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Abstract

Explanations for black-box models help us to understand
model decisions as well as provide information on model
biases and inconsistencies. Most of the current post-hoc
explainability techniques provide a single level of explana-
tion, often in terms of feature importance scores or feature
attention maps in the input space. The explanations pro-
vided by these methods are also sensitive to perturbations
in the input space. Our focus is on explaining deep dis-
criminative models for images at multiple levels of abstrac-
tion, from fine-grained to fully abstract explanations. We
use the natural properties of hyperbolic geometry to more
efficiently model a hierarchical relationship of symbolic fea-
tures with decreased distortion to generate robust hierarchi-
cal explanations. Specifically, we distill the underpinning
knowledge in an image classifier by quantising the contin-
uous latent space to form hyperbolic symbols and learn the
relations between these symbols in a hierarchical manner
to induce a knowledge tree. We traverse the tree to extract
hierarchical explanations in terms of chains of symbols
and their corresponding visual semantics. Code is avail-
able at https://github.com/AinkaranSanthi/
HyperbolicReasoning

1. Introduction
Explainable AI (XAI) aims to improve the transparency

and trustworthiness of models [9, 20]; XAI can help with
identifying biases, which is important for the safe and
fair use of prediction models [18]. XAI approaches can
be broadly categorized into ante-hoc and post-hoc meth-
ods [22]. Ante-hoc explainability focuses on developing
inherently transparent models [21, 35]. Post-hoc explana-
tions are the most commonly explored approaches, includ-
ing explanations via feature-attribution [24,30,34], saliency

*Equal contribution

maps [5, 32, 33] counterfactuals [13] or concept extraction
[11, 12, 19]. Feature attribution methods [24, 30] focus on
assigning importance weighting to features in input space,
indicating their contribution towards the classifier’s deci-
sion. Saliency-based methods [33] generate attention maps
in input space indicating the image regions responsible for
deriving the classifier’s decision. These methods by design
provide ‘single level’ explanations as they do not consider
any form of reasoning via feature interaction as perceived
by humans [2, 3]. Concept-based explanations [11, 12, 19]
go beyond feature-attribution and saliency-based methods
by constructing higher-level concepts indicating their in-
fluence on the classifier’s decision. Hierarchical concept-
based reasoning is the most commonly posited learning
principle in systems neuroscience [3, 26, 40, 41]. Inspired
by this form of reasoning, we provide the first work to de-
velop hierarchical symbolic explanations for deep discrimi-
native models trained on imaging data. We propose to distil
the knowledge in an image classifier into a knowledge tree
where nodes represents symbols. One can then transverse
the tree to derive hierarchical symbolic explanations in the
form of a chain of increasingly abstract symbols leading to
the class symbol which we denote as a chain rule. In or-
der to efficiently embed the symbols in the knowledge tree
without distortion and overlap, we propose to learn symbols
as discrete hyperbolic representations.

Our main contributions in this work include:

• Symbol formation: A method to discretise the con-
tinuous latent space of a given classifier model into a
hierarchy of discrete vectors denoted as symbols.

• Hierarchical Symbolic Relationships: An effective
way of learning hierarchical symbol relations using bi-
nary weight layers to form a knowledge tree. This is
used to extract a set of robust local image-level and
global class-level chain rules as explanations for im-
age classification. .

• Hyperbolic Symbols: This is the first work to con-
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Figure 1. Overview of the proposed framework, in which the feature extractor and classifier describe the trained blocks of the given
model. The Euclidean codebook forms a discrete representation of the continuous latent space from the feature extractor, followed by
hyperbolic codebooks and reasoning blocks to obtain a knowledge tree, which is later used in extracting explanations. The decoder block
is independently trained to obtain visual semantics for the extracted hierarchical symbolic rules.

sider the natural curvature in which to embed symbols
to more efficiently model their interactions. We exploit
the natural structure of hyperbolic geometry for mod-
elling hierarchical relationships between symbols.

To facilitate future work, all code will be released upon pub-
lication.

