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Abstract

Deep Learning based segmentation models for medical
imaging often fail under subtle distribution shifts calling
into question the robustness of these models. Medical im-
ages however have the unique feature that there is limited
structural variability between patients. We propose to ex-
ploit this notion and improve the robustness of deep learn-
ing based segmentation models by constraining the latent
space to a learnt dictionary of base components. We incor-
porate a topological prior using persistent homology in the
sampling of our dictionary to ensure topological accuracy
after composition of the components. We further improve
robustness by deep topological supervision applied in an
hierarchical manner. We demonstrate the effectiveness of
our method under various perturbations and in two single
domain generalisation tasks.

1. Introduction
Robust image segmentation is essential for the safe trans-

lation of deep learning based segmentation models into crit-
ical applications such as clinical decision making. This is
particularly relevant in the medical domain, where images
have varying noise profiles and appearance shifts induced
by different acquisition protocols across multiple source do-
mains [10]. It is well documented that deep learning models
can fail under subtle perturbations in the input space [6, 32]
especially when distributional shifts in the test data are not
accessible in the training phase.

There are various strategies used to improve model ro-
bustness by learning generalisable features. The two most
common approaches in the literature either employ data
augmentation strategies [14, 49, 50, 52] or adversarial train-
ing [9, 30,45]. Self-supervised learning strategies have also
recently gained in popularity and have shown to improve
model generalisability [7]. A school of thought which is
particularly applicable to segmentation is that shape fea-
tures representative of the structural content in an image are
invariant across shifts in the input space. Therefore, a group
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Figure 1. Example of persistence diagrams (right) calculated from
the softmax model output and segmentation label for the heart my-
ocardium. The x and y axis range from 0 to 1.

of methods which aims to disentangle shape from textural
(style) features have been promising to increase model ro-
bustness [11, 34, 48].

The task of medical image segmentation is unique in
that there is limited spatial variation among subjects due
to anatomical consistency. With this in mind, we propose
to constrain the lower dimensional shape representational
features in a deep learning based segmentation model to a
dictionary of components which is sampled in a topology
preserving manner. The dictionary is learnt by discretis-
ing the features in the latent space using vector quantisa-
tion [43, 46]. We use an application of algebraic topology
popular in topological data analysis called persistent homol-
ogy [2, 3] to sample components from the dictionary such
that the components are composed together correctly like a
jigsaw to form the segmentation outputs. In the multi-label
segmentation setting, we propose to enforce the topological
constraints in a hierarchical manner so that high abstraction
spatial components fit together to form the class segmenta-
tion outputs i.e. parts of the heart, which is then composed
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Figure 2. Overview of our Topology Preserving Compositionality (TPC) method incorporated in a segmentation model with p levels
(scales). D signifies a persistence diagram derived from a cubical complex C. For example, the persistence diagram for the foreground
label segmentation at level p(top right) is expressed as DFL

p derived from C(FLp). Background segmentations omitted.

to together to form the foreground segmentation i.e. whole
heart. We apply our hierarchical topological constraint in a
deeply supervised manner. The contributions of this paper
are summarized as follows:

• We propose to improve the robustness of deep learning
based segmentation models by constraining the latent
space to a learnt dictionary of components.

• This is the first work to enforce a topological prior us-
ing persistent homology over the sampling of the learnt
dictionary such that the components are not sampled
independently (uniform prior) and hence are composed
together to create topologically meaningful segmenta-
tions in a hierarchical manner.

• This is also the first work to successfully apply persis-
tent homology for deep supervision of deep learning
based segmentation models.

2. Background: Persistent Homology
Persistent homology is a popular tool in topological data

analysis. We first introduce the simplicial complex, K, a
fundamental concept to understanding persistent homology.
A simplicial complex, K ∈ Rn is a high dimensional gen-
eralisation of a graph consisting of k simplices up to n di-
mensions [17]. A simplex is an arbitrary dimensional gen-
eralisation of a triangle i.e. vertex (0-simplex), edge (1-
simplex), triangle (2-simplex) and tetrahedron (3-simplex).
Simplicial homology uses matrix reduction algorithms to
describe the connectivity of K as a sequence of mathemat-
ical groups denoted as the homology groups [18]. The

n-dimensional homology group consists of n-dimensional
topological features such as points (n = 0), tunnels (n = 1)
and voids (n = 2). The number of topological features in
each group is described in the nth Betti number [17]. This
is used to describe the topology of objects. For example in
Fig. 1, the Betti numbers of the label segmentation is (1, 1)
to represent 1 connected component and 1 tunnel.

