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Abstract

The computer vision task of reconstructing 3D images,
i.e., shapes, from their single 2D image slices is extremely
challenging, more so in the regime of limited data. Deep
learning models typically optimize geometric loss functions,
which may lead to poor reconstructions as they ignore the
structural properties of the shape. To tackle this, we pro-
pose a novel topological loss function based on the Euler
Characteristic Transform. This loss can be used as an in-
ductive bias to aid the optimization of any neural network
toward better reconstructions in the regime of limited data.
We show the effectiveness of the proposed loss function by
incorporating it into SHAPR, a state-of-the-art shape re-
construction model, and test it on two benchmark datasets,
viz., Red Blood Cells and Nuclei datasets. We also show a
favourable property, namely injectivity and discuss the sta-
bility of the topological loss function based on the Euler
Characteristic Transform.

1. Introduction

Our brains possess the amazing ability to be able to re-
construct 3D shapes from single 2D images by leveraging
prior knowledge and inductive biases about the shapes and
sizes of objects based on the information captured from
previously observed objects [7]. However, for a computer
this inverse problem is ill-posed and extremely challenging.
This is because for a single 2D image the space of possible
3D reconstructions is very large and often ambiguous.

There have been prior deep learning-based attempts to
solve this challenge, but most of them rely on large datasets
and/or 3D models of the shape [4, 11, 18]. The biomedical
setting in which we consider this problem, unfortunately,
does not provide large labeled datasets and it is too expen-

sive to construct them. The sizes of the datasets available in
the biomedical domain are orders of magnitude smaller than
the ones available in other domains. To this end, we focus
on improving reconstruction performance not by using 3D
models or large datasets but instead by adding additional
inductive biases in the form of a topology-based regular-
ization to the optimization process. Most models typically
optimize geometry-based loss functions that work on a per-
pixel basis, such as the DICE loss. We improve the perfor-
mance of an existing neural network by adding a novel com-
plementary topology-based loss that considers more global
topological features, such as connectivity, tunnels, or voids.
Specifically, we design a novel regularization term based
on the Euler Characteristic Transform [19], that is compu-
tationally efficient, can work with any image size and can be
plugged into any neural network. An overview of how our
loss function can be used can be seen in Fig 2. We demon-
strate the efficacy of the proposed loss function by plugging
it into the SHAPR model and testing it on two bio-medical
datasets used in the prior work [20,21]. In the current paper,
our key contributions are as follows:

• We adapt the Euler Characteristic Transform (ECT),
obtaining a novel topological loss function for 3D
shape reconstruction that is compatible with any neural
network architecture.

• We prove conditions for our proposed ECT-based loss
to be injective as well as discuss stability results of
ECT on binary images.

• We show the effectiveness of the proposed method by
training the SHAPR model [21] with our proposed loss
on two benchmark datasets. We see significant im-
provements in almost all metrics compared to the prior
work on both datasets.

Outline. In Section 2 we go over the literature relevant to
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our work. In Section 3 we then briefly explain the mathe-
matical background required to understand our work. Sub-
sequently, in Section 4 we describe our proposed loss func-
tions in detail as well as how they fit into the overall training
of a neural network. In Section 5 we then prove and discuss
favourable mathematical properties of the ECT. In Section
6 we then demonstrate the efficacy of our model and dis-
cuss the significance of our results. Finally in Section 7 we
summarize our work and list some potential future work.

2. Prior Work
Multiple variants of the problem of 2D to 3D image

reconstruction have been studied by various communities
for different applications like scene understanding, medi-
cal, robot navigation, etc. [7]. The tasks considered differ
in their input type, some variants consider multiple slices as
the input while some consider a single image like in our for-
mulation. Among the models that only take a single image
as an input, most of them require a synthetic 3D model of
the output or very large datasets [4, 11, 18].

The application of computational topology to machine
learning is an emerging field that has shown promise in vari-
ous applications [8]. It has recently been used extensively in
computer vision tasks like segmentation, image generation,
etc. [9, 13, 23]. In the current paper, we improve the per-
formance of image reconstruction models using tools from
topology, namely, the Euler Characteristic Transform [19].

