
Robust Hierarchical Symbolic Explanations in Hyperbolic Space
for Image Classification: Supplementary Material

1. Hyperbolic mappings

We show here the general equations expKx (y) and
logKx (v) with any negative curvature, −1/K for Hd,K in
Eq. (1) and Eq. (2) respectively as well as for Bd,K in Eq. (3)
and Eq. (4) respectively [1, 2].
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1.2. Poincare

A Riemmanian metric tensor is conformal to another
Riemannian metric if it defines the same angles. In the case
of the Poincare unit ball, there is a smooth conformal map-
ping, λ : B → R between the Euclidean metric tensor gRx
and Poincare metric tensor gB,1x . The Poincare conformal
factor λx = 2
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2. Parallel transport

In this section, we reveal the equations of parallel trans-
port for vector b on the tangential space of the origin to the
tangential space of v. Formally, we show PK

o→v(b) in BK,d

and HK,d below.

2.1. Hyperboloid

The general form of this equation, PK
x→v(b) shown be-

low in Eq. (5) is derived in [1].
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2.2. Poincare

Eq. (6) is derived in [2].
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3. Projections
We need to apply projections to constrain points to the

manifolds and its tangential space after optimising. In our
work, all operations are performed in the tangential plane
and therefore one needs to only apply projections after the
exponential mapping from the tangential space to the man-
ifold which we define below.

Eq. (7), below shows the projection after exponential
mapping y on TxHd,K to the hyperboloid manifold Hd,K .
In our work we use K = 1 for applying projections.

Proj(expH,K
x (y)) = (

√
1 + ||v1:d||22, v1:d) (7)

The projection when mapping a point y on TxBd,K to
Poincare space Bd,K is achieved by normalising expB,Kx (y)
if ||expB,Kx (y)||22 > 1/

√
K or > 1 in the case of the

Poincare unit ball.

4. Training details and architectures
4.1. Discrete surrogate model

We consider an image dimension of 32 × 32 for the
MNIST datasets. The image dimensions for the AFHQ and
STL10 dataset is 128 × 128. The image dimensions for
the MIMIC dataset is 224 × 224. Our modulation layer
reduces the number features (latent dimension) of z from
64 to 8 channels and 1024 to 32 channels for the MNIST
and AFHQ experiments respectively. We perform all hy-
perbolic linear operations in TxH and do not directly up-
date the embeddings ζi ∈ H1,d or ∈ B1,d which means
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we can perform Euclidean optimisation. Therefore, for the
experiments in the main paper, we use Adam optimisation
with a learning rate of 0.0002 and batch size of 50 in all
experiments to train the discrete surrogate model for 40
epochs on a single NVIDIA RTX 2080 GPU. We experi-
mented with Riemmanian stochastic gradient descent [11]
but found Adam optimisation to be more stable. We also
found that ζn ∈ HMi×d,1 provided greater stability during
training and showed generally improved performance (see
codebook ablation Tab. 1 and Tab. 2 below in Sec. 5) Note,
we do not perform linear operations in TxB due to stability
issues. Also, note we do not directly update the embeddings
of ζi in H1,d or B1,d as the embeddings are updated only as
a function of the learned hyperboloid linear operations in
TxH followed by a mapping to TxB.

Furthermore, it is important state, that low dimensional
embeddings for ζ0, for example where d = 2 will have an
adverse effect on the output of the decoder, producing very
blurry images. In this case, one can use the Euclidean code-
book with higher dimensionality d for and theof The only
embeddings we update directly through vector quantisation
are in the the Euclidean codebook E ∈ Rd′×M0 . [1] applies
hyperboloid non-linear activation to aid with the smoothly
varying curvature. We do not include non-linearity in our
hyperboloid linear layer which uses fixed negative curva-
ture as it did not add any benefit to training convergence or
knowledge distillation performance.

4.2. Binary Weights

We described the optimisation of the Binary weights in
the main paper using the boop [4] algorithm. In this algo-
rithm, the strength of gradient signal at time t is determined
by looking at the continuous exponential moving average
mt of accumulated gradients up to the gradient, gt at t. The
binary weights are then updated subject to mt exceeding a
threshold τ and the sign of wj,k

t,l matching mt. We initialize
weights randomly ∈ {0, 1} and modify the update rule pro-
posed in [4]. This is shown in Equation 8 below, where the
first line corresponds to calculating continuous exponential
moving average with γ being the adaptivity rate [4] and the
second line defines the update rule [4]. By following this
update rule, we ensure that weights are either 0 or 1 while at
the same time, following all the properties described in [4].

mt = (1− γ)mt−1 + γgt

wj,k
t,l =


|wj,k

t−1,l − 1|, if |mi
t| > τ and

sign(mi
t) = sign(wj,k

t−1,l)

wj,k
t−1,l, otherwise

(8)

In our experiments, we use, adaptivity rate γ of 0.0004
and threshold τ of 1e− 8. The adaptivity rate is analogous
to the learning rate and can be seen as the consistency of

a gradient signal required to induce a flip in weights from
0 to 1 or vice versa [4]. A high γ can therefore induce a
flip quicker given a new gradient signal but this can also
mean noisy training [4]. τ is reflective of the strength of the
gradient signal required to induce a flip [4].