In this work, the Betti numbers are useful topological
descriptors for the binary labels but not a continuous seg-
mentation output in Rx×y×z because Betti numbers are cal-
culated on a single scale. Therefore, a continuous mea-
sure of the change in topological features in each homol-
ogy group at different scales provide a rich and differen-
tiable descriptor of the topology of data. This is described
as persistent homology and requires a filtration function, f
to track the homology groups over multiple scales, ϵ. A
common filtration function is a distance function often used
for point cloud data; one refers to this simplicial complex
as a Vietoris-Rips complex [17]. Medical imaging is how-
ever structured as 2D and 3D grids and therefore the cu-
bical complex, C is naturally equipped to deal with such
data. In the cubical complex, cubes and squares are equiva-
lent to tetrahedra and triangles respectively in the simplicial
complex The vertices in the cubical complex of a 3D or 2D
image, X would correspond to voxels and the edges or con-
nectivity is determined by a grid which connects all voxels
in an image.

In this work, we define a filtration based on the voxel
values (pixel intensities) in X which represents vertices
in the cubical complex. Therefore, a cubical complex is

544



constructed at a threshold, ϵ over the output defined as:
Cϵ = {x ∈ X|x ≥ ϵ}. Given m threshold values between
ϵ1 and ϵm, one can construct m cubical complexes from
each sub-level set. Thus, this will satisfy a nesting relation-
ship between the cubical complexes of X shown in Eq. (1)
making it possible to track changes in the homology groups
as ϵi decreases.

∅ = Cϵ1 ⊆ Cϵ2 ... ⊆ Cϵm = X (1)

One can now derive a persistence diagram for n dimen-
sional topological features from tuples (b, d) with b denot-
ing the threshold at which a topological feature is born and
d being the threshold at which it dies. In Fig. 1, we over-
lap the persistence diagrams for 0 and 1 dimensional topo-
logical features. In the persistence diagram for the label in
Fig. 1, ϵi decreases from 1 to 0. Here, the red circle with
coordinates (0, 1) signifies the birth of a single connected
component (the ring) at ϵ = 1 which dies at ϵ = 0. The
blue square denotes a tunnel born at ϵ = 1 which also dies
at ϵ = 0. The persistence diagram for the output denotes
similar topological features but with additional topological
features representing noise found close to (0, 0) and (1, 1)
due to the continuous output.

3. Related Work
3.1. Domain Generalisation

The goal of domain generalisation is to learn domain in-
variant features for downstream tasks without access to the
target domain. Previous works largely focused on features
alignment between multiple source domains to learn more
generalisable features [22, 28, 33]. Meta-learning schemes
have also been adopted to adapt neural networks between
source domains [16, 29, 42].

The task of single domain generalisation (SDG) where
one has access to only a single source domain is a much
more challenging task which is relatively less explored in
the literature. The natural choice to tackle this problem is
through aggressive augmentation strategies such as CutOut
[14] and MixUp [51]. BigAug [52] showed extensive input
augmentation improves medical image segmentation signif-
icantly in the SDG setting. JiGen [7] solves JigSaw puzzles
as a self-supervised method to improve domain generalis-
ability. M-ADA [37] proposes adversarial data augmenta-
tion by using a Wasserstein Autoencoder to synthesise new
domains in a meta-learning scheme. AdvBias [9] applies
adversarial data augmentation specifically to MRI data in
the input space by learning to generate bias field deforma-
tions. RandConv [50] proposes an interesting approach of
using randomised convolutions to improve the robustness of
convolutional neural networks (CNNs).

Compositionality has been incorporated into neural net-
works for image classification [26] and generation [1].

Compositional neural networks have also shown to improve
robustness of CNNs for image classification under partial
occlusion [26] and more recently for medical image seg-
mentation [43].

3.2. Persistent Homology in Deep Learning

Persistent homology for deep representation learning is
limited. Topological autoencoders [31] is the first work
however to incorporate persistent homology to preserve the
topological structure of the data manifold in the latent rep-
resentation. Attempts have also been made to incorporate
topological signatures into deep neural networks [21]. For
example, [21] takes a topological signature in the form of
a persistence diagram as input into a deep neural network
using a novel input layer. They showed SOTA results for
graph and shape classification. Persistent homology has
also been used as a complexity measure to analyse deep
neural network architectures [38].