SHAPR [21] is the first machine learning model that con-
siders the problem of 2D to 3D reconstruction in the case
of biomedical images. This model proved to be signifi-
cantly better than standard synthetic models like a cylin-
drical fit and ellipsoid fit. They also showed that features
extracted from the 3D reconstruction helped to improve ac-
curacy in downstream classification tasks on the 2D images.
Recently, a diffusion-based model DISPR [22] has been in-
troduced that outperforms the GAN-based SHAPR model.

Waibel et al. [20] extend the SHAPR model by train-
ing the model on a combined loss function of both the
DICE loss as well as a regularization term defined by the
Wasserstein distance between the persistence diagrams—
topological descriptors—of the predicted shape and the
ground truth. This model outperforms the SHAPR model
and provides much better reconstructions than the vanilla
SHAPR model. However, it has been shown by Oner et
al. [13] that such persistence diagram based loss functions
are not optimal for the following reasons:

• Since the ground truth images are binary images, cal-
culating the persistence diagrams over the filtration of
pixel values degenerates to calculating the Betti num-
bers, which is a topological measure of limited expres-
sivity.

• Persistence diagrams throw away location information

and are generally not injective mappings, thus poten-
tially leading to erroneous matchings, which in turn
may lead to wrong reconstructions.

To overcome these drawbacks, we exploit the injectivity
property and low computational cost of the ECT, developing
a novel ECT-based loss function that is more expressive and
serves as a better optimization term for a neural network.

3. Mathematical Background
In this section, we briefly introduce the mathematical

background required for our work, for a more detailed ex-
planation we refer the reader to Edelsbrunner et al. and
Turner et al. [6, 19].

3.1. Simplicial and Cubical Complex

A simplicial complex is the fundamental building block
of algebraic topology, comprised of simplices. A k-simplex
σ can be understood as the convex hull of k + 1 affinely
independent points. A 0-simplex is a point, a 1-simplex
is an edge, a 2-simplex is a triangle and a 3-simplex is a
tetrahedron. A face τ of a simplex is the convex hull of a
subset of the k+ 1 points. It is often represented as a face
by the notation τ ≼ σ . A simplicial complex K is a finite
collection of simplices satisfying two conditions:

1. σ ∈ K and τ ≼ σ implies that τ ∈ K

2. σ ,σ0 ∈ K implies σ ∩σ0 is either empty or a face of
both.

The dimension of the simplicial complex is the dimen-
sion of the largest simplex in the complex, denoted by
Dim(K). A subcomplex L is a subset of a simplicial com-
plex K. Kd is a particular subcomplex that is defined as a
subcomplex consisting of all simplices of dimension d from
K, that is, Kd = {σ ∈ K | dim(σ) = d}.

A cubical complex is a special variant of a simplicial
complex that is particularly useful in representing grid-like
shapes. It has recently caught traction in applications for
image processing due to the fact that it is better aligned to
the grid-like structure of images [1, 15]. Informally, a cubi-
cal complex is identical to a simplicial complex except that
n-simplices are replaced with n-cubes. For example, the tri-
angles (2-simplices) are replaced by squares (2-cubes), and
tetrahedra (3-simplices) by cubes (3-cubes) and so on. Note
that all definitions in this section hold for both simplicial
and cubical complexes.

Given a d-dimensional binary image, a natural way to
convert it to a cubical complex is by defining the 0-cubes as
the set of voxels. Then an i-dimensional cube is formed by
connecting a set of 2i adjacent voxels whose voxel values
are 1. Note that two d-dimensional voxels are adjacent if
they share a (d − 1)-dimensional face. Thus 1-cubes are

572



(a) (b) (c) (d)

Figure 1. Examples of cubical complex construction from binary images. (b) and (d) are the cubical complexes corresponding to the binary
images (a) and (c), respectively.

the edges corresponding to two adjacent voxels with values
1. Similarly, the 2-cubes are the squares corresponding to
four adjacent voxels with values 1 and so on. We illustrate
this construction by example in Figure 1. Figures 1b and 1d
are the cubical complexes corresponding to Figures 1a, 1c
when converted by the above procedure.

