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Figure 1. How is our method, NeRT, different from other SOTA? NeRT is the first generalizable unsupervised physically grounded
model. *Section 5 discusses the anytime convergence property of NeRT.

Abstract

The atmospheric turbulence mitigation problem has
emerged as a challenging inverse problem in the communi-
ties of computer vision and optics. However, current meth-
ods either rely heavily on the quality of the training dataset
or fail to generalize over various scenarios, such as static
scenes, dynamic scenes, and text reconstructions. We pro-
pose a novel implicit neural representation for unsupervised
atmospheric turbulence mitigation (NeRT). NeRT leverages
the implicit neural representations and the physically cor-
rect tilt-then-blur turbulence model to reconstruct the clean
and undistorted image, given only dozens of distorted im-
ages. Further, we show that NeRT outperforms the state-of-
the-art through various qualitative and quantitative evalu-
ations. Lastly, we incorporate NeRT into continuously cap-
tured video sequences and demonstrate 48 X speedup.

1. Introduction

Atmospheric turbulence inevitably exists in long-range
ground-based passive imaging systems. This unwanted
phenomenon happens when light propagates in the form
of waves through media with a nonuniform index of re-
fraction [15]. If light waves simply propagate through free
space with a uniform index of refraction, the imaging sys-
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tem will always capture clean and sharp images. On the
other hand, when light propagates from a dense medium
into a sparse medium, the light path will be refracted ac-
cording to Snell’s law. At first glance, it seems to be a very
easy problem to solve. One might use Snell’s law and ray
tracing to simulate the entire light path, reconstructing the
undistorted and sharp scene. However, the distribution of
the index of refraction in the nonuniform medium is un-
known, making it very hard to use such an approach. Many
factors, such as distance, temperature, altitude, humidity,
wind, and so on, might affect the degree of distortions. As a
result, atmospheric turbulence is a highly challenging prob-
lem to solve with spatially and temporally varying blurring
and tilting.

Existing deep learning approaches [0, 8, 10, 24] require a
huge amount of training dataset. It is a challenging task, in
the first place, to build a physically accurate and fast sim-
ulator [ 1]. In addition, by leveraging domain-specific pri-
ors, these existing deep learning approaches inevitably have
dataset biases [5, 20, 23] and poor performance for out-of-
domain distributions.

Classical non-deep learning approaches [ 1, 10,17] do not
require a huge amount of training dataset. However, they
need to rely on optical flow or non-rigid registration tech-
niques, such as a B-spline function, to model the grid defor-
mation under atmospheric turbulence. Both optical flow and
B-spline methods require a reference frame to start with.



The reference frames selected by these methods do not ac-
curately represent the original sharp image. Mao et al. [10]
select the sharpest frame, which still contains blurring and
tilting, as the reference frame for the optical flow algorithm.
Additionally, Shimizu et al. [17] select the naive average of
all the distorted frames, which also contain noise, blurring,
and tilting, as the reference frame.

To address the above challenges, we design a novel im-
plicit neural representation for unsupervised atmospheric
turbulence mitigation (NeRT), removing temporally and
spatially tilting and blurring. The key idea is to constrain
the network to learn the physically correct forward model,
the tilt-then-blur model [2]. Inspired by NDIR [9], NeRT
can model temporally and spatially tilting using deformed
grids and implicit neural representations. For instance, if
the implicit neural representations take uniform undistorted
coordinates, they render clean and sharp images. If the im-
plicit neural representations take distorted coordinates, they
will output the corresponding distorted images under atmo-
spheric turbulence.

The overall architecture of our learning framework,
NeRT, is depicted in Figure 2. The network contains three
major components, grid deformers G that estimate the spa-
tially and temporally varying tilting at each pixel location,
an image generator 7 that outputs pixel values at corre-
sponding coordinates, and shift-varying blurring P that ap-
proximates the spatially blurring at each pixel location.

We perform extensive experiments on both real and syn-
thetic atmospheric turbulence datasets. We show that NeRT
outperforms the state-of-the-art supervised and unsuper-
vised methods. Our specific contributions include as fol-
lows:

* We are the first to propose an unsupervised and phys-
ically grounded deep learning method for atmospheric
turbulence mitigation. The pipeline follows the phys-
ically correct forward turbulence model, tilt-then-blur
model [2].

Our unsupervised algorithm is highly generalizable as
it can recover clean and distortion-free images without
domain-specific priors such as distorted-clean image
pairs.

* We successfully deploy our method on real-time con-
tinuously captured video footage and achieve rapid
convergence within 10 seconds on the latest frame.