4.3. Decoder

The Decoder for MNIST experiments initially consists
of a 1 × 1 convolutional block to increase the number of
channels back to 64 channels before 3 up-sampling blocks.
Each up-sampling block consists of bi-linear interpolation
before two pre-activation 3 × 3 convolutional blocks with
residual connections [3]. We use batch normalisation and
ReLU activation. In our AFHQ,STL10 and MIMIC exper-
iments, the decoder also initially starts with a 1 × 1 convo-
lutional block to increase the number of channels back to
1024 before 4 up-sampling blocks identical to the one used
in our MNIST experiments. We train the decoder in both
experiments for 40 epochs using Adam optimisation with a
learning rate of 0.0002.

4.4. Pre-trained classifiers

The MNIST pre-trained classifier consists of 7 convo-
lutional blocks made up of a 3 × 3 convolutional layer fol-
lowed by batch normalisation and ReLU non-linearity. This
is followed by global average pooling and a single layer lin-
ear classifier. Max pooling is applied after the first, third and
fifth layers. The number of channels corresponding to the
final convolutional block is 64. We train this classifier for 50
epochs with a batch size of 50 on three NVIDIA RTX 2080
GPUs. We use Adam optimisation with an initial learning
rate of 0.001 and weight decay of 0.001. We achieve 99%
accuracy with this pre-trained classifier

We use the DenseNet-121 as our pre-trained classifier for
the AFHQ,STL10 and MIMIC dataset [5]. We train using
Adam optimisation with an initial learning rate of 0.001 and
weight decay of 0.05. We reduce the dimensionality of the
MNIST, AFHQ, STL10 and MIMIC images to 4× 4 in the
final layer before being inputted into the classifier.

4.5. Optional commitment loss and Uncertainty

4.5.1 Optional commitment loss

Given zipq ∈ RK×d′
and k ∈ K, we define an optional com-

mitment loss to move each zipqk ∈ zipq closer to its sampled
codebook vector denoted ζik shown below in Eq. (9).

Lcb =

i=n∑
i=0

t=K∑
t=0

dB,1(zipqk), sg(ζ
i
k)). (9)

Therefore the total loss in this case is: LTotal = Ldist +
Lquant + LPoincare + ϵLcb, ϵ ∈ {0, 1}.



Table 1. Knowledge distillation accuracy of different codebook sizes for Poincare, Hyperboloid and Euclidean embeddings on the MNIST
dataset. The best knowledge distillation accuracy for each embedding dimension is highlighted in bold.

Embedding dim. (→) Poincare Hyperboloid Euclidean

Codebook Size ( ζ0, ζ1, ζ2) (↓) 2 4 16 2 4 16 2 4 16

512, 64, 4 0.92 0.91 0.98 0.95 0.93 0.99 0.80 0.90 0.95
256, 64, 4 0.94 0.94 0.99 0.91 0.98 0.99 0.86 0.92 0.96
256, 32, 4 0.89 0.96 0.99 0.93 0.98 0.97 0.79 0.91 0.98
128, 32, 4 0.90 0.96 0.99 0.91 0.95 0.99 0.81 0.92 0.95
64, 16, 4 0.85 0.88 0.94 0.90 0.88 0.93 0.80 0.83 0.90

Table 2. Knowledge distillation accuracy of different codebook sizes for Poincare, Hyperboloid and Euclidean embeddings on the AFHQ
dataset. The best knowledge distillation accuracy for each embedding dimension is highlighted in bold.

Embedding dim. (→) Poincare Hyperboloid Euclidean

Codebook Size ( ζ0, ζ1, ζ2) (↓) 2 4 16 2 4 16 2 4 16

512, 64, 2 0.94 0.92 0.96 0.90 0.95 0.98 0.83 0.91 0.93
256, 64, 2 0.90 0.95 0.98 0.92 0.98 0.99 0.80 0.90 0.97
256, 32, 2 0.86 0.85 0.93 0.88 0.91 0.96 0.77 0.81 0.88
128, 32, 2 0.88 0.88 0.91 0.84 0.92 0.96 0.80 0.86 0.90
64, 16, 2 0.78 0.85 0.83 0.81 0.90 0.92 0.75 0.80 0.84