3.2. Sublevel Sets and Filtrations

Consider a simplicial or cubical complex K and a mono-
tonic function f : K→ R. By f being monotonic, we mean
f (σ) ≤ f (τ) whenever σ ≼ τ . For such monotonic func-
tions, the sublevel set K(a) corresponding to a real value a
is defined by

K(a) = f−1(−∞,a],

which is a subcomplex of K. If there are m simplices in K,
as we increase a, we get r + 1 ≤ m+ 1 different subcom-
plexes which can be arranged in an increasing sequence,

/0 = K0 ⊆ K1 . . .⊆ Kr = K

where Ki = K(ai) and a1 < a2 < .. . < ar are the distinct
function values of f at the simplices of the simplicial com-
plex K. This sequence of complexes is called the filtration
of K with respect to f . A common filtration we consider is
the height filtration. Given a height h and a particular di-
rection u⃗, we define the sub-complex K⃗u,h consists of all the
simplices of K whose vertices have height ≤ h along the di-
rection u⃗. We can naturally define a filtration by increasing
the value of h along the direction u⃗.

3.3. Euler Characteristic Curve

Given a d-dimensional simplicial complex K, the Euler
Characteristic Curve of K along a direction u⃗ is a function
EC⃗u,K : R→ Z defined by

h 7→ χ(K⃗u,h), (1)

where χ(K⃗u,h) is the Euler characteristic of the simplicial
complex K⃗u,h, which is defined as

χ(K⃗u,h) =
d

∑
i=0

(−1)iCard Ki
u⃗,h, (2)

where Card(Ki
u⃗,h) denotes the number of i-simplices in the

subcomplex Ki
u⃗,h. By computing the Euler characteristic

alongside a filtration, we obtain the Euler Characteristic
Curve. This construction works for general filtrations and
is not restricted to the height filtration.

3.4. Euler Characteristic Transform

The Euler Characteristic Transform (ECT) [19] of a
d-dimensional simplicial complex K, denoted by ECTK :
Sd−1 −→ ZR, is defined by

v⃗−→ ECv⃗,K , (3)

where the direction v⃗ is chosen from the (d − 1)-
dimensional unit sphere Sd−1. That is, the ECT is the set
of all Euler Characteristic Curves obtained over the height
filtrations along all possible directions. The ECT is the heart
of our method. We use it as a topological descriptor to cap-
ture the important topological features of 3D images to de-
fine our topological loss functions.

Distance between ECTs. The distance between two
ECTs corresponding to two complexes K1 and K2 is defined
by

d(ECTK1 ,ECTK2) =
∫

u⃗∈Sd−1
∥ECu⃗,K1−ECu⃗,K2 ∥

2du, (4)

where ∥.∥ is the l2-norm. We use this distance to compute
the topology based loss function to train our neural network.
In practice, the integration in equation (4) is computed using
the Monte Carlo method, i.e., we compute the average of
the l2-norms between the Euler curves along a finite number
randomly sampled directions from Sd−1.

4. Our Method: Euler Characteristic
Transform-based Loss

In this section, first we describe the overall workflow of
our 3D image reconstruction method and how our loss func-
tion fits into a neural network training procedure (subsec-

573



Figure 2. Workflow of our proposed method. Given a 2D image, a neural network produces a 3D output. The neural network is then trained
on the sum of a geometric loss function like DICE loss or BCE and our proposed topological loss function, the distance between the ECTs
of the images. Neural network image generated from [12].

tion 4.1). Subsequently, we give the detailed algorithm to
compute the proposed loss functions (subsections 4.2, 4.3).

4.1. Overview

In our method, we develop a loss function based on the
ECT to train a neural network for 3D image reconstruction
from a single 2D slice. Figure 2 shows the workflow of our
model, which is explained in the following steps.

1. Given a 2D slice, it is first passed through a neural net-
work that gives an output 3D image I, where for each
voxel x of I, the model assigns the likelihood of x being
part of the true 3D image.

2. Given the 3D prediction I and the 3D ground truth Y ,
we use the DICE loss combined with a scaled ECT-
based loss function, denoted LT L, to optimize the neu-
ral network. Mathematically, this can be represented
as:

L(I,Y ) = LDICE(I,Y )+λ LT L(I,Y ), (5)

where λ is the weight parameter for the topological
loss term.