The application of persistent homology to deep learn-
ing based segmentation is limited to the output space to
produce topologically meaningful segmentations [23] or as
post-processing method [13]. Cubical persistent homology
[15, 47] has recently been used to analyse fMRI data [39].

4. Methods
4.1. Compositionality for Segmentation

We firstly assume a segmentation network can be decom-
posed into an encoder (Φe) to map the input space to a lower
dimensional embedding space ( Φe : X → E) and a decoder
(Φd) which maps the embedding space to the segmentation
output (Φd : E → Y).

We claim the output space of a segmentation model
for medical imaging is highly correlated across subjects.
Hence, one can hypothesise the low dimensional embed-
ding features to have low variance across the sampled dis-
tribution. We therefore propose to constrain the embedding
space to a set of N discrete points required to capture the
entire training and test distribution. We assume, the area
encompassed by an arbitrary radius around a discrete point
only represents shifts of the point due to perturbations in
the input space. We also assume each discrete point, ei is a
component representing a spatial structure which make up
the set of N components in a dictionary D shown in Fig. 2.

D is learnt through vector quantisation as proposed by
[46] to discretise the latent space. Prior to the embed-
ding features passing through the quantisation block, we
apply a 1 × 1 convolutional layer to reduce the number of
features for quantisation. The quantisation process aims
to collapse the continuous embedding space E to a set
of discrete vectors. Given m embedding feature vectors,
this is achieved by minimising the euclidean distance be-
tween zi ∈ E and its nearest component ek ∈ D where
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k = argminj∥zi−ej∥2, formally defined in Eq. (2). How-
ever, in order to backpropogate through the sampling pro-
cess and update ẑ and D, we apply straight-through gradient
approximation. Therefore, stop gradients (sg) are applied
to the appropriate operand during optimisation. We use a β
value of 0.2 [46].

LQuant =
1

m

i=m−1∑
i=0

(
∥sg(zi)− ek∥2 + β∥zi − sg(ek)∥2

)
(2)

The sampling of the nearest component in D leads to a
quantised embedding space denoted ẑ where ẑ = ek. ẑ then
undergoes scaling before passing through a softmax func-
tion to form z̃. There are c compositions corresponding to
the number of classes in O1 as shown in Fig. 1 where c = 3
(background omitted). Therefore, z̃ is subdivided into m/c
components which are each summed to form O1

k (class seg-
mentation outputs from the bottleneck of the model: level
1). A post quantisation 1× 1 convolutional layer is applied
to z̃ to increase the number of channels before being passed
into the decoder.

4.2. Topology Preserving Compositionality

The quantisation process assumes a uniform prior such
that components in D are sampled independently. There-
fore, we propose to incorporate a topological prior into the
sampling process such that components are sampled and
composed together to form topologically accurate shapes
i.e. segmentation maps. In this work, the composition of
components is simply the summation over the components.
We impose three restrictions in order to preserve topology.
We flatted each feature in z̃ into d dimensional vectors.

Shape Disentanglement: Firstly, the sampled compo-
nents should only represent shape features which are dis-
tinct from one another so that there is no spatial overlap
between the features i.e. disentangled. We can therefore
apply a shape disentanglement loss term (LDL) forcing the
inner product between pairs of d-dimensional quantised la-
tent features passed through the softmax function, (z̃i, z̃j)
to be close to 0 (orthogonal) [41] as shown in Eq. (3).

LDL =

i=m−1∑
i=0

j=m−1∑
j=i+1

z̃i.z̃j = 0 (3)

Due to the nature of the softmax function, the summa-
tion over all m features in z̃ ∈ Rd yields a d dimensional
vector of 1s. This means if, z̃ ∈ [0, 1] and LDL = 0, then
this implies that the intersection of the space between z̃i
and z̃j forms an empty set;

⋂i=m−1
i=0 z̃i = ∅. We can also

infer from this definition that z̃i must then only consist of
the integers 0 or 1; z̃i ∈ (Z/2Z)d. For example, if xy = 0
and x + y = 1 then, x, y ∈ Z/2Z. Therefore, by design
we additionally remove textural/style information from the

Label

+ =

+ =

Figure 3. Toy example demonstrating the basic principle of TPC.

semantics of the latent space, by approximately learning bi-
narised feature maps, z̃i. This means the kth class segmen-
tation output in O1 denoted O1

k where k ∈ Z/3Z must also
be binary as demonstrated in Eq. (4). An overlap between
features will yield integers greater than 1 under the stated
assumptions. For example, in the scaled (0-1) heat maps in
Fig. 2 one can visualise brighter regions in O1 representing
overlapping components.

