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Abstract
Recently, there has been tremendous interest in indus-

try 4.0 infrastructure to address labor shortages in global
supply chains. Deploying artificial intelligence-enabled
robotic bin picking systems in real world has become partic-
ularly important for reducing stress and physical demands
of workers while increasing speed and efficiency of ware-
houses. To this end, artificial intelligence-enabled robotic
bin picking systems may be used to automate order pick-
ing, but with the risk of causing expensive damage during
an abnormal event such as sensor failure. As such, reliabil-
ity becomes a critical factor for translating artificial intelli-
gence research to real world applications and products. In
this paper, we propose a reliable object detection and seg-
mentation system with MultiModal Redundancy (MMRNet)
for tackling object detection and segmentation for robotic
bin picking using data from different modalities. This is
the first system that introduces the concept of multimodal
redundancy to address sensor failure issues during deploy-
ment. In particular, we realize the multimodal redundancy
framework with a gate fusion module and dynamic ensem-
ble learning. Finally, we present a new label-free multi-
modal consistency (MC) score that utilizes the output from
all modalities to measure the overall system output reliabil-
ity and uncertainty. Through experiments, we demonstrate
that in an event of missing modality, our system provides
a much more reliable performance compared to baseline
models. We also demonstrate that our MC score is a more
reliability indicator for outputs during inference time com-
pared to the model generated confidence scores that are of-
ten over-confident.

1. Introduction

Global labor shortages and the need for resilient supply
chains has accelerated companies’ upgrades to industry 4.0

Figure 1. The dynamic modality weight shifting of our network
ensures a reliable overall performance when a modality is miss-
ing. Row 2-4 heatmaps describe the average gate weights of each
modality at a single feature scale. Yellow indicates high weight,
dark purple indicates low weight.
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and introduced a range of technologies such as big data,
cloud computing, internet of things (IoT), robotics, and arti-
ficial intelligence (AI) into production systems. With ware-
houses and manufacturing units becoming smart environ-
ments, a crucial objective is to develop an autonomous flow
of both material and information, and robotic bin picking
plays an essential role in this task.

Robotic bin picking has been an active area of research
for many decades given the complexity of the task, rang-
ing from joint control and trajectory planning [15] to object
identification [1] and grasp detection [4].. In particular, we
examine the object detection and segmentation task in au-
tonomous bin picking. Different from object detection and
segmentation in other areas such as autonomous driving,
robotic vision system works in environments that are very
close to the camera, dealing with heavy occlusions, shad-
ows, dense object layouts, and complex stacking relations.
It plays an essential role in a robot’s perception system.

Deep neural networks have been proven effective for ob-
ject detection and segmentation [12, 24]. But, deploying
such systems in robotic picking applications is challenging
due to the many sources of uncertainty present in practi-
cal scenarios. Real-world bin scenes may consist of a wide
variety of unknown or occluded items arranged in an infi-
nite number of poses and illuminated with variable lighting
conditions. In addition to the variability of real-world bin
scenes, errors in the camera system can make a computer vi-
sion system unreliable. Camera sensors are prone to noise
and can fail in various situations such as specular reflec-
tions (missing values), black areas (missing depth), overex-
posure, blur, and artifacts. In practice, commercial systems
are expected to run 24/7 to be feasible, which increases the
risk of imaging sensor failures compared to research envi-
ronments. If not accounted for, sensor failures can lead to
wrongly commissioned orders and in the worst case to prod-
uct and hardware damages, leading to expensive recall cam-
paigns or production downtime. Therefore, vision systems
capable of handling uncertain inputs and producing reliable
predictions under sensor errors are critical to creating fail-
safe applications.

One approach to creating fault-tolerant object detection
and segmentation systems is to introduce system duplica-
tion, where portions of the system are duplicated to allow
the system to continue to operate despite failures of its
constituent parts. This approach assumes that failures are
caused by either input sensor failures or computational fail-
ures. However, duplication may not provide fault-tolerance
in situations where the system is operating correctly but its
sensors are unable to adequately measure the inputs. For
example, a camera may fail to adequately image a piece
of glass due to its transparency, and so the use of a second
identical camera cannot address this issue. In addition, deep
neural networks as a data-driven approach are designed to

capture feature distributions of the input dataset. A simple
duplication of these networks will not detect features that
are not in the training distribution. Instead, we add image
data from depth sensor as an additional modality to capture
object feature characteristics from a different perspective.
More specifically, depth data has very simple texture yet
rich geometric features, that are more transferable to unseen
objects than RGB data.