This is a similar setup as described by Waibel et al. [20],
however, our method differs in the details of the topology-
based loss LT L(I,Y ) and as a result the efficacy of it as well.
Next, we discuss our algorithm to train a neural network
by computing the topological loss terms based on ECT, in
detail.

4.2. ECT Based Training Algorithm

Given a dataset of 2D slices and corresponding 3D im-
ages, we first train the SHAPR model based on the proposed
ECT-based loss function.

Algorithm 1 TRAINSHAPRMODELBASEDONECT
Input: X - 2D image slice,

Y - Corresponding 3D ground-truth image,
t - Number of thresholds,
Θ0 - Initial model parameters

Output: Trained SHAPR Model
1: Θ←−Θ0 % Initialize model parameters

2: for epoch = 1,2, . . . ,N do
3: I←− SHAPR(X , Θ)
4: LTopo←− 0 % Initialize the Topology Loss

5: % Unfold and Sort the Distinct Voxel Values of I and
Y in Array R

6: R←−SortDistinct (I∪Y )
7: m←− length(R) %Number of Voxels in I

8: % Compute ECT-based Topological Loss
9: for thresh = R([m

t ]), R([ 2m
t ]), . . . , R([m]) do

10: A←−BinaryImg(I, thresh)
11: B←−BinaryImg(Y , thresh)
12: Sample l directions {⃗u1, u⃗2, . . . , u⃗l} from S2

13: ECTA←−ComputeECT(A, {⃗u1, u⃗2, . . . , u⃗l})
14: ECTB←− ComputeECT(B, {⃗u1, u⃗2, . . . , u⃗l})
15: LTopo += (ECTA−ECTB)

2

16: end for

17: % Compute Total Loss
18: L = LDICE +λLTopo/n

19: % Perform Gradient Update Step to Update the
Model Parameters Θ with Learning Rate α

20: Θ←−Θ−α ∇ΘL
21: end for
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For ease of understanding, in Algorithm 1, we demonstrate
the training of the SHAPR model on a single training sam-
ple, i.e., using a 2D slice image X and its ground-truth 3D
image Y . In every epoch (or training step), the image X
is first passed to the SHAPR model and an output 3D im-
age I is produced by the model (Line 3). Then at each
step, we compute the ECT-based loss function using Monte
Carlo sampling. For this, we sort the distinct voxel values
of I and Y in a one-dimensional array R and find t equally
spaced thresholds R([m

t ]), R([ 2m
t ]), . . . , R([m]) where m is

the total number of voxels in I (Lines 5-9). For each thresh-
old τ , we compute the binary images A = I[x ≥ τ | x ∈ I]
and B = I[x ≥ τ | x ∈ Y ] corresponding to I and Y , respec-
tively, where I is the indicator function (Lines 10-11). Next,
for each of these binary images A and B, we approximate
the Euler Characteristic Transforms ECTA and ECTB as in
Algorithm 2 using l sampled directions from S2 (Lines 12-
14). Finally, the topological loss function is computed using
the average of l2-norms between ECTA and ECTB, for all
thresholds. A scaled version of this topological loss (here,
λ is the scaling factor) is added with the standard DICE loss
to compute the total loss (Line 18). The model parameters
Θ are then updated by optimizing this loss using a gradi-
ent descent method (Line 20). Note that we choose equally
spaced thresholds on the sorted array R to obtain a more
varied set of images as compared to thresholding based on
the range of voxel values.

4.3. ECT Computation

In this sub-section, we explain the details of approximat-
ing the ECT for a binary image A using l sampled directions
{⃗u1, u⃗2, . . . , u⃗l} from S2 whose pseudocode is given in Al-
gorithm 2. Broadly, we first construct a cubical complex
C from the binary image A using the method explained in
Section 3.1 (Line 1, Algorithm 2). Then for each sampled
direction u⃗i we compute the Euler Curve of C along the di-
rection u⃗i (Lines 4-6). The obtained set of l Euler Curves is
returned as our Euler Characteristic Transform (Line 7).