2. Related Work

Symbolic Reasoning: Concept learning for image clas-
sification has been used as an ante-hoc method towards
building more interpretable image classifiers. For exam-
ple, [1] develops an encoder to learn a set of discrete con-
cepts and a parallel neural network to learn the relevance
of the concepts to making a classification decision. Instead,
we want to learn links between concepts. This is related
to a popular wave of AI termed neuro-symbolic learning
[15, 25, 39, 43], where a data-driven deep learning method
is used to learn sub-symbolic representations to denote con-
cepts while exploiting symbolic methods to capture reason-
ing. Inductive logic programming (ILP) is a framework of-
ten used for symbolic reasoning with learnt relational the-
ories, including using heuristics and physical properties to
understand images [27]. The solution we propose is closely
related to a family of methods called knowledge graph em-
beddings [36, 37, 44] which models relations between dis-
crete entities or symbols for knowledge graph reasoning.
NeuralLP [42] can learn a relational path from the subject
to the object which, in ILP terms, can be formulated as a

chain-like first-order rule. This approach is devised for an-
swering knowledge base queries but will form the basis in
our work for deriving chain rules from our generated knowl-
edge trees for the purpose of explanation.

Hyperbolic Embeddings: A natural objective for em-
bedding symbolic data in graphs is for the distances be-
tween symbols, defined by the space which they reside in,
to correlate with their semantic similarity. Yet, to model
increasingly complex relations between symbols, one is
bounded by the dimensionality of Euclidean embeddings
[28]. This is because the number of nodes generally grows
exponentially as the graph distance from the centre node in-
creases, while Euclidean space grows polynomially. This
leads to distorted embeddings and information loss [31].

Hyperbolic geometry is a form of non-Euclidean geome-
try with a constant negative Gaussian curvature whose space
grows exponentially. One can even informally describe hy-
perbolic space as the continuous version of trees, making
it naturally equipped to deal with tree-like structures. This
property has therefore been exploited in the literature for
embedding hierarchical data in hyperbolic space without
distortion [29] and provides the reasoning for embedding
our knowledge tree in hyperbolic space.

Hyperbolic neural networks were proposed to perform
all the operations of a neural network in hyperbolic space
[10]. This was exploited in the development of hyper-
bolic graph convolutional neural networks (HGCNN) [4,23]
which forms the structure in our method for reasoning in
hyperbolic space.
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3. Preliminaries
3.1. Hyperbolic Geometry

Here we introduce some important geometric concepts
underpinning our method. A d dimensional ManifoldM is
a topological space embedded in Rd+1 that can be locally
approximated in Euclidean space Rd, that is each point on
the manifold consists of a neighbourhood homeomorphic to
an open subset in Rn. The Tangent Space TxM of a point x
on a differentiable manifold is a vector space that comprises
of tangent vectors to all feasible paths on the manifold that
pass through x. The Riemannian Metric defines the set of
inner products gx : TxM×TxM→ R of every point x on
M. Parallel transport Px→y describes the translation of a
vector field V along a differentiable manifold to a new vec-
tor field V ′ such that the covariant derivative always stays
at 0.

We now introduce the Hyperboloid and Poincare mod-
els of hyperbolic space (H) with radius K and equipped
with constant negative curvature −1/K, (K > 0). In our
work, we work only with manifolds of d dimensions with
unit radius and hence a fixed negative curvature of -1 which
we formally denote as Hd,1 and Bd,1 for the hyperboloid
and Poincare models respectively. We focus on the two
sheet unit hyperboloid model equipped with a Riemmanian
metric; gH,1

x given by the Minkowski metric tensor ⟨., .⟩S
whereby ⟨x, x⟩S = −1 and x ∈ Rd+1 [4]. We can use the
metric tensor to calculate the geodesic distance defined as
the shortest distance between u and v on the hyperboloid;
(u, v) ∈ Hd,1. Geodesic distance in the hyperboloid is cal-
culated as follows: dH,1(u, v) = arccosh(gH,1

x ⟨u, v⟩) [4].
The open Poincare unit ball is formally defined as:

Bd,1 = {x ∈ Rd|∥x∥ < 1}. Bd,1 is determined by the

following Riemmanian metric tensor: gB,1x =
(

2
1−∥x∥2

)2

.
Therefore, the derived geodesic distance equation for two
points, (u, v) ∈ Bd,1, is given by:

dB,1(u, v)=1 + 2
( ∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
(1)

We define a mapping between the hyperboloid and Eu-
clidean space (tangential plane) which is useful in our work.
Given two points y ∈ TxHd,1 and v ∈ Hd,1, exponen-
tial and logarithmic mappings are denoted as expH,1

x (y):
TxHd,1 → Hd,1 and logH,1

x (v): Hd,1 → TxHd,1 respec-
tively. In this work, we perform mappings with the tangen-
tial space at the origin o. In this case, the mapping between
y ∈ ToHd,1 and v ∈ Hd,1 is calculated as follows:

expH,1
o (y)=

(
cosh(∥y1:d∥2), sinh(∥y1:d∥2)

y1:d
∥y1:d∥2

)
logH,1

o (v)=

(
0, arccosh(v0)

v1:d
∥v1:d∥2

)
(2)

In the case of the Poincare model, we must also define
the equations for mapping between y ∈ ToBd,1 and v ∈
Bd,1 as:

expB,1o (y) =

(
tanh(∥y∥2)

y

∥y∥2

)
logB,1o (v) =

(
0, arctanh(∥v∥2)

v

∥v∥2

) (3)

We apply projections as described in [4] to constrain
points to the manifolds during optimisation.

A useful diffeomorphic mapping ψ between a point on
the hyperboloid u ∈ Hd,1 and the Poincare unit ball v ∈
Bd,1 is given by:

ψHd,1→Bd,1(u0 . . . ud) =
u1 . . . ud
u0 + 1

ψBd,1→Hd,1(v1d) =
(1 + ||v||22, 2v1 . . . 2vd)

1− ||v||22

(4)

In our work, we apply feature transformations in hyper-
bolic space, using hyperbolic linear layers [4, 10]. The op-
erations of Mobius addition ⊕ and Mobius scalar multipli-
cation ⊗ in hyperbolic space can be shown to be analogous
to the Euclidean vector space operations of scalar multipli-
cation and addition. [10] proves that Mobius scalar multi-
plication is equivalent to applying a logarithmic mapping of
a point v ∈ Hd,1 to the tangential space at o and multiply-
ing by the scalar r before mapping the scaled point back to
hyperbolic space as shown in Eq. (5) below:

r ⊗1 v = expH,1
o (r logH,1

o (v)) (5)

In a hyperbolic linear layer, we also add a bias term
b. [10] derives a simple equivalent solution to Mobius addi-
tion (v⊕ b) shown in Eq. (6) below. One firstly defines b on
ToH1,d which is parallel transported to the tangential space
TvH1,d before mapping back to hyperbolic space. (Please
refer to the supplementary material for the equations of par-
allel transport and the general form for expKx (y), logKx (v).)

v ⊕1 b = expH,1
v (P 1

o→v(b)) (6)

We let W ∈ Rd′×d and B ∈ Rd to define the parameters
in a hyperbolic linear feature transformation h(x) for both
Hd,1 and Bd,1 by combining Eq. (5) and Eq. (6) to form:

h(x) = (W ⊗1 x)⊕1 B (7)

3.2. Knowledge Tree

In this work, we only consider classifiers of the form
C = f ◦ g, where a feature extractor f : X → E maps
input images to the latent space E and the feature classifier
g : E → Y maps the latent space to class labels. We distill
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Figure 2. Example knowledge tree. Here, symbols ζ01 and ζ02 are
being abstracted to form ζ11 which forms class0. Symbols ζ02 and
ζ03 are being abstracted to form ζ12 which forms class1.

the high abstraction knowledge of the continuous feature
classifier (g) into a hierarchy of related symbols to form
a knowledge tree whereby a symbol is a discrete vector.
We assume sufficient training data is available to develop
a closed-world knowledge tree.