O1
k =

i=m(k+1)/c∑
i=mk/c

z̃i,

O1
k ∈ (Z/2Z)d| z̃ ∈ (Z/2Z)d, LDL = 0

(4)

Preserving Topology: Next, we must sample components
such that the topology of the composed output O1

k matches
the down-sampled label map L1

k (see Fig. 2) i.e. same num-
ber of connected components and holes. In the toy example
highlighted in Fig. 3, the label is a circle and in the top
row we show an example where the two sampled compo-
nents; a ring and semi-circle are composed together to form
a shape with a semi-circle shaped hole. The Betti numbers
of this shape would be (1, 1); 1 connected component and
1 tunnel while the label has Betti numbers (1, 0) and there-
fore the homology groups do not match. However, in the
bottom row, a ring and smaller circle is composed to form
a shape with Betti numbers (1, 0) which matches the label
map. Given, we sum over a non-overlapping set of sampled
components when DL = 0 to form O1, then we must en-
force that the union over z̃ should form a single connected
component like in Fig. 3 with our topological loss.

We next calculate the persistent homology of the cubi-
cal complex of each composition in O1 and L1 denoted,
PH(C(O1

k)) and PH(C(L1
k)) respectively. We can then

create persistence diagrams for each kth class segmenta-
tion in O1, denoted DO

1,k which we aim to match with the
persistence diagrams of the down-sampled label map L1

(see Fig. 2). We minimise the pth Wasserstein distance
[31] of two persistence diagrams shown in Eq. (5) where
η;D → D′ is a bijection between the persistence diagrams
and p = 2. This loss function is proven to be stable to
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noise [44] and differentiable [8].

dw(D,D′) =

(
infη;D→D′

∑
x∈D

∥x− η(x)∥p∞

) 1
p

(5)

Therefore, by minimising the distance dw(DO
1,k,DL

1,k) in
Fig. 2, we ensure the class segmentation outputs at level 1 of
the decoder (O1

0:2) all have one single connected component
and only O1

1 has one tunnel.
Additionally, since the label maps are binary, all topo-

logical features are born at 1 and die at 0. Therefore, by
minimising the Wasserstein distance, one is also forcing O1

k

to be binary and if DL = 0, then z̃i must also be 0 or 1
by deduction. This topological loss is hence an additional
method to remove the textural information in z̃ which in
turn also removes textural information from the dictionary.
One can also apply the topological loss to z̃ directly with
the assumption that the topological label for z̃i is a single
connected component which is born at 1 and dies at 0. We
can then minimise the Wasserstein distance loss for the 0th

dimensional homology with this fixed topological label to
make sure z̃ are binary components. We found this ben-
eficial but too computationally expensive. We also didn’t
binarise the embedding space via a threshold method such
as a steep sigmoid function. This is because of the gradient
vanishing either side of the threshold value which are the
constant portions in the steep sigmoid function where most
of the values will lie. A Dice score loss is added in order to
increase the overlap between L1 and O1 as the topological
loss is position and size invariant.

In order to preserve the topological constraints imposed
in the quantised embedding space through the decoder, we
apply deep topological and dice supervision at each level of
the decoder. Therefore, as shown in Fig. 2, we sum the fea-
ture maps outputted at each level of the decoder to produce
c class segmentation outputs before applying our deeply su-
pervised class loss shown in Eq. (6).

Hierarchical Topology: We apply an additional topo-
logical and dice loss for the foreground segmentation out-
put denoted, F i formed from the addition of the foreground
class segmentation maps in Oi. This hierarchical loss ex-
pressed in Eq. (7) is further enforcing accurate class seg-
mentation maps under the assumption they should be com-
posed to form a topologically meaningful foreground seg-
mentation. For example, in Fig. 2 the foreground segmenta-
tion is the whole heart which is forced to be a binary single
connected component with no tunnels when the segmented
parts of the heart (class segmentations) are combined via
summation.

LClass top =

i=p∑
i=1

k=c−1∑
k=0

dw(DO
i,k,DL

i,k) +Dice(Oi
k, L

i
k)

(6)

LHier top =

i=p∑
i=1

dw(DF
i ,DFL

i ) +Dice(F i, FLi) (7)

The total loss for training the topological preserving com-
positionality (TPC) framework incorporated into a segmen-
tation model is formally defined as:
Ltotal = LQaunt + LClass top + LHier top + LDL.