2. Related work

Implicit neural representations. Implicit neural repre-
sentations, which use multi-layer perceptions (MLPs) as
the backbone networks, store 2D images [18, 19] and 3D
shapes [13, 14] as continuous functions. The inputs of
implicit neural representations are 2D or 3D coordinates,
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while the outputs are the corresponding signal. This kind
of continuous representation shows not only extraordinary
results in overfitting a single image or multiple images but
also exceeds other state-of-the-art architectures in solving
inverse problems, such as single-image superresolution [3],
medical image reconstruction [16] and medical image reg-
istration [21]. Our work, NeRT, uses implicit neural rep-
resentations as 2D image functions to render distorted im-
ages under atmospheric turbulence and clean, undistorted
images.

Atmospheric turbulence mitigation. Many works have
been proposed to undistort the effects of atmospheric tur-
bulence. Some of the recent works have demonstrated
the uses of transformer architectures as supervised turbu-
lence removal networks for single frame [12] and muti-
frame [24] atmospheric turbulence mitigation tasks. These
proposed supervised transformer architectures must rely on
fast and physically accurate simulators to generate a huge
collection of paired distorted-clean image pairs for train-
ing datasets. Although they have fast inference speed, they
are hard to generalize over out-of-the-domain datasets. Our
proposed unsupervised learning architecture, NeRT, does
not require any datasets for pretraining and, thus, can gen-
eralize over all kinds of datasets. TurbuGAN [6] pro-
poses a self-supervised approach for imaging through tur-
bulence by leveraging an adversarial learning framework
and a fast turbulence simulator [1 1]. This approach requires
no paired training datasets; however, it is hard to general-
ize domain-specific priors over out-of-the-domain distribu-
tions. NDIR [9] is the closest to our work. This method
exploits convolutional neural networks to model non-rigid
distortion. However, it relies on an off-the-shelf physically
incorrect spatially invariant deblurring algorithm [22]. Our
method, NeRT, incorporates a physically grounded, spa-
tially and temporally varying deblurring approach to restor-
ing the sharp image.

3. Physically grounded restoration network
3.1. Forward atmospheric turbulence model

Imagine the light reflected from a scene, represented as a
clean and sharp image J, travels through space with a spa-
tially and temporally varying index of refraction. The light
finally arrives at a passive imaging device, such as a digital
single-lens reflex (DSLR) camera, forming many distorted
images I over time. Each I has stochastic distortion at dif-
ferent pixel locations and time stamps. The generalized for-
ward atmospheric turbulence model can be written as [2]:

I(CE,y,t) :Ht('](xayat))v (D

where H is a general linear distortion operator. However,
we desire to decompose #H into simpler operations for the
computational tractability of inverting the distortion. For-
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tunately, representation using Zernike bases allows us to do
sO.

The distortion from atmospheric turbulence can be pa-
rameterized by coefficients of Zernike polynomials in the
phase space [4]. The representation in the Zernike space
allows us to decouple the distortion into interpretable oper-
ations of tilting operation (7)) and blurring operation (B).
The tilt 7 is encoded by the first two Zernike bases (barring
the constant term) and is the most significant contributor to
shifting the center of mass of the distortion spread. The blur
B is encoded by the remaining Zernike bases and describes
the distortion spread. The question now is how to compose
the decoupled operations to accurately describe the true at-
mospheric distortion. There are two possible options:

Blur-then-tilt: I = [T o B]J,
Tilt-then-blur: I = [Bo T]J,

where o is a functional composition operator, and the com-
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position is read from right to left.

Many of the previous works [1,10,25] opt to use the blur-
then-tilt model, whose inversion is to untilt first and then to
deblur. They choose this route because it is relatively easier
to estimate the tilt first using well-known computations such
as optical flow [10]. Then, after untilting, an off-the-shelf
deblurring algorithm is used to deblur.

However, Chan [2] showed, by careful analysis, that the
blur-then-tilt model is inaccurate and that the tilt-then-blur
model is physically more accurate. In our work, we use
the correct model of tilt-then-blur to represent our forward
model, which is given as follows [2]:

I(J?,y, t) = [BO 7—]J($,y, t),

where B denotes a temporally and spatially varying blur-
ring operator, 7 represents a temporally and spatially vary-
ing tilting operator and o is a functional composition op-
erator. We apply spatially and temporally varying tilting

2



operators to the clean image J(z, y) first to obtain multiple
tilted images I at different time stamps. Then, we apply
spatially varying blurring operators to those tilted images
I7 to render corresponding final tilted-then-blurred images
I = Ig,7 under atmospheric turbulence.