A good system duplication design duplicates compo-
nents that are more likely to fail, preventing any disrup-
tion in the information flow from the system input to output.
Non-data-driven methods have well defined explicit logic to
control the information flow. In comparison, deep learning
system learns the input and output mapping through high-
dimensional implicit feature representations. A typical deep
learning model encodes input information through a back-
bone network into a high-dimensional latent representation,
and downstream tasks use the representation to predict low-
dimensional outputs. Consequently, a large amount of in-
formation is lost during the dimensionality reduction of
downstream tasks. However, in robotic bin-picking, un-
seen items may contain highly complex image character-
istics that require both RGB and depth to work collabora-
tively. For example, RGB backbones are better at detecting
transparent objects and depth backbones are better at detect-
ing dark objects. A pair of eyeglasses with black frame will
require the RGB backbone to focus on glass parts while the
depth backbone to focus on the frame for a complete detec-
tion and segmentation. With the reduction of dimensional-
ity, a simple result aggregation on two low quality detec-
tions will create another low quality detection. Additional
result merging networks or explicit merging logic will in-
troduce errors and instabilities into the system. An effec-
tive modality fusion technique that will dynamically fuse
modality features with limited loss of information is there-
fore greatly desired. In addition, modality features merging
may introduce dependencies between them, causing unex-
pected model behavior when one of the modality feature is
absent. We tackle this problem with a multimodal redun-
dancy framework consists of two key techniques: 1) we use
a multi-scale soft-gating mechanism to make the network
learn to weigh and combine features between modalities
dynamically, and 2) we use a dynamic ensemble learning
strategy to train the sub-system independently and collabo-
ratively in an alternating fashion. With this framework, only
one modality needs to be present for the model to operate.

Finally, we propose a novel multimodal consistency
(MC) score as a more objective reliability indicator for the
system output based on the overlaps of detected bounding
boxes and segmentation masks. This can be used as an in-
dicator for model uncertainty on individual predictions, as
well as model reliability on particular datasets.

Through experiments, we demonstrate that in an event
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of missing modality, our MMRNet provides a much more
reliable performance compared to baseline models. When
depth is removed, our network’s performance drop is within
1% where other models have a performance drop greater
than 6%. When RGB is removed, our network’s perfor-
mance drop is within 11% where other models have a per-
formance drop greater than 80%. Furthermore, we demon-
strate that our MC score is a more reliable indicator for
output confidence during inference compared to the often
overly-confident confidence scores. We summarize our con-
tribution as the following:

• A multimodal redundancy framework consisting of a
multi-scale soft-gating feature fusion module and a
dynamic ensemble learning strategy allowing trained
sub-systems to operate both independently and collab-
oratively.

• A multimodal consistency score to describe the relia-
bility of the system output.

2. Related Work
Reliability study for deep learning-based systems:

Deep learning-based methods are data-driven, encoding the
decision making process through continuous latent vectors,
which makes the model behavior hard to predict and fix.
Only a few of the studies focus on the reliability aspect
of the deep learning-based systems. In [26], Santhanam et
al. list differences between traditional and deep learning-
based software systems and discuss the challenges involved
in the development of reliable deep learning-based systems.
In [31], Xu et al. study the reliability of object detection
systems in autonomous driving. In [7], dos Santos et al.
study the relationship between reliability and GPU preci-
sion (half, single, and double) for object detection tasks.
Other reliability related work can be found in model uncer-
tainty estimation [10]. To the best of our knowledge, none
of the work investigates reliability or uncertainty for multi-
modal applications, in particular for robotic bin picking.