We found this to not affect knowledge distillation per-
formance except to provide a more certain notion (reduced
uncertainty) of abstraction for ziq

4.5.2 Uncertainty

Given we sample by distance, this allows to capture uncer-
tainty over a single FOL chain rule defined as the likelihood
of the sampled chain rule over all possible chain rules that
can be sampled to classify a single class. We must firstly
define the number of possible symbols which can be sam-
pled from each codebook to define the total number of chain
rules. In the first codebook ζ0, all possible symbols can
be sampled and therefore for the first symbol sampled in
the chain rule we can define uncertainty over the first layer
of abstraction as the exponentiated Poincare distance from
z0pqk to the sampled symbol ζ0j normalised over the total
number symbols in ζ0 divided by a length-scale (σ) hyper-
parameter. This is equivalent to using the radial basis func-
tion for measuring uncertainty which we adapt from [10].
For the following codebooks, we define the possible sym-
bols which can be sampled from ζi to be those with edges
from codebook ζi−1. We repeat the same process as we did
to capture uncertainty over the first layer of abstraction for
the following symbols in the FOL chain rule and then mul-
tiply the uncertainties measured for each sampled symbol
in the FOL chain rule; this will therefore determine uncer-

tainty for the sampled chain rule. We formally define the
uncertainty of a sampled chain rule (CR) in Equation 10 be-
low. We define the total number of available symbols which
can be sampled from each codebook as Si

UncertaintyCR =

n∏
i=0

exp

[
1
Si d

B,1(zipqk, ζ
i
j)

σ

]
(10)

5. Codebook ablations
We determine through our ablations, the minimum num-

ber of concepts at each level of the tree for each experiment
shown in Tab. 3. We show detailed codebook ablations to

MNIST AFHQ STL10 MIMIC

ζ1 128 256 256 256
ζ2 32 64 64 64
ζ3 4 3 4 2

Table 3. Codebook ablations to develop the most sparse knowl-
edge tree

find the minimum number of codebook vectors required to
achieve a knowledge distillation accuracy of at least 90%
for MNIST in Tab. 1 and AFHQ in Tab. 2. We limit the
number of codebook vectors in ζn to at least ⌊log2N + 1⌋.



We note in more complex datasets, a larger number of code-
book vectors maybe required in ζn, whereby a class may be
need to be encoded with more than one possible combina-
tion of codebook vectors in order to fit the data.

We also compare knowledge distillation accuracy of
codebooks with Poincare embeddings against hyperboloid
embeddings. In these experiments we only use a three
level hierarchy. The user can however decide if they would
like more levels of abstraction by increasing the number of
codebooks. We note also, the use of codebook ablations is a
limitation for the practicality of our explainability method.

6. Robustness experiments

We show that there is significantly less variance in the
explanations generated by our method with the addition of
Poisson noise in Tab. 4 and S&P noise in Tab. 5 highlighting
the robustness of our explanations. The close to 0 variances
also reflects the image level trees not changing under dif-
ferent perturbations and shows the robustness of the rules
derived.

MNIST STL10 MIMIC AFHQ

LIME [7] 0.206 0.747 0.577 1.132
SHAP [6] 0.147 0.611 0.483 1.943

deepLIFT [9] 0.458 1.173 0.563 1.477
gradCAM [8] 0.966 1.100 1.074 1.094

Ours 1e−6 1e−5 1e−5 1e−5

Table 4. Average variance in the heatmaps generated by various
post-hoc explainability methods under Poisson noise addition.

MNIST STL10 MIMIC AFHQ

LIME [7] 0.785 1.342 1.178 1.157
SHAP [6] 1.911 13.124 6.746 14.494

deepLIFT [9] 0.935 6.759 5.903 3.185
gradCAM [8] 52.472 66.441 19.664 55.488

Ours 8e−7 2e−6 1e−5 1e−5

Table 5. Average variance in the heatmaps generated by vari-
ous post-hoc explainability methods under Salt and Pepper (S&P)
noise addition.

We show a visual example of the robustness of our
method under 30% Gaussian noise for a MNIST dataset
example in Fig. 1. We also show a visual example of the
robustness of our method under 30% salt and pepper noise
for a MIMIC dataset example in Fig. 2 (same example as
used in the main paper). We next show a visual example of
the robustness of our method under 20% Poisson noise for
a STL10 dataset example in Fig. 3

7. Additional results
In this section, we provide additional examples illustrat-

ing the explanations of the proposed framework. Fig. 5,
Fig. 6 and Fig. 7 are explanations for a model trained on
the MNIST dataset classifying class ‘3’, ‘9’ and ’6’ respec-
tively. We show the class level tree for the dog class in
AFHQ in Fig. 8. Fig. 9 and Fig. 10 describes our explana-
tions for a model trained on the AFHQ dataset classifying
the class ‘dog’ and ‘cat’ respectively. Fig. 11 shows expla-
nations for a model trained on the STL10 dataset for the
class ’bird’. Fig. 12 shows explanations for a model trained
on the MIMIC dataset for the class ’abnormal’.