Algorithm 2 COMPUTEECT
Input: A - 3D Binary Image, l sampled directions
{⃗u1, u⃗2, . . . , u⃗l} from the unit sphere S2

Output: ECTA

1: C←− CubicalComplex(A)
2: ECTA←− [] % Initialize as an empty array

3: % Compute Euler curves along the l directions
4: for i = 1,2, . . . , l do
5: ECTA.add(EulerCurve(C, u⃗i))
6: end for

7: return ECTA

The Euler Curve computation of a cubical complex C

along a sampled direction u⃗ is described in Algorithm 3.
We compute the minimum hmin and maximum hmax of all
heights of the vertices v0, v1, . . . ,vn in the cubical complex
C along the direction u⃗ (Lines 1-2). For a chosen parame-
ter M, we sample the height field at M + 1 equally spaced
heights of step-size dh (Line 5). For each sampled height,
we calculate the Euler Characteristic κ of the sub-complex
C⃗u,h (Lines 7-10). We return the list of obtained values as
our discrete representation of the Euler curve. Note that the
smaller the step size dh, the closer our representation is to
the continuous Euler Curve.

Algorithm 3 EULERCURVE

Input: C - Cubical complex , u⃗ - Direction vector
Output: ECu,C

1: hmin←min(⃗u ·v0, . . . , u⃗ ·vn)
2: hmax←max(⃗u ·v0, . . . , u⃗ ·vn)
3: ECu,C = [] %Initialize as an empty array
4: h← hmin
5: dh = (hmax−hmin)/M % Step length with parameter

M

6: % Compute Euler curve of M+1 steps
7: while h≤ hmax do
8: ECu,C .add(κ(C⃗u,h))
9: h += dh

10: end while

11: return ECu,C

5. Theoretical Properties
In this section, we analyze and prove some important

properties of the transform and the proposed loss function
to evaluate our method.

5.1. Injectivity Property

Turner et al. [19] have shown that ECT over the space of
simplicial complexes in R3 is injective. Betthauser [2] has
generalized this result for o-minimal sets. In our method,
for computing the ECT-based loss function between two 3D
images, we obtain a sequence of binary images correspond-
ing to a sequence of threshold values for each 3D image
and compute the ECT for each of the binary images (Algo-
rithm 1, Line 9-13). In the following lemma, we provide a
criterion to choose the number of thresholds so that such se-
quences of binary images are different for two different 3D
images. Subsequently, sequences of ECTs for two different
3D images will also be different. Let, F (I, t) denote the se-
quence of t binary images from the 3D image I, for t equally
spaced threshold values. Then we have the following result.

Lemma 5.1. Given two 3D images I1 and I2, F (I1, t) =
F (I2, t) iff I1 = I2, provided t is greater than or equal to the
number of distinct voxel values in I1∪ I2.

575



Proof. We prove if I1 ̸= I2 then F (I1, t) ̸= F (I2, t). Since
t ≥ distinct number of voxel values in I1∪ I2, we threshold
on every distinct value in I1∪ I2. As I1 ̸= I2, at some coordi-
nate x, I1(x) ̸= I2(x). Without loss of generality, let I1(x)<
I2(x). Now when we threshold at value I2(x), I1(x) becomes
0, while I2(x) is 1. This implies that F (I1, t) ̸= F (I2, t), as
at the image thresholded at I2(x), we obtain different im-
ages. ■

We note, the distance function between two ECTs, in
equation (4), satisfies the metric property [10, 19]. We use
this in the subsequent proofs.

5.2. A Discussion on Stability of ECT-Based Loss

A commonly studied property in computational topol-
ogy is the stability of a transform, that is the effect of per-
turbations on the input to the transformed output [5, 17].
We discuss a similar property for the case of ECT on bi-
nary images. We bound the possible change in the ECT
of a binary image by a constant proportional to the size of
the image and the size of the change in the input. We first
prove a necessary lemma for our proof in Lemma 5.2. We
then show that the distance between two EC’s is bounded
in Theorems 5.3 and 5.4. Subsequently we prove that the
ECT is bounded in Corrollary 1. We then discuss the effect
of thresholding on stability.

Lemma 5.2. A vertex in a d-dimensional grid is a part of
at most 3d cubes of any dimension.