Multimodal Data Fusion: Multimodal learning [8, 14,
17, 22, 23] has been rigorously studied. In multimodal
learning, there are three types of data fusion: early fu-
sion, intermediate fusion, and late fusion. Each corresponds
to merging information at input, intermediate, and output
stage respectively. Early fusion involves combining and
pre-processing inputs. A simple example is replacing the
blue channel of RGB with depth channel [18]. Late fusion
merges the low-dimensional output of all networks. For ex-
ample, Simonyan et al. [27] combine spatial and tempo-
ral network output with i) averaging, and ii) linear Support
Vector Machine [28]. Early fusion and late fusion are sim-
pler to implement but have a lower dimensional represen-
tation compared to the intermediate fusion. Intermediate
fusion involves merging high-dimensional feature vectors.

Common intermediate fusion includes concatenation [22],
and weighted summation [1]. Recently, more advanced
techniques are developed to dynamically merge the modal-
ities. In [29], Wang et al. propose a feature channel ex-
change technique based on Batch Normalization’s [16] scal-
ing factor to dynamically fuse the modalities. In [5], Cao
et al. propose to replace the basic convolution operator with
Shapeconv to achieve RGB and depth fusion at the basic op-
erator level. In [32], Xue et al. focus on the efficiency aspect
of multimodal learning and propose a hard gating function
which outputs an one-hot encoded vector to select modali-
ties. In robotic grasping, Back et al. [1] take the weighted
summation approach and propose a multi-scale feature fu-
sion module by applying a 1x1 convolutional layer to the
feature layers before passing them into a feature pyramid
network (FPN) [19].

The aforementioned works are designed to optimize the
overall network performance but at the same time intro-
duce dependencies among modality features, which are ex-
tremely vulnerable in case of an abnormal event, such as
an input sensor failure. In this paper, we address the mul-
timodal fusion strategy from the system reliability perspec-
tive, where our goal is to design a simple yet effective net-
work architecture that enables sub-modal systems to work
independently as well as collaboratively to increase the
overall system reliability.

Ensemble learning: Ensemble learning typically in-
volves training multiple weak learners and aggregating
their predictions to improve predictive performance [35].
One of the simplest approaches to construct ensem-
bles is bagging [3], where weak learners are trained on
randomly-sampled subsets of a dataset and subsequently
have their predictions combined via averaging or voting
techniques [35]. Instead of aggregating predictions directly,
one may also use a meta-learner which considers the in-
put data as well as each weak learner’s predictions in or-
der to make a final prediction, a technique known as stack-
ing [30]. Boosting [9] is another common approach where
weak learners are added sequentially and leverage the previ-
ous learner’s mistakes to re-weight training samples, effec-
tively attempting to correct the previous learner’s mistakes.

While ensemble learning has long been a common tech-
nique in classical machine learning, it can be expensive to
apply to deep learning due to the increased computational
complexity and training time of deep neural networks. Of
particular relevance to this work is the application of en-
semble learning to multimodal deep learning problems. In
multimodal problems, the data distributions typically differ
significantly between modalities and thus may violate the
assumptions of certain ensembling techniques [20]. Nev-
ertheless, ensemble methods have been applied to a va-
riety of multimodal problems [6, 20, 21, 34]. For exam-
ple, Menon et al. [21] trained modality-specific convolu-

70



Figure 2. Block diagram of our multimodal redundancy framework. Gate fusion module allows simple switching between modalities.
Trained with dynamic ensemble learning, our system is able to use both modalities independently (RGB or depth output) as well as
collaboratively (RGB+depth output). A multimodal consistency score is computed at the end to indicate the reliability of the output.

tional neural networks on three different magnetic reso-
nance imaging modalities and combined the models’ pre-
dictions via majority voting. In [34], Zhou et al. used a
stacking-based approach to combine the outputs of neural
networks trained on text, audio, and video inputs, thereby
reducing noise and inter-modality conflicts.

Rather than combining multiple models with a typical
ensembling strategy, in this work we consider a dynamic en-
semble where multiple unimodal systems are dynamically
fused into a single network. This network is capable of both
unimodal operation using each of its inputs independently
as well as multimodal operation through the fusion of the
constituent unimodal systems.

3. Methodology
The subsequent sub-sections outline the key components

of our MMRNet architecture. Firstly, we introduce a multi-
scale soft gating mechanism that effectively combines in-
formation from the two modalities. Secondly, we propose
a dynamic ensemble learning strategy, which, in conjunc-
tion with the multi-scale soft gating mechanism, constitutes
the multimodal redundancy framework. This framework
helps to remove the inter-modality dependencies. Lastly,
we present the formulation of the multimodal consistency
score, which serves as our system’s reliability measure. We
show our system block diagram in Figure 2.