We denote ζij to be the jth symbol in the ith level of the
knowledge tree. The ith level in the tree is a dictionary of
hyperbolic symbols represented as a hyperbolic codebook
ζi ∈ HMi×d′

; these levels provide different levels of ab-
straction as shown in Fig. 1. The total number of codebooks
n and embedding dimensionalities d are hyper-parameters
that are selected based on the use case. M0,M1, . . . ,Mn

are hyper-parameters corresponding to the total number of
symbols in codebooks ζ0, ζ1 . . . , ζn respectively. n should
be greater than 2 to develop a hierarchy and the greater
n, the more levels of abstraction and the ’deeper’ the ex-
planations. However, we do not want n to be inappropri-
ately large to prevent the exponential increase in chain rules
and reduce interpretability. We strive for an Occam’s Ra-
zor approach in terms of the numbers of symbols to gener-
ate explanations and carry out ablations to find the smallest
number of symbols, Mn required in each codebook before
knowledge distillation accuracy from a pre-trained classifier
diminishes.

Formally, a knowledge tree is developed by learning the
function K which collapses the Euclidean continuous la-
tent space E into ideally ⌊log2N + 1⌋ symbols in ζn as
this represents the minimum number of positive symbols
to encode N classes. We can decompose K such that
K = R ◦ VQ, where VQ denotes discretisation (VQ) of
E using vector quantisation [38]. R expresses the hyper-
bolic symbol abstraction module to produce increasingly
abstract hyperbolic symbols. R can be decomposed into
Rn ◦ Rn−1 ◦ . . . ◦ R1 with the output of each Rl produc-
ing hyperbolic symbols of different level of abstraction in
the form of ζi (see again Fig. 1). We train K by sampling
z from E and sequentially mapping and discretising z to in-
creasing levels of abstraction in the knowledge tree to pro-
duce ziq with the final level of abstraction used to classify
z.

As a simple illustration, in Fig. 2, we have two levels
in the knowledge tree corresponding to codebooks ζ0 and

ζ1 each with 3 and 2 symbols, which are getting abstracted
to form Class0 and Class1. For example, it can be seen
that symbols ζ02and ζ03 are getting merged to form an ab-
stract concept ζ12 which is further getting merged with ζ13
to form higher level abstraction of concept Class1. This
forms a class-level induced tree which indicates a subtree
corresponding to a specific class.

3.3. Symbolic Relations

We assume the task of single label image classification
only requires reasoning in a hierarchical manner. Therefore,
in our generated knowledge tree, paths which link symbols
at the bottom of the tree to the class label at the top of the
tree, represent chain rules which implies a class is true for a
given image. Specifically, the first level of the tree indicates
whether a symbol exists (ex in short) in an image, x. There-
after, the symbols are being merged to form a more abstract
symbol in the next level and therefore an arrow/relation be-
tween symbol ζn−1

i and ζn−2
i indicates that ζn−2

i is part
of (pf in short) symbols ζn−1

i ; pf(ζn−1
i , ζn−2

i ). For ex-
ample, a cat’s ear is part of the cat’s face. pf(y, ζni ) indi-
cates symbol ζni is part of class y. We formally aim to learn
the relations (ex, pf ) in the form of the chain rule shown
in Eq. (8) which implies that image x belongs to class y
if pf(y, ζni ), pf(ζ

n−1
i , ζn−2

i ) . . . pf(ζ1i , ζ
0
i ), ex(x, ζ

0
i ) are

all true. The learnt set of chain rules are used to construct a
knowledge tree as shown in Fig. 2. This is achieved in our
works using a binary neural network [14].

class(y, x)←pf(y, ζni ) ∧ pf(ζn−1
i , ζn−2

i ) ∧ . . .
pf(ζ1i , ζ

0
i ) ∧ ex(x, ζ0i )

(8)

4. Methods
4.1. Symbol formation

The first step in our framework, symbol formation, is
performed by learning discrete symbols in the form of d′

dimensional vectors using vector quantisation (VQ) to form
a fixed sized Euclidean codebook C ∈ RM0×d′

(Fig. 1).
We do not quantise in hyperbolic space as we found this
significantly less stable.