5. Experiments
5.1. Datasets and Training

We use 3 datasets in our experiments. Abdomen: This
dataset is the Beyond the Cranial Vault (BTCV) dataset [27]
consisting of 30 CT scans with 13 labels acquired from one
domain. All images are normalised between 0 and 1 and
randomly cropped 96×96×96 patches are used for training.

Cardiac: This dataset is the Multi-centre, multi-vendor
multi-disease (M&Ms) cardiac imaging 3-class segmenta-
tion dataset [5] which is divided into 4 domains determined
by the MRI scanner vendor. The end-systole and diastole
annotations are available for each patient. There are 95
scans in domain A, 125 scans in domain B and 50 scans
in domain C and D. All images were normalised between 0
and 1 and cropped to 288× 288.

Prostate: We use the NCI-ISBI13 Challenge [4] dataset
which consists of 60 scans divided into 2 domains with dif-
ferent MRI scanner types and acquisition protocols. There
are two segmentations labels. Each domain consists of 30
scans. We normalised images between 0 and 1 and centre
cropped to 256× 256.

Training: All models are trained with Adam optimisa-
tion [25] with a base learning rate of 0.0001 and weight de-
cay of 0.05 for a maximum of 500 epochs on three NVIDIA
RTX 2080 GPUs. In order to prevent over-fitting, we apply
a simple augmentation scheme for training our method con-
sisting of random rotation and flipping (horizontal and ver-
tical). We evaluate model performance with the Dice score
and Betti error [23].

5.2. Perturbation Experiments

In the first set experiments we analyse how incorporat-
ing TPC into three popular segmentation 3D architectures
(UNet [40], nn-UNet [24] and Swin-UNetr [19]) improves
performance under various types of perturbations in the in-
put space for the Abdomen dataset. We split the dataset into
18 and 12 for our train and test set respectively. We adjust
noise levels between 1 and 30 % for Gaussian, Poisson and
Salt and Pepper (S&P) noise. Gaussian Blur is incorporated
with a Gaussian kernel which has a window size of 7 × 7
and variance ranging from 0.1 to 2.0. Random motion blur
is applied by using the TorchIO deep learning library [36].

547



Figure 4. In this figure, we show the segmentations of an abdominal CT slice with 20% Gaussian noise addition (top row) and Gaussian
blur (bottom row) by the UNet, nn-UNet and Swin-UNetr and after including TPC in each model.

Baseline Gauss Poisson S&P Blur Motion Contrast Intensity

Dice

UNet 0.77±0.08 0.71±0.10 0.72±0.09 0.69±0.06 0.72±0.11 0.63±0.13 0.62±0.14 0.68±0.09
+ TPC 0.79±0.04 0.75±0.08 0.77±0.07 0.74±0.08 0.78±0.05 0.67±0.10 0.65±0.08 0.73±0.11

nnUNet 0.86±0.05 0.80±0.08 0.81±0.03 0.79±0.07 0.80±0.08 0.73±0.12 0.74±0.11 0.75±0.10
+ TPC 0.87±0.04 0.83±0.10 0.84±0.09 0.82±0.11 0.82±0.14 0.75±0.14 0.77±0.08 0.80±0.08

Swin-UNetr 0.88±0.05 0.83±0.09 0.80±0.08 0.81±0.07 0.85±0.04 0.75±0.16 0.78±0.19 0.77±0.11
+ TPC 0.87±0.07 0.86±0.06 0.84±0.06 0.85±0.08 0.88±0.08 076±0.10 0.80±0.06 0.79±0.05

Betti Error

UNet 0.78±0.19 2.98±1.05 3.03±1.21 2.85±0.90 3.18±1.31 2.72±1.17 2.89±1.22 3.01±1.43
+ TPC 0.39±0.11 0.91±0.41 1.10±0.34 0.98±0.29 1.26±0.38 0.57±0.18 0.83±0.48 0.90±0.21

nnUNet 0.51±0.24 2.34±0.93 2.52±0.97 2.22±0.92 2.69±0.88 2.50±1.05 3.02±1.09 2.59±1.15
+TPC 0.25±0.13 0.82±0.28 0.61±0.11 0.76±0.20 1.01±0.16 0.43±0.10 1.29±0.36 0.88±0.30

Swin-UNetr 0.42±0.13 2.39±1.30 2.53±0.95 2.77±0.91 2.94±0.96 2.94±0.89 2.39±0.90 2.81±0.77
+TPC 0.21±0.08 0.83±0.20 0.66±0.34 0.73±0.25 0.90±0.33 0.70±0.28 0.97±0.21 0.85±0.23

Table 1. The mean dice score and Betti error ± standard deviation before and after TPC is applied to 3 segmentation models under various
perturbations in the input space. The results for the Abdominal dataset is shown. The baselines refers to no perturbations applied.