3.1. Multimodal Redundancy Framework

Multi-scale Soft-Gate Feature Fusion (MSG Fusion):
Fusing high-dimensional latent representation from two
data distribution involves integrating information from mul-
tiple scales as well as multiple modalities. While a sim-

Figure 3. Gate fusion module fuses the multi-scale feature from
each modality.

Figure 4. Soft gating architecture applied to every scale of feature
layers.

ple convolution as proposed in [1] can merge the informa-
tion, it also constrains the information exchange between
modalities to be within the same scale. The other modal-
ity’s high-level features may contain crucial contextual in-
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formation for localizing and segmenting objects with in-
tricate RGB and depth features. In order to maximize the
utilization of contextual information from both modalities,
we concatenate the features and input them into a Feature
Pyramid Network (FPN) [19]. This FPN fuses multi-scale
modality features in a hierarchical manner, enabling effec-
tive contextualization. Nonetheless, this process can result
in inter-modality dependencies. To address this issue, we
draw inspiration from [33] and incorporate a soft gating
mechanism. This mechanism enables the dynamic adjust-
ment of feature weights from each backbone, thereby fa-
cilitating modality feature selection that is optimized for
detecting individual object classes. More importantly, this
method enables the model to disentangle features from dif-
ferent modality backbones. We define the total number of
modalities to be N and denote the jth scale feature layer in
modality m as fm,j . Features of all modalities pass through
a 1x1 convolution layer Gm. The convolution layer takes
N jth scale modality features with C channels and outputs
one feature layer with C channels for modality m. We ob-
tain gm,j :

gm,j = Gm ({fm,j |m ∈ [0, N)}) (1)

The output gate weight wm,j is calculated by:

wm,j = σ({gm,j |m ∈ [0, N)}) (2)

, where σ is the softmax function ensuring modality weights
sum to one. Finally, the gated feature layer for scale j and
modality m is updated by:

fm,j ← fm,jwm,j (3)

We show the gate fusion module architecture in Figure 3
and Figure 4.

Dynamic Ensemble Learning Strategy: Although
the proposed soft gating mechanism enables dynamic re-
weighting of features extracted from each input modality,
it does not inherently allow for modalities to be used inde-
pendently. Ideally, the network would be capable of oper-
ating reasonably using a single input modality, with each
additional modality providing improved performance or re-
liability. This accounts for the practical scenario where the
sensor used to capture an input modality fails, forcing the
system to leverage its other inputs.

Classic ensemble approaches combine weak models ac-
cording to their standalone performance by a simple dis-
crete process such as weighted sum [35]. In compari-
son, our gating module allows more dynamic interaction
since information can be exchanged across different modal-
ities and scales with respect to different input items, poses,
and scene layouts. Instead of independently training each
modality model and combine them with a weighted sum,
we propose a novel dynamic ensemble learning strategy to

train multimodal deep learning models, allowing for differ-
ent modalities to be used both collaboratively and indepen-
dently.

Specifically, in each training iteration we randomly se-
lect one of the possible input conditions: both inputs, RGB-
only input, or depth-only input. In the unimodal conditions,
we force the system to make predictions with only one of
its usual inputs in order to encourage rich features to be ex-
tracted from both modalities. This training scheme prevents
the model from learning to rely heavily on a single modal-
ity while simultaneously allowing the model to learn how to
combine data from both modalities.

3.2. Multimodal Consistency Score

Existing object detection and segmentation networks
contain a confidence score calculated by the softmax classi-
fier for each detection. The reliability information in this
score is somewhat subjective as it is estimated from the
same network. Instead, we leverage the multimodal prop-
erty of our model. In an ideal scenario, if we train a sep-
arate model for each modality, all models would converge
to produce the same output describing the same object in
the physical space. Less reliable models will produce re-
sults that deviated from the ground truth. Models trained
with different modalities capture distinct feature distribu-
tions and characteristics such as textures and geometries.
We assume the output deviation between the modalities is
very different from each other. If the network output is reli-
able, then the outputs between modalities are well-aligned.
This can be measured by the percentage overlap between
output bounding boxes as well as the segmentation masks.
Based on this assumption, we argue that the more deviations
between the modalities there are, the less certain the out-
put is. To estimate the deviation, we use Intersection Over
Union (IOU). It is a ratio between the intersection of the
two modalities and their union and can be applied to boxes
as well as masks. Given a pair of detection/segmentation
output x0 and x1. Each represents a set of pixels. x0 and x1

can either be a pair of boxes or a pair of masks. Then, IOU
can be calculated by:

IOU(x0, x1) =
|x0 ∩ x1|
|x0 ∪ x1|

(4)

Where |.| is a function that computes the number of pix-
els for the given input. When deviation becomes larger,
IOU will be smaller. When there is less deviation, IOU
will be larger and close to 1. This behavior captures well
the output alignment between modalities. When compar-
ing results in object detection/segmentation, object match-
ing is involved. There can be multiple detections for one
object, so we average the IOU score for all related detec-
tions associated with this object. For simple annotation,
we call the two models being compared source and target.
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Source results are matched to the target results. Let the set
of all ns detections in source be Ds = {ds,l|l ∈ [0, ns)}.
We compute the IOU of all items in Ds associated with
the kth target detection dt,k, and obtain a set of IOUs
IDs,dt,k

= {IOU(ds,i, dt,k)|ds,i ∈ Ds}. We define objects
with IOU lower than 30%, a typical threshold value used in
the Non-Maximum Suppression (NMS) step in object de-
tection networks such as [12], as non-matched and remove
them. The updated IOU set is

I
′

Ds,dt,k
=

{
a|a ∈ IDs,dt,k

, a > 0.3
}

(5)

Next, we compute the average IOU A(Ds, dt,k) for source
detections Ds and target detection dt,k:

A(Ds, dt,k) = mean(I
′

Ds,dt,k
) (6)

We further compute the mean IOU for all nt detections in
target Dt:

mIOU(Ds, Dt) = mean({A(Ds, dt,k)|k ∈ [0, nt)})
(7)

We extend this mIOU score to describe the alignment be-
tween our network output and all the modalities. We name
this score multimodal consistency (MC) score. MC can be
used to describe the alignment of one modality or multiple
modalities in a multimodal system. Let Do to be the net-
work output with no number of detections, and Dm to be
the network output using only modality m. The MC score
Sm for a single modality m is calculated by:

Sm = mIOU(Dm, Do) (8)

The MC score S for all modalities is computed by:

S = mean({A(Dm, do,k)|m ∈ [0, N), k ∈ [0, no)}) (9)

The higher the MC score is, the more reliable the system
is. A score of 100% means all modalities predict the exact
same output, and the system is very reliable. A score of
0% means each modality predicts a different output, and
the system is unreliable.

4. Experiments
4.1. Dataset and Implementation Details

Among robotic grasping datasets, the MetaGraspNet
dataset [11] provides large-scale, high-resolution simulated
RGB and depth data as well as real-world data from an
industry-grade sensor system. In addition, the dataset con-
tains 82 objects and has a novel object set for testing. We
divide the real dataset into train, validation, test, and test
novel. We first exclude all scenes with novel objects, adding
them to a separate novel test data split. Then we split the
rest of the real dataset into 80% train, 10% validation, and
10% test.

Due to the unique characteristics of each modality, we
normalize and pre-process RGB inputs and depth inputs dif-
ferently. We use the standard mean variance normalization
for RGB inputs and we apply min-max normalization per
scene for depth inputs, where depth values are min-max nor-
malized to [0, 1]. We further flip the depth values to make
0 as the depth of the background and 1 as the closes point
to the camera. With this value flip, background values are
aligned to be 0 in each scene. In addition, this normalization
added a data augmentation to the dataset as it stretches and
compress object shapes in depth, allowing a fully utilized
depth range where every depth value is used by an object.

Near objects’ edges, reflective surfaces, and transparent
surfaces, there are often undefined values caused by a lack
of signal returning to the depth sensor. As a pre-processing
step, we apply image inpainting [2] to the depth images to
replace any invalid values.