Given (ẑ, z) ∈ RK×d′
and k ∈ K, we define a determin-

istic process which maps each embedding vector zk ∈ z
to the nearest Euclidean codebook vector to form ẑk ∈ ẑ
shown below:

ẑk = argmin
j
∥zk − Cj∥2,∀ k ∈ K (9)

Eq. (9) defines a sampling process which is non-
differentiable but in order to update/learn the symbols
which form C based on this sampling method, we apply
straight through gradient approximation. This then allows
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our discrete surrogate model to be trained end to end with
the following Quantisation loss [38]: Lquant = ∥sg(z) −
ẑ∥2 + β∥z − sg(ẑ)∥2. We apply stop gradients (sg) to con-
strain updates to the appropriate operands [38]. This pro-
cess of sampling the Euclidean codebook is equivalent to
learning the exists predicate in the first step of the chain
rule. Next, we reduce the dimensionality using a linear pro-
jection layer to the desired embedding dimensionality d in
the hyperbolic codebooks ζi before applying an exponen-
tial mapping with Eq. (3) to Poincare space. This leads to
the first hyperbolic codebook (ζ0 ∈ BM0×d,1). We choose
Poincare space in this work due to the enhanced visual in-
terpretability of 2D embeddings on the Poincare disc [29].

4.2. Hyperbolic Symbol Abstraction

The goal of the hyperbolic symbol abstraction module
(Rl) is produce increasingly abstract hyperbolic symbols
at each level of the tree by merging symbols with edges
(pf relation) from the previous level, i.e. the hyperbolic
symbols for cat eyes and nose are merged together to form
the symbol, cat face in the next level. (Rl) is similar to
a single layer HGCNN [4] but here we learn the edges
of the graph between ζi and ζi+1 using a binary function
(1 = edge, 0 = no edge). This constructs a knowledge
graph structure equivalent to a tree which is used for reason-
ing about Euclidean external representations of the visual
world. Similar to [4], the first stage of hyperbolic symbol
abstraction is a hyperbolic feature transformation shown in
Eq. (7), which is performed in the unit hyperboloid where
we found training to be more stable compared to within the
Poincare unit disc/ball. Therefore, we map a codebook ζi

from Poincare space to the hyperboloid using Eq. (4) be-
fore applying a hyperboloid linear layer (h(x)H,1) to each
codebook vector using Eq. (7). This is followed by a log-
arithmic mapping (Eq. (2)) to the tangent space (ToH1,d).
The second stage of hyperbolic abstraction is the aggrega-
tion/merging of symbols in ToH1,d as proposed in [4] to
form the next codebook ζi+1. This is achieved by first
learning the edges or equivalently the relations/partOf pred-
icate with a binary layer [14] between symbols in consecu-
tive codebooks with weights: wl ∈ RMi×Mi+1 ∈ {0, 1}.

We learn a weighted aggregation denoted al of the sym-
bols with edges from ζi to ζi+1, before mapping back to
Poincare space (Eq. (3)). A single pass through Rl is sum-
marised in Eq. (10) below.

ζi+1 = expB,1o (a⊺l logH,1
o (hH,1(ψBd,1→Hd,1(ζi)))) (10)

In order for the hyperbolic symbol abstraction module to
update its weights to form an accurate knowledge tree, it
needs to map each feature in ẑ0 to the correct class. Firstly,
we apply an exponential mapping of ẑ0 to the Poincare unit
ball defined in Eq. (3) in order to map every feature in ẑ0

to the nearest codebook vector by Poincare distance in ζ0

using Eq. (1) to then form ẑ1. This process is repeated se-
quentially for every hyperbolic codebook until the last code-
book where znq is formed by sampling ζn. The abstraction
process is completed by mapping znq into Euclidean space
and then applying a linear class projection layer to map to
the class prediction. As this process is done for each of the
k features in ẑ1, we have k chain rules. However, there
multiple chain rules which are repeated and therefore are
removed to form a unique set of chain rules for each image.