The gamma values ranged from 0.5 to 4.5 for the contrast
variations. Finally, for the intensity perturbations, inten-
sity values are scaled by a factor between 0.8 and 1.2. The
dice scores and Betti errors are averaged across all parame-
ter values used in the perturbations.

In Tab. 1, we note significant improvement in both eval-
uation metrics after incorporating TPC in all three models
under various perturbations. Our method has a better ef-
fect with a convolutional backbone as opposed to the vision
transformer (Swin-UNetr) for textural perturbations. This is
likely because the coarse attention mechanism is more ro-
bust to noise where it was shown that the vision transformer
is acting like a low-pass filter to remove noise whereas con-
volutions are behaving like high-pass filters [35].

We demonstrate the value of TPC with a visual example
in Fig. 4 where we show the more visually accurate seg-
mentation masks produced by incorporating TPC in the 3
models. We as expected note greater value of TPC in the

CNN models when either 20% Gaussian noise or blur is ap-
plied to the image. TPC significantly reduced the number of
unconnected components and holes produced by the base-
line segmentation models. Additionally, the baseline UNet
and nnUNet appear to miss some of the smaller segmenta-
tion structures because of noise which reappear by incorpo-
rating TPC. This is because by design our topological loss
strongly imposes the number of connected components in
the label and segmentation should be equal as it is also act-
ing as a component count loss function. Overall, despite
the spatial or textural perturbations, our method has learnt a
strong anatomical/structural shape prior governed by a dic-
tionary of components which is sampled correctly to ignore
the perturbation effect.

5.3. Single Domain Generalisation

In the single domain generalisation (SDG) study we
evaluate segmentation performance when testing a trained
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Figure 5. Segmentation of a cardiac slice in the top row and prostate slice in the bottom row when testing on a target domain with different
SDG methods and our method (TPC).

Cardiac Prostate

Dice Betti Error Dice Betti Error

Baseline .67±.17 2.03±.87 .51±.16 2.97±1.15
CutOut .69±.14 1.78±.69 .52±.18 2.57±1.03

AdvBias .70±.17 1.30±.54 .54±.15 2.03±.88
RandConv .71±.14 1.00±.48 .58±.20 1.90±.63

BigAug .73±.11 .77±.35 .64±.20 1.39±.41
Jigen .69±.16 1.58±0.71 .53±.14 1.51±.58

Ours(TPC) .74±.10 .54±.21 .62±.11 1.02±.43

Table 2. The average dice score and Betti error ± standard devia-
tions using several single domain generalisation methods

Cardiac Prostate

Dice Betti Error Dice Betti Error

UNet .62±.09 2.14±1.11 .46±.11 3.09±1.23
+ TPC .70±.13 .71±.33 .54±.09 .96±.38

nnUNet .74±.11 1.24±.43 .58±.09 1.97±.76
+ TPC .79±.08 .59±.23 .63±.07 .75±.28

Swin-UNetr .73±.07 1.17±.58 .60±.04 1.89±.64
+ TPC .77±.11 .62±.31 .63±.13 .78±.33

Table 3. The average dice score and Betti error before and after
TPC is applied to 3 segmentation models after testing on the target
domains. The results for prostate and cardiac datasets are shown

segmentation model on an unseen target domain for the
Prostate and Cardiac datasets. We adopt a cross-validation
procedure by training a method on a single source domain
and hold out the other domains for testing (3 for cardiac and
1 for prostate).

SDG method comparison: In the first set of experi-
ments we use an adapted Residual-UNet architecture with
a 2D ResNet-18 backbone as our baseline [20]. We com-
pare our TPC approach with the following single domain
generalisation methods: CutOut [14], AdvBias [9], Rand-
Conv [50], BigAug [52], Jigen [7] and the baseline model.