Fig. 4 demonstrates the distribution of codebook sym-
bols on a Poincare disk for the AFHQ dataset.
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Figure 1. Robustness experiments with 30% Gaussian noise on a sample from the MNIST dataset. Symbol for ζ23 is shown. The image
level tree did not change under 30% Gaussian noise for this example.
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Figure 2. Robustness experiments with 30% salt and pepper noise on a sample from the MIMIC dataset. Symbol for ζ20 is shown. The
image level tree did not change under 30% S&P noise for this example.
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Figure 3. Robustness experiments with 20% Poisson noise on a sample from the STL10 dataset. Symbol for ζ20 is shown. The image level
tree did not change under 20% Poisson noise for this example.



Figure 4. Poincare embedding of discrete symbols obtained for the AFHQ classifier. Here, red, blue, and green nodes indicate symbols
from ζ0, ζ1, ζ2 layers abstraction respectively.



(a) Image-level tree (b) Visual rules

Figure 5. This figure describes the hierarchical visual explanations obtained using our proposed framework on the MNIST classifier
for class ‘3’, with atoms corresponding to pf(Class3, ζ20 ), pf(Class3, ζ21 ), pf(Class3, ζ22 ) described in the first row. The second row
visualises the obtained atoms corresponding to pf(ζ22 , ζ

1
13), pf(ζ22 , ζ

1
19), pf(ζ22 , ζ

1
21). The last row visualises the atoms corresponding to

symbols in ζ0 which are part of ζ119.

(a) Image-level tree (b) Visual rules

Figure 6. This figure describes the hierarchical visual explanations obtained using proposed framework on the MNIST classifier for class
‘9’, with atoms corresponding to pf(Class9, ζ20 ), pf(Class9, ζ22 ) described in the first row. The second row visualises the obtained atoms
corresponding to pf(ζ22 , ζ

1
19), pf(ζ22 , ζ

1
21). The last row visualises the atoms corresponding to symbols in ζ0 which are part of ζ121.



(a) Image-level tree (b) Visual rules

Figure 7. This figure describes the hierarchical visual explanations obtained using our proposed framework for the AFHQ classifier
classifying class ‘cat’ (ablation with 3 symbols in the final codebook of the hierarchy), with atoms corresponding to pf(cat, ζ20 ) described
in the first row. The second row visualises the obtained atoms corresponding to pf(ζ20 , ζ

1
21). The last row visualises the atoms corresponding

to symbols in ζ0 which are part of ζ121.

Figure 8. This figure shows the class-level tree for ‘dog’ class



(a) Image-level tree (b) Visual rules

Figure 9. This figure describes the hierarchical visual explanations obtained using our proposed framework for the AFHQ classifier for
class dog, with atoms corresponding to pf(dog, ζ20 ) described in the first row. The second row visualises the obtained atoms corresponding
to pf(ζ20 , ζ

1
21). The last row visualises the atoms corresponding to symbols in ζ0 which are part of ζ121.

(a) Image-level tree (b) Visual rules

Figure 10. This figure describes the hierarchical visual explanations obtained using our proposed framework for the AFHQ classifier
classifying class ‘cat’, with atoms corresponding to pf(cat, ζ20 ), pf(cat, ζ21 ) described in the first row. The second row visualises the
obtained atoms corresponding to pf(ζ20 , ζ

1
21). The last row visualises the atoms corresponding to symbols in ζ0 which are part of ζ121.



(a) Image-level tree (b) Visual rules

Figure 11. This figure describes the hierarchical visual explanations obtained using our proposed framework for the STL10 classifier
classifying class ‘bird(class 2)’ , with atoms corresponding to pf(bird, ζ20 ), pf(bird, ζ22 ) described in the first row. The second row visualises
the obtained atoms corresponding to pf(ζ22 , ζ

1
27), pf(ζ22 , ζ

1
33). The last row visualises the atoms corresponding to symbols in ζ0 which are

part of ζ133.

(a) Image-level tree (b) Visual rules

Figure 12. This figure describes the hierarchical visual explanations obtained using our proposed framework for the MIMIC classifier
classifying class ‘abnormal(class 0)’ , with atoms corresponding to pf(class0, ζ20 ), pf(class0, ζ21 ) described in the first row. The second
row visualises the obtained atoms corresponding to pf(ζ20 , ζ

1
37). The last row visualises the atoms corresponding to symbols in ζ0 which

are part of ζ137.
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