The process of sequentially sampling each hyperbolic
codebook by Poincare distance is equivalent to learning to
extract the best chain rules represented as a set of discrete
vectors transversing the hyperbolic knowledge tree in order
to classify the image. The notion of sampling rules based
on distance also allows to rank the best rules as well as as-
certain uncertainty over the rules.

The knowledge distillation loss is defined as the cross-
entropy loss between the classifiers prediction (y) and
the hyperbolic discrete surrogate model’s prediction (ŷ):
Ldist(ŷ, y). We determine that the Poincare distances be-
tween codebooks correspond to graph distances in the tree.
Therefore, a Poincare codebook loss LPoincare is calcu-
lated such that symbols with an edge are closer together and
those without an edge are pushed apart in hyperbolic space.
First, let u to be any symbol in the set of all ζi while v and
v′ are defined as symbols with and without an edge with u
respectively; then two sets P andW are created such that:
u, v ∈ P and u, v′ ∈ W . Given this, we can calculate the
Poincare codebook loss shown in Eq. (11).

LPoincare =

∑
u,v∈P e

dB,1(u,v)∑
u,v′∈W edB,1(u,v′)

. (11)

We now define our total training loss as:
LTotal = Ldist + Lquant + LPoincare.

Continuous weights in our framework are updated with
Adam optimisation while the binary weights in Rl are up-
dated using the Bop algorithm proposed by [14]. In our
case, we map our weights to {0, 1} rather than {-1, 1}.
Please refer to supplementary material for further training
details of the binary weights.

4.3. Explanations and visual semantics

We derive a unique set of chain rules for each class to
form a class tree. An explanation for the classification of
an image is derived in the form a unique set chain rules
sampled from the knowledge tree and the visual seman-
tics for symbols. These chain rules can be combined to
form an image level tree. For example, in Fig. 2, the sub-
tree for Class0 consists of the chain rules: class(y, x) ←
pf(y, ζ11 ) ∧ pf(ζ11 , ζ

0
1 ) ∧ ex(x, ζ01 ) and class(y, x) ←

pf(y, ζ11 ) ∧ pf(ζ11 ζ02 ) ∧ ex(x, ζ02 ). An image-level tree is
input dependent, and if correctly classified forms a subtree
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LIME

SHAP

DeepLIFT

GradCAM

(a) Comparison
(d) Visual Rules

(c) Local Tree

(b) Class Tree

Figure 3. Explanations obtained using the proposed framework for a MNIST classifier. (a) Shows the 4 post-hoc XAI methods we compared
with. (b) Demonstrates the obtained class-level tree, which is a complete set of FOL chain rules responsible for ‘class 2’, (c) indicates an
image-level tree formed from the sampled chain rules responsible for making a decision for a given image, and (d) demonstrates a subset
of the visual PartOf relations obtained from a image-level tree.

LIME

SHAP

DeepLIFT

GradCAM

(a) Comparison (d) Visual Rules

(c) Local Tree

(b) Class Tree

Figure 4. Explanations obtained for an AFHQ classifier deciding upon the ‘class cat’. The subset of visual PartOf relation is shown.

of the class-level tree for the ground truth class or in other
words a subset of the unique chain rules for the class label.

The extraction of visual semantic for symbols, first re-
quires us to train a decoder D to reconstruct images (x) in
Euclidean space as perceived by the classifier, with a recon-
struction loss defined as: Lrecon = ||D(zq) − x||22. Dur-
ing training, we make sure that the gradients from the de-
coder block do not affect the weights of the discrete sur-
rogate model, to maintain faithfulness of the discretisation
process. We visualise the effect of a symbol, ẑi ∈ ζi in the
reconstructions by finding the symbols in the first abstracted
features layer, ẑ0 ∈ ζ0 connected via edges to the interested
sampled symbol. We then reconstruct the image with these
symbolic features set to 0 to visualise the semantic corre-
sponding to the symbol, ẑi ∈ ζi.