3.2. Why choose tilt-then-blur?

Although the two compositions Bo 7 (tilt-then-blur) and
T o B (blur-then-tilt) are analytically different, their impacts
on images of natural scenes tend to be similar, and the dif-
ferences might be imperceptible [2]. However, the errors
in the incorrect 7 o B model can quickly accumulate at the
edges and high-resolution regions, as shown in the analysis
below.

For simplicity, let us assume that the blurring is spatially
invariant. We can write the equations of the two models

as [2]:

N

Iros = Y gl — uy)J (u; — t;), 3
j=1
N

IBoT:Zg(wi—uj)J(uj —tj), (4)
j=1

where ¢ is the spatially invariant blur, and ¢ is the tilt. Note
that the subtlety is captured in the indexing of ¢. More de-
tails regarding the derivation can be found in [2].

We may now evaluate the difference between the correct
tilt-then-blur model and the incorrect blur-then-tilt model as
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where V.J (u] ) stands for the image gradient, and ¢; — ¢,
represents the random tilt. For natural scene images, the
image gradients V.J (uf) are typically sparse, and the error
between the two models is close to zero for most of the
image regions. However, the image gradients are strong
at edges and high-resolution regions, and there will be a
significant error between the two models. Thus, it is sub-
optimal to solve atmospheric mitigation problems follow-
ing the incorrect blur-then-tilt model. Using the correct tilt-
then-blur model gives us the opportunity to recover edges
and high-resolution details from a time window of dynami-
cally distorted frames.

3.3. Network Structure

Figure 2 demonstrates the architecture of NeRT. Our
model has three major components, grid deformers, image
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generators, and shift-varying blurring.

Grid deformers Gy take uniform grid Gy € R2Xmxn
as inputs, where m and n are the image sizes, and out-
put deformed grid, G € R?*™*"_ Like NDIR [9], each
grid deformer Gy consists of four convolutional layers with
256 channels and ReLU activation layers. Similarly, we
have a dedicated grid deformer Gy for each distorted image
Ic RSxmxn.

Image generator Z; take deformed 2D pixel coordinates
G € R™*"*2 a5 inputs, and output 3D RGB pixel value
that corresponds to the tilted images I € R™*"*3_ Tt can
also take uniform 2D pixel coordinates Gy € R™*"*2 as
inputs and output colored pixel value of the clean image
J € R™*™x3_ We build our image generator as an implicit
representation, which consists of five layers of fully con-
nected layers of hidden size 256 with ReLU activation and
positional encoding. We implement our coordinate-based
MLPs following previous work, SIREN [18] and Fourier
feature network [19]. Specifically, we reshape the 2D pixel
coordinates G € R™*"*2 as G € R™™*2 to parse into the
coordinate-based MLPs. Additionally, we reshape the out-
put of the coordinate-based MLPs, corresponding 3D RGB
pixel value, J € R™ %3 a5 J € RmM*n*3,

Shift-varying blurring P, take generated tilted images
I € R™*™%3 ag inputs and output generated tilted-then-
blurred images Igo € R™*"*3, Shift-varying blurring
leverages the Phase-to-Space (P2S) transform [ 1] to ap-
ply pixel-wise spatially and temporally varying blurring.
We initialize per-pixel correlated Zernike coefficients o =
[a1,...,ak] by multiplying independent and identically
distributed Gaussian vectors with pre-computed correlation
matrices. In addition, we apply P2S transform network dur-
ing the optimization to convert Zernike coefficients a =
[a1, ..., ak] to PSF basis coefficients 8 = [34, ..., k]
Together with the pre-computed PSF basis, we are able to
use the converted basis coefficient 3 to compute spatially
and temporally varying PSF for the shift-varying blurring
operation. Note that we don’t consider the first two Zernike
bases since they are already accounted for as tilt by the grid
deformers.

3.4. Parameter initialization

Since our method is unsupervised, parameter initializa-
tion is rather important. A good initial point could help our
model avoid saddle points and local minimums during the
optimization. First, D /rq, which characterizes the strength
of the atmospheric turbulence and typically ranges from 1.0
to 5.0, determines the variance of the i.i.d. Gaussian vector
during « initialization. Higher D /r means stronger atmo-
spheric turbulence. When the observed images have rela-
tively high turbulence strength, our model tends to converge
better with a higher D /rg. Second, corr [11] refers to how
correlated these nearby PSFs are and typically ranges from
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Figure 3. Qualitative results from the static scene test datasets, including Siemens star dataset [7], text dataset [12], and door
dataset [7]. We compare NeRT with other supervised [ 2] and unsupervised [ |, 9] SOTA. NeRT is able to achieve high spatial resolution,
recover high-contrast text, and reconstruct fine details, such as wire fences. CLEAR [1], TSR-WGAN [8], and TurbNet [12] fails to
mitigate the atmospheric turbulence, while NDIR [9] fails to preserve the wire fences.