Tab. 2 demonstrates that our method achieves the best
Betti error scores among the SDG methods for both the Car-
diac and Prostate datasets. The significantly greater Betti
error scores by our approach is indicative of our method’s
superior capability of producing more topologically mean-
ingful segmentations. However, we outperform all meth-
ods in the dice metric except for BigAug where we achieve
similar scores. The comparable performance of TPC to
BigAug shows how a thorough augmentation strategy can
tackle SDG. However, we demonstrate without any aggres-
sive augmentation strategies or adversarial training, simply
imposing topological constraints into a segmentation model
can still achieve similar or better SDG performance. We
visually highlight the effectiveness of our method in Fig. 5
where TPC appears to better match the topology of the label
for both the cardiac and prostate images. For example, in
methods such as CutOut and AdvBias applied for prostate
segmentation, there are unconnected components or tunnels
(holes) and the segmentation maps appear less smooth.

Model comparison: In the second set of experiments,
we evaluate the improvement in the segmentation perfor-
mance in SDG by incorporating TPC into the 2D UNet, nn-
UNet and Swin-UNetr. In Tab. 3, we note significantly im-
proved domain generalisability of all three models when in-
corporating TPC. We can demonstrate this visually in Fig. 6
where similar to previous experiments, TPC appears to pro-
duce smoother segmentations which are more topologically
correct compared to the baseline models. This is especially
true for prostate segmentation (bottom row) where there are
fewer training examples and a larger domain shift. We fur-
ther note the incomplete rings formed by the baseline UNet
and nnUNet for the myocardium segmentations (top row)
which is not the case after applying TPC. This experiment
once again highlights the benefit of incorporating topologi-
cal shape priors into structured segmentation tasks.

5.4. Ablation Studies

Dictionary Experiments: We want to learn a dictionary
which is as sparse as possible without affecting segmenta-
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Figure 6. Segmentation of a cardiac slice in the top row and prostate slice in the bottom row when testing on a target domain before and
after incorporating TPC into 3 segmentation architectures.

Cardiac Prostate Abdomen

Size 128 64 512
Dimensionality 324 256 1728

Channels 256 192 112

Table 4. Hyper-parameters used in our experiments. The ’size’ is
the number of components in the dictionary. The ’dimensionality’
is the dimension of the codebook components. ’Channels’ is the
number of embedding features in the model bottleneck

Figure 7. The mean dice score (left) and Betti Error (right) af-
ter each component of TPC is sequentially added (left to right)
into the Baseline Model (Tab. 2) to assess SDG segmentation for
the Cardiac and Prostate datasets. ’Cls Topology’ refers to incor-
porating the topological loss over each class segmentation. ’Hier
Topology’ is adding the second topological loss for the foreground
segmentation.

tion performance. Therefore, for all three datasets, we carry
out ablation studies to find the minimal required number of
components in the dictionary which is incorporated into an
adapted UNet [12, 40].We show our results in Tab. 4 below
and use these hyper-parameters for our experiments.

Model Experiments: We carry out ablation studies to
validate each component of TPC in improving robustness

of our baseline model (adapted Residual-UNet) in the SDG
experiments for the prostate and cardiac datasets.

Fig. 7 shows the dice scores and Betti errors steadily im-
proving over the baseline model, firstly with the incorpo-
ration of the dictionary followed by adding the class topo-
logical and then the hierarchical topological loss terms for
both the cardiac and prostate datasets. Incorporating the
class topological loss term is likely as hypothesised aiding
with sampling the correct dictionary components to com-
pose class segmentation maps. This is further enforced by
including the hierarchical topological loss function.

6. Discussion

TPC can also be used as a semi-supervised method when
there is unlabelled data given the homology of the class seg-
mentations outputs do not vary between subjects i.e. the
two class segmentations of the prostate are always two sin-
gle connected components with no tunnels. This will be
explored in future work. We also aim to test our method
in more challenging tasks such as instance segmentation
where we believe it will be beneficial due to the ability of
TPC to match the number of connected components. We
noted this property to be useful in the abdominal segmenta-
tion tasks where there were multiple labels.