5. Experiments

We use our framework to explain a model pre-trained on
the MNIST dataset [8] achieving 98% accuracy as a proof
of concept study. In order to indicate the scalability and
generalisability of our proposed method we explain mod-
els pre-trained on AFHQ [6], STL10 [7] and the MIMIC
chest x-ray dataset [16, 17], which achieved 98%, 97% and
81% accuracy respectively. We choose a 3 level hierarchy.
Please refer to the supplementary material for details on the
classifier model details and codebook ablations.

5.1. Qualitative Experiments

We compare the explanations obtained from our frame-
work against standard post-hoc explainability frameworks:
LIME [30], SHAP [24], deepLIFT [34], and gradCAM
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LIME

SHAP

DeepLIFT

GradCAM

(b) Class Tree

(c) Local Tree

(a) Comparison (d) Visual Rules

Figure 5. Explanations obtained using the proposed method for a STL10 classifier deciding upon ‘class 9 (Boat)’.

[33]. We note the far richer and more expressive explana-
tions by our method shown on the right of Fig. 3, 4 and 5
where we show hierarchical visual explanations.

Fig. 3 demonstrates our explanations on a pre-trained
classifier for MNIST. Fig. 3(b) shows the class-level global-
tree representing all possible chain rules for a particular
class. To explain a given image we construct a image-
level local-tree indicating the sampled chain rules which
is shown in Fig. 3(c). Fig. 3(d) provides a visual hierar-
chical description of an image-level tree. In this exam-
ple, the visual semantics for the symbolic relations obtained
for a given image x corresponding to pf(Class2, ζ20 ) and
pf(Class2, ζ23 ) is shown in the first row of Fig. 3(d). The
second row of Fig. 3(d) visualises the obtained symbolic re-
lations corresponding to pf(ζ23 , ζ

1
21) and pf(ζ23 , ζ

1
22). The

last row visualises sampled symbols from ζ0 which are part
of ζ211 . As we move down the level of the hierarchy or, in
other terms, as we move closer to the boundary of Poincare
space, visually the symbols start to move from a complete
digit heatmap to a more focused region in a digit, demon-
strating a visual hierarchical explanation.

Similar explanations and visual semantic behaviour can
be observed for models trained on the AFHQ and STL10
datasets, as shown in Fig. 4 and Fig. 5 respectively, where
we again observe symbols getting localized as we go deeper
into the hierarchy. We note most of the existing explanation
methods shown on the left of Fig. 4 and 5 focus on either
pixel importance or gradient-based attention to provide only
single level explanations. These explanations do not yield
any form of reasoning between the features and the class.

Our method goes beyond feature attribution by allow-
ing the user to decide on the level of abstraction (length of
chain rule) upon which to provide the symbolic and corre-
sponding visual semantic relationships. Please see the sup-

plementary material for more examples.

5.2. Robustness Experiments
30

%
 G
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ia
n 

N
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LIME SHAPDeepLIFT GradCAM Ours

N
o 

N
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se

Figure 6. Robustness comparison of considered methods with our
proposed method. In our method we show the visual semantic
of a single symbol sampled for the last codebook; ζ20 . The top
shows the heatmaps with no noise added. The second row shows
heatmaps with 30% Gaussian noise added

We evaluate the robustness of our method compared to
LIME [30], DeepSHAP [24], deepLIFT [34], and grad-
CAM [33] by measuring the change in explanations under
noise perturbations in the input space. Specifically, we mea-
sure the average variance in the heatmaps (visual semantics)
generated by our method at the last level of abstraction com-
pared to popular post-hoc methods under 1%, 5%, 10% and
30% Gaussian, Salt and Pepper (s&p) and Poisson noise.
We show in Tab. 1 that there is significantly less variance
in the explanations generated by our method with the addi-
tion of Gaussian noise, highlighting the robustness of our
explanations. A visual example to demonstrate our finding
is shown in Fig. 6 where under Gaussian noise addition the
heatmaps generated by our method show no change com-
pared to the other XAI methods. We note similar results for
s&p and Poisson noise (the results tables and examples for
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Poisson and s&p noise are in the supplementary material).