Proof. Consider a vertex v0 = (x1,x2, . . . ,xd) in the interior
of the grid. Every k-cube, that has v0 as a vertex, can be
uniquely determined by k adjacent vertices of v0 along dif-
ferent dimensions in the grid. Along the i-th dimension v0
has two adjacent vertices (x1,x2, . . . ,xi ± 1, . . . ,xd), along
positive and negative directions.

Now to count the number of k-cubes, that v0 is a part of,
we simply count the number of ways we can choose k possi-
ble directions from the total d directions, which is

(d
k

)
. Then

for each of these chosen directions, we can either choose the
adjacent vertices along the positive or negative direction, i.e
in 2k ways. So the total number of k-cubes, that v0 is a part
of, is 2k

(d
k

)
. Summing up over all dimensions we get:

d

∑
k=0

(
d
k

)
2k = 3d .

Note that we performed the calculation for an interior
vertex. For the vertices on the boundary of the grid, each
will be a part of fewer cubes. So we can bound the number
of cubes, that a single vertex is a part of, by 3d . ■

Theorem 5.3. Let I and I∗ be two d-dimensional binary
images with vertex set V s.t. they differ only at one voxel.

Then along an arbitrary direction u⃗,

D(ECu⃗,I ,ECu⃗,I∗)≤ 3dn/
√

d

where n = |V | and D(ECu⃗,I ,ECu⃗,I∗) is the l2-norm between
ECu⃗,I and ECu⃗,I∗ , i.e.

D(ECu⃗,I ,ECu⃗,I∗) =

√∫ hmax

hmin

(χ(C⃗u,h)−χ(C∗u⃗,h))
2dh.

Proof. Let C be the cubical complex with vertices
v1, v2, . . . ,vn associated with image I, using the construc-
tion described in Section 3.1. Let h1 ≤ h2 ≤ . . .≤ hn be the
ordered list of heights of the vertices along u⃗. Then

D(ECu⃗,I ,ECu⃗,I∗) =

√
n−1

∑
i=1

∫ hi+1

hi

(χ(C⃗u,h)−χ(C∗u⃗,h))
2dh.

Since EC is a piecewise constant function that changes only
at the heights of vertices, we can rewrite it as,

D(ECu⃗,I ,ECu⃗,I∗) =

√
n−1

∑
i=1

(hi+1−hi)(χ(C⃗u,hi)−χ(C∗u⃗,hi
))2.

Let, e = max{h2−h1, . . . ,hn−hn−1}. Then

D(ECu⃗,I ,ECu⃗,I∗)≤
√

e

√
n−1

∑
i=1

(χ(C⃗u,hi)−χ(C∗u⃗,hi
))2.

Since for x ∈ Rn, ∥x∥2 ≤ ∥x∥1, we have

D(ECu⃗,I ,ECu⃗,I∗)≤
√

e
n−1

∑
i=1
|χ(C⃗u,hi)−χ(C∗u⃗,hi

)|

=
√

e
n−1

∑
i=1

∣∣∣∣∣ d

∑
j=0

(−1) j(Card(C j
u,hi

)−Card(C∗ j
u,hi

))

∣∣∣∣∣
≤
√

e
n−1

∑
i=1

d

∑
j=0

∣∣∣(−1) j(Card(C j
u,hi

)−Card(C∗ j
u,hi

))
∣∣∣

Now for any sub-complex of C, the only cubes that can
change are the ones that have v0 as a constituent vertex.
So, using Lemma 5.2, we can bound the inner summation
by 3d . Thus we have

D(ECu⃗,I ,ECu⃗,I∗)≤
√

e3dn.