We use a classic object detection and segmentation net-
work Mask-RCNN [12] with ResNet50 [13] backbone as
our baseline. All the networks in our experiment are initial-
ized by the same ImageNet [25] pretrained weights. We
train all models with the same training configuration in
terms of batch size, training epoch, and optimizer. We pre-
train all the models on the simulated dataset of MetaGrasp-
Net, and finetune on the real dataset. We report the perfor-
mance of our method on the real test set with bounding box
mean average precision (box mAP) and segmentation mask
mean average precision (mask mAP).

4.2. Results and Discussions

Multi-scale Soft-Gate Feature Fusion (MSG Fusion):
In Table 1, we show the improvement using our MSG Fu-
sion under several train/test condition (regular class, class-
agnostic, and novel objects). In general, we have observed
that RGB data serves as a superior input modality for known
objects. However, the performance of depth data tends to
catch up in the detection of novel objects, as depth is more
focused on object geometry. RGB image data in general
provides rich texture features that can be easily used to dif-
ferentiate items, but may become a distraction for the net-
work leading to false positives. On the other hand, depth
data provides simple geometric information that depicts ob-
ject’s shape with smooth surfaces. Depth modality provides
better performance when there is no RGB texture, dense
texture creates distractions, and objects are too dark. The
performance improves even more when RGB and depth are
both utilized. The results show that dense fusion module
provides better performance for novel items, while gated
fusion strategy still provides competitive results. The slight
performance drop from dense fusion to gating mechanism
can be due to the simplicity of the network without the gat-
ing module. The gating module limits the information flow,
but enables the independent training of sub-systems.
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Class agnostic Class agnostic novel

Network Box mAP Mask mAP Box mAP Mask mAP Box mAP Mask mAP

Baseline-RGB 80.6 79.3 83.6 78.9 29.7 32.7
Baseline-Depth 73.1 71.9 77.2 72.0 32.3 32.1
Baseline-Fusion [1] 80.3 79.4 82.8 78.8 28.7 33.1
MSG Fusion 81.7 80.7 84.5 80.3 30.8 35.0

Table 1. Modality feature fusion comparison. Results (in %) are compared to Mask R-CNN [12] unimodal baselines as well as
multimodal feature fusion approaches.

Box Mask RGB off Depth off

Network mAP MC mAP MC Box mAP Mask mAP Box mAP Mask mAP

Baseline-Fusion [1] 82.8 43.0 78.8 41.0 0 0 75.2 68.6
MSG Fusion 84.5 39.1 80.3 36.7 0.6 0.3 78.1 74.3

+ dynamic ensemble 84.9 82.9 80.2 84.7 76.6 69.6 84.0 79.3

Table 2. Class-agnostic results for multimodal architectures illustrating the need for dynamic ensemble learning for multimodal
redundancy. Best results highlighted in bold.

Dynamic Ensemble Learning Strategy for Multi-
modal System: In this ablation study, we train our networks
with and without the dynamic ensemble learning strategy
and evaluate the networks’ performance under three differ-
ent input conditions: both RGB and depth, depth-only, and
RGB-only. As shown in Table 2, the Gate Fusion network
performs well after both standard learning and dynamic en-
semble learning when both inputs are present. While dy-
namic ensemble learning yields slightly lower mask AP
(-0.1 AP), it also results in greater box AP (+0.4 AP).
More notably, when the RGB input is removed, the net-
work trained without the dynamic ensemble strategy fails
catastrophically (i.e., -83.9 box AP, -80.0 mask AP). This
indicates that the network is over-reliant on RGB image in-
formation due to that fact that RGB images were always
available during training. In contrast, the network trained
with dynamic ensemble learning is able to mitigate the loss
of RGB information by leveraging depth information alone.
While the overall performance is markedly reduced in this
scenario (as expected based on the Baseline-Depth results in
Table 1), it is a drastic improvement over the baseline Gate
Fusion model. When depth inputs are turned off, the base-
line model is still capable of reasonable operation but ex-
periences a marked drop in performance. Adding dynamic
ensemble learning mitigates this and results in only a minor
loss of performance.

