1, 2, 3, 4, 
5, 6, 7, 8, 9

Figure 5. Pipeline for applying persistence image fusion to the AV-MNIST dataset.

4.4. AV-MNIST results

Our first experiment was using the PI fusion pipeline
shown in Fig. 5 for the Audio PIs, Image PIs, and both
Audio and Image PIs. These results are shown in Fig. 3.
Both the audio and image PI stacks performed comparably
with 88.1% and 87.7% accuracy, respectively. However, the
combined PI stacked saw a significant improvement in per-
formance with 98.4% accuracy. While these accuracies are
lower than state-of-the-art neural network architectures de-
signed specifically for this dataset, our architecture is rel-
atively simple only using a stand, simple CNN previously
described.

Table 3. Classification accuracies for AV-MNIST dataset for list
data representations and subsets

Data Accuracy
Uncertainty

(Standard Deviation)
Audio PIs 88.1 1.2
Images PIs 87.7 0.9

Audio and Image PIs 98.4 0.3

We were able to get higher accuracies than reported in
table 3 by using higher resolution PIs and more filtration di-
rections when using zigzag persistence on images. Specifi-
cally, we got 91.8% accuracy using just the audio data with

audio file broken into 20 windows instead of 10 with the
PIs having 20×20 pixels instead of 10×10. We also got up
to 96.5% accuracy using the image data when we used an
ensemble of window widths ranging from 1 to 3 and rotated
the image by 0, 30, 45, and 60 degree angles, which is com-
parable in accuracy to state-of-the-art TDA based methods
for the MNIST dataset [12]. The combined accuracy for
both of these improvements was 99.3% accuracy, which is
near in performance to state-of-the-art methods. We believe
we can further improve this accuracy with more window
widths and more image rotations. One drawback of includ-
ing more PIs in the stack is the increased computation and
training times. As such, we chose to use the limited and low
resolution PIs (10×10 pixels) as described in Section 4.3.

4.4.1 Imputation on AV-MNIST

For the AV-MNIST dataset we looked at four different im-
putation pipelines illustrated in Fig. 6. Figures 6a and 6b
show our imputation on the PIs as topological summaries
and Figures 6c and 6d show the pipeline for imputing the
raw data and then generating the PIs from the imputed data.

Our first experiment with the WESAD dataset showed
that imputation on the topological summaries improved the
classification accuracy and imputation on the raw data de-
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Table 4. Classification accuracies for AV-MNIST dataset for list data representations and subsets

Imputation Fig. Data Accuracy
Uncertainty

(Standard Deviation) Imputation Time (Sec)

6a Imputed Image PIs 92.1 0.6 48.3
6b Imputed Audio PIs 92.5 0.5 7.1
6c PIs from Imputed Image Data 82.2 1.5 1289.2
6d PIs from Imputed Audio Data 89.4 0.9 114.7

Audio Data Audio PIs

Image PIs

PIs
Impute

(a) Imputing Image PIs

Image Data Image PIs

Audio PIs

PIs
Impute

(b) Imputing Audio PIs.

Audio Data
Impute

Audio PIs

Image Data Image PIs

PIs

(c) Imputing Image Data.

Image Data
Impute

Image PIs

Audio Data Audio PIs

PIs

(d) Imputing Audio Data.

Figure 6. Imputation methods for the AV-MNIST dataset.

creased it. We again see a similar result here in Table 4
with imputation on the PIs increasing the accuracy by 4.0%
and 4.8% when imputing the image and audio data, respec-
tively. In comparison, when computing the raw data, the
classification accuracy decreased by 5.9% and increase by
just 1.7% for imputation on the raw image and audio data,
respectively.

We also show a similar result to our first experiment with
imputation on the raw data taking significantly longer to
compute on the raw data in comparison to the PI stacks as
topological summaries of the data modalities.

There was also the challenge of making the data sizes
the same for the raw data imputation. To make the time se-
ries equivalent length we chose to use zero padding, which
has negative drawbacks of making the comparison between
time series less accurate due to the data manipulation.

5. Discussion

Our results on classification accuracy for both the WE-
SAD and AV-MNIST datasets show that the fusion of PIs
provides comparable and in some cases better classification
accuracies than other more complex approaches. We be-

lieve these accuracies can be further improved by including
more filtrations on the data. This result means that more ex-
perimentation needs to be performed to find better “views"
of the data using TDA to improve accuracy to the desired
level. This of course has the drawback of longer compute
and training times, but we are able to tune the desired ac-
curacy and training time by using more or less fused PIs as
input into our model.

We believe that the increased performance when imput-
ing on the fused PI tensors in comparison to raw data and
feature vectors is due to the robustness or stability of per-
sistent homology. Specifically, it has been shown that for a
small change in signals there is only a small change in the
resulting persistence diagram [5], which is translated to the
persistence image with an appropriate choice of weighting
function [1]. As such, we expect that the slight differences
between signals does not have a serious effect on the re-
sulting fused PI tensors and the imputation learning on the
topological summaries, which the imputer is learning from
making it more robust to the signal differences.

6. Conclusion

In this work we presented a novel method for fusing
multi-modal dataset using topological feature called Top-
Fusion. TopFusion is applied to two datasets and tested us-
ing complete and incomplete observations. The presented
results showed better performance than both standard ap-
proaches, which requires ad-hoc feature engineering, and
other topological approaches. Additionally we utilized a
new a filtration method for “scanning" image data using
zigzag persistence. In subsequent work we are exploring the
theoretical foundations of this new filtration approach and
formalize its scaling properties for use on high-resolution
imagery.

We have demonstrated that using TopFusion for im-
putation for incomplete data can outperform imputation
on structured feature vectors as well as direct imputation
on the data. We hypothesize that the improved impu-
tation performance is due to the stability of topological
summaries. In future work we plan to experiment with
more datasets to gain a better understanding on the perfor-
mance of TopFusion against other state-of-the-art methods
in multi-modality fusion.
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