Next, we provide a bound for e to complete our proof.
Every vertex v0 = (x1, . . . ,xd) has at least d adjacent ver-
tices, say {vi : i= 1, . . . ,d}where vi =(x1, . . . ,xi±1, . . .xd).
We seek to find an upper bound of the minimum difference
between the heights of the vertex v0 and any of its adjacent
vertices over all possible directions u⃗ = (u1, . . . ,ud)∈ Sd−1.
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This can be obtained by solving the following optimization
problem:

max
u⃗∈Sd−1

min
i∈{1,2,...,d}

(|vi · u⃗−v0 · u⃗|) = max
u⃗∈Sd−1

min
i∈{1,2,...,d}

|ui|

with ∥⃗u∥ = 1. The direction vector u⃗ that maximises
this function is the vector with all equal components, i.e.,
(1/
√

d, . . . ,1/
√

d). Thus, we obtain an upper bound of e as
1/
√

d. ■

Theorem 5.4. Let I and I∗ be two d-dimensional binary
images with vertex set V which differ at k voxels v1, . . . ,vk.
Then along an arbitrary direction u⃗,

D(ECu⃗,I ,ECu⃗,I∗)≤ k3dn/
√

d

where n = |V |.

Proof. From I, we construct a sequence of k images
I0, I1, . . . , Ik, defined as follows:

Ii(v) =
{

I∗(v), v = vi
Ii−1(v), otherwise

for i = 1,2, . . . ,k and I0 = I. Observe that Ik = I∗ and that
Ii and Ii+1 differ by only one voxel for all i from 0 to k−
1. Using the triangle inequality of a metric repeatedly and
using Theorem 5.3,

D(ECu⃗,I ,ECu⃗,I∗)≤
k−1

∑
i=0

D(ECu⃗,Ii ,ECu⃗,Ii+1)

≤
k−1

∑
i=0

3dn/
√

d = k3dn/
√

d.

■

Corollary 1. Let I and I∗ be two d-dimensional binary im-
ages with vertex set V s.t. they differ at k voxels v1, . . . ,vk.
Then,

D(ECTI ,ECTI∗)≤ k3dn/
√

d×Surface area of Sd−1

where n = |V |.

Proof. From theorem 5.4), the distance between two ECT s,
in equation (4), can be bounded as

D(ECTI ,ECTI∗)≤ k3dn/
√

d×
∫

u⃗∈Sd−1
1du

■

We note, in our proposed algorithm, we perform a
thresholding operation on the real-valued image to convert
it into a set of binary images. On performing this opera-
tion, our transformation ceases to be continuous. As a re-
sult, obtaining a similar upper bound on our ECT-based loss
function is not possible.

6. Experimental Results
We test the efficacy of our topological loss function by

adding it to the SHAPR model and testing it on two biomed-
ical datasets which have been used in the prior work [20,21].

1. Red Blood Cells(RBC): This is a dataset of 825 3D im-
ages obtained from a confocal microscope [16]. These
cells are categorized into 9 designated categories:
spherocytes, stomatocytes, discocytes, echinocytes,
keratocytes, knizocytes, acanthocytes, cell clusters,
and multilobates. The dimensionality of each image
is 64×64×64.

2. Nuclei: This is a dataset of 887 3D images of nuclei
of human-induced pluripotent stem cells. The dimen-
sionality of each image is 64×64×64.

These datasets are publicly available.1 Due to the limited
dataset size, we follow the evaluation procedure of Waibel
et al. [20]. That is we perform 5-fold cross-validation parti-
tioning the dataset into five folds with a train/validation/test
split of 60%/20%/20%. We ensure that each image of a
dataset appears in the test split exactly once. We compare
three different approaches to determine the improvements
of our proposed loss. Namely, the baseline SHAPR [21],
SHAPR with the Wasserstein-based loss [20], and finally
SHAPR with our ECT-based loss. For the baseline SHAPR
and the Wasserstein loss based implementation, we use the
code made available by Waibel et al. [20].2

We follow the same training procedure as in Waibel et
al. [20], that is, we train all the variants of SHAPR for a
maximum of 100 epochs, using early stopping with a pa-
tience parameter of 15 epochs. We also perform data aug-
mentation before training by performing random horizon-
tal or vertical flipping as well as 90◦ rotations with a 33%
probability for an augmentation to be applied on a sample.
We track our experiments using WANDB [3]. In the test-
ing phase, we apply Otsu’s thresholding [14] to convert our
image into a binary image. This binary image is then com-
pared with the ground truth to calculate three metrics from
the prior works, namely, IoU error, relative Volume error
and relative surface error. We drop the roughness error from
the prior works [20, 21] as we believe it does not serve as a
useful metric to measure the accuracy of the reconstruction.
It is defined as the difference between the predicted image
and a 3D smoothened Gaussian version of the image. As
seen in Figure 3, even the ground truth is rough in nature
and will have a large roughness error.