Interpreting Gates: The use of multi-scale soft gating
offers a way to interpret the dynamic behaviour of a model
under different input conditions. By averaging gate values
over channels for a particular input scenario, we can ob-
tain a human-interpretable heatmap for each input modality
which illustrates the primary spatial regions being selected

for by the gate. Figure 1 illustrates this technique for the
soft gates at the second-highest spatial resolution of the fea-
ture pyramid. When both inputs are present, the soft gating
mechanism primarily focuses on RGB features, although
depth features are weighted strongly around the edges of the
fruits (likely due to their homogeneity in RGB). However,
once the RGB input is removed, the weights switch over
to depth features dramatically in an attempt to compensate
for the missing RGB features. Similarly, when depth fea-
tures are removed, we see that RGB features are weighted
more heavily around the edges of the fruits. This dynamic
weight shifting between modalities is precisely the purpose
of the soft gating mechanism and dynamic ensemble train-
ing strategy.

MC Score: The model exhibits a steady decline in MC
score between the training set, test set, and test-novel set as
seen in Table 3. This shows that the MC score decreases
accordingly the more out-of-distribution a dataset is, corre-
lating well with theoretically how reliable the model will
be on each dataset. The MC score also differs dramati-
cally between objects of different classes. Objects with poor
MC scores include disinfection bottle, glass bottle, cables
in transparent bag, eyeglasses, and so forth, while boxes,
cups, cables (not in plastic bags), and pears have higher
MC scores, as seen in Table 4. This shows the ability of
the MC score to identify challenging objects in the dataset.
We also compute the MC score against only RGB input or
only depth input. Some objects exhibit a significant differ-
ence in MC score between those two options in Table 5. The
starkest contrast appears when the object’s material proper-
ties result in significant noise in one sensor, such as when
transparent or reflective objects causes errors in the depth
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Data Split MC Score - Box MC Score - Mask

train 91.4 92.7
test 82.9 84.7
test-novel 73.4 73.7

Table 3. Class-agnostic MC scores from different data splits

MC Score (%)

Class Box Mask

non-novel
objects

disinfection bottle 60.5 62.6
glass bottle 76.9 64.7
cups d 96.0 96.5

novel
objects

cables in
transparent bag 68.4 61.0

eyeglasses 73.6 63.7
pear 77.6 91.4

Table 4. MC scores for different object classes

Mask MC Score (%)

Class RGB only Depth only

power drill 68.4 73.3
wineglass 89.8 76.5
eyeglasses 69.6 58.0

Table 5. Comparing MC score using only RGB or depth

sensor. Through this, we can identify when the model is
highly reliant on a particular sensor for its predictions. Eye-
glasses, for example, performs both poorly overall (Table
4, Figure 5d), and relies heavily on RGB input due to the
transparency and reflection of its glass component.

Examples of object-level MC scores for segmentation
mask detections can be seen in in Figure 5. Note that the
confidence score predictions for each object remains at an
inflated 0.999 for all four examples, while the MC score
shows a greater distinction between the objects depending
on difficulty. This is especially true in Figure 5d, where the
model outputs a poor detection, but with high confidence.
This, supported by previous dataset-level results, shows that
the MC score is a better indicator for model reliability and
uncertainty compared to the confidence score.

5. Conclusion
This paper has addressed the crucial aspect of reliability

in deep learning-based computer vision systems for robotic
grasping through the introduction of a multimodal redun-
dancy framework called MMRNet. Specifically, we have
achieved multimodal redundancy by leveraging a multi-
scale soft-gate feature fusion and dynamic ensemble learn-

(a) Train set object
MC score: 0.964
Confidence score: 0.999

(b) Test set object
MC score: 0.778
Confidence score: 0.999

(c) Test-novel set object
MC score: 0.966
Confidence score: 0.999

(d) Test-novel set object
MC score: 0.633
Confidence score: 0.999

Figure 5. Examples of object level MC scores. Gate fusion out-
put is marked in red contour. RGB and depth only are marked in
yellow and green contours respectively. In Figure 5b, some pre-
dictions identified the object as separate boxes, decreasing the MC
score.

ing strategy to train modality models both independently
and collaboratively. Additionally, we have proposed a mul-
timodal consistency score as a reliable indicator of network
output certainty. The results demonstrate that our MMRNet
delivers robust performance in the event of a modality input
failure, and that the MC score serves as a well-suited out-
put reliability indicator that is independent of the network’s
confidence score.
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