In conclusion, on the basis that there is limited anatom-
ical variation among subjects in medical imaging, we as-
sume medical image segmentation is structured. We there-
fore propose to improve the robustness of medical imaging
segmentation models by constraining the embedding space
to a dictionary of disentangled shape components. We use
persistent homology to incorporate a hierarchical topologi-
cal prior in sampling the dictionary to produce topologically
accurate segmentations at multiple scales using deep super-
vision. We demonstrate the effectiveness of our method by
incorporating TPC into 3 common segmentation architec-
tures to improve performance under various perturbations
and domain shifts. We finally show that our approach beats
various SOTA methods in single domain generalisability.
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[12] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,
Thomas Brox, and Olaf Ronneberger. 3d u-net: learning
dense volumetric segmentation from sparse annotation. In
International conference on medical image computing and
computer-assisted intervention, pages 424–432. Springer,
2016. 8

[13] James R Clough, Nicholas Byrne, Ilkay Oksuz, Veronika A
Zimmer, Julia A Schnabel, and Andrew P King. A

topological loss function for deep-learning based image
segmentation using persistent homology. arXiv preprint
arXiv:1910.01877, 2019. 3

[14] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arxiv
2017. arXiv preprint arXiv:1708.04552, 2017. 1, 3, 7

[15] Paweł Dłotko and Thomas Wanner. Rigorous cubical ap-
proximation and persistent homology of continuous func-
tions. Computers & Mathematics with Applications,
75(5):1648–1666, 2018. 3

[16] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas,
and Ben Glocker. Domain generalization via model-agnostic
learning of semantic features. Advances in Neural Informa-
tion Processing Systems, 32, 2019. 3

[17] Herbert Edelsbrunner and John L Harer. Computational
topology: an introduction. American Mathematical Society,
2022. 2

[18] Herbert Edelsbrunner, David Letscher, and Afra Zomoro-
dian. Topological persistence and simplification. In Pro-
ceedings 41st annual symposium on foundations of computer
science, pages 454–463. IEEE, 2000. 2

[19] Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong
Yang, Holger R Roth, and Daguang Xu. Swin unetr: Swin
transformers for semantic segmentation of brain tumors in
mri images. In International MICCAI Brainlesion Workshop,
pages 272–284. Springer, 2022. 5

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016. 7

[21] Christoph Hofer, Roland Kwitt, Marc Niethammer, and An-
dreas Uhl. Deep learning with topological signatures. Ad-
vances in neural information processing systems, 30, 2017.
3

[22] Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira. Learning to
cluster in order to transfer across domains and tasks. arXiv
preprint arXiv:1711.10125, 2017. 3

[23] Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen.
Topology-preserving deep image segmentation. Advances in
neural information processing systems, 32, 2019. 3, 5

[24] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Pe-
tersen, and Klaus H Maier-Hein. nnu-net: a self-configuring
method for deep learning-based biomedical image segmen-
tation. Nature methods, 18(2):203–211, 2021. 5

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[26] Adam Kortylewski, Ju He, Qing Liu, and Alan L Yuille.
Compositional convolutional neural networks: A deep archi-
tecture with innate robustness to partial occlusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8940–8949, 2020. 3

[27] Bennett Landman, Zhoubing Xu, J Igelsias, Martin Styner,
T Langerak, and Arno Klein. Miccai multi-atlas la-
beling beyond the cranial vault–workshop and challenge.
In Proc. MICCAI Multi-Atlas Labeling Beyond Cranial
Vault—Workshop Challenge, volume 5, page 12, 2015. 5

551



[28] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot.
Domain generalization with adversarial feature learning. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5400–5409, 2018. 3

[29] Xiao Liu, Spyridon Thermos, Alison O’Neil, and Sotirios A
Tsaftaris. Semi-supervised meta-learning with disentan-
glement for domain-generalised medical image segmenta-
tion. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 307–317.
Springer, 2021. 3

[30] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 1

[31] Michael Moor, Max Horn, Bastian Rieck, and Karsten Borg-
wardt. Topological autoencoders. In International confer-
ence on machine learning, pages 7045–7054. PMLR, 2020.
3, 4

[32] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, and Pascal Frossard. Universal adversarial perturba-
tions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1765–1773, 2017. 1

[33] Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gi-
anfranco Doretto. Unified deep supervised domain adapta-
tion and generalization. In Proceedings of the IEEE inter-
national conference on computer vision, pages 5715–5725,
2017. 3

[34] Maruthi Narayanan, Vickram Rajendran, and Benjamin
Kimia. Shape-biased domain generalization via shock graph
embeddings. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1315–1325, 2021. 1

[35] Namuk Park and Songkuk Kim. How do vision transformers
work? arXiv preprint arXiv:2202.06709, 2022. 6
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