We train the baseline and Wasserstein loss based model
using the hyperparameters reported in Waibel et al. [20].
For our ECT-based loss model, we use a scaling parameter
λ = 0.01. The number of thresholds we consider per pair of

1https://hmgubox2.helmholtz-muenchen.de/index.php/s/YAds7dA2TcxSDtr
2https://github.com/aidos-lab/SHAPR torch
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IoU Error (↓)

Dataset RBC Nuclei

Baseline 0.49±0.09 0.64 ± 0.10
Wasserstein 0.49±0.10 0.62 ± 0.10
ECT 0.48 ± 0.12 0.66 ± 0.11

(a)

Volume Error (↓)

Dataset RBC Nuclei

Baseline 0.50±0.35 0.61 ± 0.57
Wasserstein 0.45±0.35 0.66 ± 0.58
ECT 0.40 ± 0.32 0.53 ± 0.51

(b)

Surface Error (↓)

Dataset RBC Nuclei

Baseline 0.20 ± 0.14 0.38 ± 0.31
Wasserstein 0.22 ± 0.16 0.38 ± 0.31
ECT 0.19 ± 0.15 0.34 ± 0.29

(c)

Table 1. Performance of different variants of the SHAPR model on the Red blood cells and Nuclei dataset. Represented as mean± standard
deviation, with the best performing algorithm highlighted in bold.

images is 40 (n in Algorithm 1). The number of directions
we consider in evaluating the integral of the distance func-
tion is 100 (l in Algorithm 2). Finally, the parameter M or
number of steps (Algorithm 3) we take as 30.

We can see the results of our experiments in Table 1. We
observe that on most metrics over both the datasets the ECT-
based loss performs the best. We see the most significant
improvements in the Volume Error where the ECT-based
loss outperforms the previous best by 11.2% on the RBC
dataset and 19.6% on the Nuclei dataset. We also see sig-
nificant improvements in the Surface Error, the ECT-based
loss outperforms the previous best by 14.5% on the RBC
dataset and 10.8% on the Nuclei dataset.

We can visualize the outputs of the various methods on
the Nuclei and RBC dataset in Figures 3 and 4. It is inter-
esting to observe that adding a topology based loss clearly
improves the quality of the reconstruction, as neither of the
topology based methods produce artifacts while the baseline
does (Figure 3). This is expected since the topology based
losses optimize for topological invariants to obtain topolog-
ically correct reconstructions. We also observe in Figure 4
that the topology based methods are trying to capture the
valley in the ground truth, while the baseline does not. Note
that in the current reconstruction problem we cannot expect
perfect reconstructions since the problem is ill-posed.

7. Conclusion
In this paper, we present a novel ECT-based topological

loss function that can be used to aid the training of neu-
ral networks for the challenging task of 3D image recon-
struction from a single image. We not only show empiri-
cal improvement but also discuss some important theoret-
ical properties of our loss and ECT in general. Our ECT-
based loss can be used to describe the topological distance
between any two images. Our method could thus poten-
tially be employed to aid neural networks in any vision task,
including image segmentation or 3D image reconstruction
from multiple images. Another natural extension of our
work would be to consider the persistent homology trans-
form (PHT) instead of the ECT. While both are injective,
the persistence diagram is more informative than the Euler
Curve at the cost of additional computation. It would be
interesting to explore whether this provides any benefit.

(a) Ground Truth (b) SHAPR Baseline

(c) Wasserstein (d) ECT

Figure 3. Qualitative results on the Nuclei dataset. The result
using (b) SHAPR has topological artifacts, whereas, the results
using topology-based loss functions (c) Wasserstein and (d) ECT
do not have any topological artifacts.

(a) Ground Truth (b) SHAPR Baseline

(c) Wasserstein (d) ECT

Figure 4. Qualitative results on the RBC dataset. The curvature
of the valley in the ground truth is approximately captured by
the topology-based loss functions (c) Wasserstein and (d) ECT,
whereas, (b) the baseline is unable to capture it.
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