MNIST STL10 MIMIC AFHQ

LIME [30] 0.236 1.341 0.785 1.109
SHAP [24] 0.923 1.514 1.143 1.381

deepLIFT [34] 0.535 0.483 0.253 0.585
gradCAM [33] 1.477 1.664 1.966 1.644

Ours 1e−6 2e−5 4e−5 1e−5

Table 1. Average variance in the heatmaps generated by various
post-hoc explainability methods under Gaussian addition.

5.3. Hyperbolic vs Euclidean Experiments

Figure 7. 2D Poincare embedding of symbols obtained for
MNIST. Red, blue, and green nodes indicate symbols from
ζ0, ζ1, ζ2 respectively.

We hypothesised that hyperbolic embeddings will better
embed a knowledge tree without distortion and hence allow
to reduce the dimensionality d of ζi such that knowledge
distillation would not be affected. We support this hypothe-
sis by achieving better knowledge distillation accuracy with
Poincare embeddings highlighted in Tab. 2. We note an in-
creasingly wider margin in performance between Poincare
and Euclidean embeddings as we reduce the dimensionality
of ζi down to 2 in all 4 datasets. Fig. 7 shows the 2 di-
mensional embeddings on the Poincare disk for the MNIST
dataset maintaining a robust hierarchy. Furthermore, we are
also simultaneously showing in Tab. 2 that hyperbolic sym-
bolic abstraction via a higher knowledge distillation accu-
racy leads to a more accurate explanation of the classifier.

Our hypothesis also implies, that reasoning hierarchi-
cally in hyperbolic space should lead to less overcrowding
of concepts at the first level of reasoning. One can show
this by measuring the overlap using the dice score between
all the visual semantics in the first abstraction layer corre-
sponding to all symbols sampled from ζ0 for each image.
Tab. 3 demonstrate less overlap (lower dice score) between
concepts in hyperbolic space which becomes more apparent

as one reduces the dimensionality of embeddings compared
to Euclidean space.

Emb. dim→
Dataset ↓ Poincare Euclidean

2 4 16 2 4 16

MNIST 0.90 0.96 0.99 0.81 0.92 0.95
AFHQ 0.90 0.95 0.98 0.80 0.90 0.97
STL10 0.84 0.87 0.88 0.72 0.82 0.86
MIMIC 0.78 0.83 0.84 0.71 0.80 0.80

Table 2. Knowledge distillation accuracy of different dimensional
Euclidean and Poincare embeddings.

Emb. dim→
Dataset ↓ Poincare Euclidean

2 4 16 2 4 16

MNIST 0.23 0.19 0.20 0.33 0.24 0.21
AFHQ 0.46 0.21 0.17 0.72 0.31 0.28
STL10 0.41 0.17 0.16 0.60 0.23 0.19
MIMIC 0.49 0.30 0.32 0.55 0.31 0.32

Table 3. Average Dice score overlap between the visual semantics
of symbols sampled from ζ0 for different dimensional Euclidean
and Poincare embeddings

6. Conclusion

This work provides novel hierarchical explanations
for deep discriminative models, demonstrated on several
datasets. The proposed framework discretises the contin-
uous latent space of classifiers into discrete features, fol-
lowed by multiple layers of symbolic abstraction in hyper-
bolic space to form a knowledge tree which provides hier-
archical chain rules as explanations. We demonstrate that
hyperbolic geometry allows to embed our knowledge tree
with minimal distortion and hence prevent the overcrowd-
ing of concepts compared to the Euclidean counterpart. The
results show the existence of a consistent and robust set of
chain rules for each class, visualised by generating atten-
tion regions in an image which are more robust compared
to traditional post-hoc methods.

For future work, our framework can be developed
into a stand-alone interpretable deep discriminative neuro-
symbolic model which improves generalisability. We plan
to extend this method with domain experts and assign
human-interpretable meaning to symbols.
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