—b5to —0.01. A higher value means a stronger correlation.
When the observed images have relatively high turbulence
strength, our model tends to converge better with a higher
corr. Third, the kernel size of the PSF basis should vary
as the size of the image varies. Large image dimensions
usually require a large kernel size of the PSF basis.

3.5. Two-step optimization

We follow the network initialization in NDIR [9]. Dur-
ing the first initialization step, the grid deformers Gy are
constrained to learn an identity mapping from uniform grid
Gy to be close to the uniform grid Gy. In this way, we
can limit the grid deformation from extreme pixel mixing.
The image generator is forced to learn an average of all the
distorted input images. The loss function of the first initial-
ization step is formulated as

‘?ﬂ?z 1G5 (Gu) = Gully +1Z4(Gu) = Ikllr. (6)
Tk

During the second iterative optimization step, we initialize
the « in shift-varying blurring choosing appropriate D /rq,
corr, and PSF kernel size. The loss function is then formu-
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lated as

gnqbuclxz [Pa(Zs(G5 (Gu))) — Iy
77 k

H|Pu(I€) = T @

+H[Pa(Zs(95(Gv))) = PalIF)I1,

where 1765 is a resampled tilted image given deformed grids
G. We would like to enforce consistency between pre-
dicted tilted-then-blurred images, observed images, and re-
sampled tilted-then-blurred images.

4. Experiments and results

In this section, we compare NeRT with other state-
of-the-art supervised and unsupervised methods, such as
CLEAR [1], TurbNet [12], TSR-WGAN [&] and NDIR [9]
on both real and synthetic atmospheric turbulence mitiga-
tion datasets. CLEAR [1] is an optimization-based multi-
frame restoration method. TurbNet [12] is a deep learning-
based single-frame restoration method. TSR-WGAN [§]
and NDIR [9] are deep learning-based multi-frame restora-
tion methods. We show that NeRT exhibits superior per-
formance in both qualitative and quantitative assessments



Table 1. Quantitative performance on synthetic dataset created using simulator [11]. T means the higher the better.

Strength Metric CLEAR [1] | TurbNet [12] | TSR-WGAN [8] | NDIR [9] | NeRT (Ours)
Weak PSNR 7 (dB) 20.164 20.532 20.428 21.366 22109
(D/rg =1.5) SSIM 1 0.704 0.601 0.600 0.716 0.766
Medium PSNR 7 (dB) 19.341 18.220 18.811 19.606 20.576
(D/ro =3) SSIM 1 0.611 0.440 0.457 0.603 0.659
Strong PSNR 7 (dB) 17.715 17.786 17.198 18.812 19.311
(D/rg =4.5) SSIM 1 0.488 0.512 0.347 0.544 0.567

when compared to the state-of-the-art unsupervised and su-
pervised methods.

4.1. Implementation details

We implement our model in Pytorch with one NVIDIA
A100 80GB GPU. We use Adam optimizer with a learning
rate of 1 x 10~ to update parameters in grid deformers
Gy, image generator Z, and shift-varying blurring P,. We
use 1000 epochs for both the first initialization step and the
second iterative optimization step. We empirically choose
D/ry = 5.0, corr = —5.0, and a PSF kernel size of 11
for all experiments. We resize the dimensions of all the
distorted input images to 256 x 256. We randomly choose
20 distorted images as input for the experiments.

4.2. Evaluation on synthetic datasets

We use the P2S atmospheric turbulence simulator [11]
to create our synthetic distorted video sequences for eval-
uation. We choose three different levels of turbulence
strength. We use D /ro = 1.5 as weak turbulence, D /rg =
3 as medium turbulence, and D/rg = 4.5 as strong tur-
bulence. Table 1 demonstrates the quantitative comparison
between our method, NeRT, and other SOTA. NeRT outper-
forms other methods in terms of peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) and
is robust to different turbulence strengths.

TurbNet

Input

4.3. Evaluation on real datasets

Static scenes. We include three real datasets for static
scenes, the Siemens start dataset [7], the text dataset [12],
and the door dataset [7]. Figure 3 shows the qualitative re-
sults of these static scenes. NeRT achieves the best over-
all performance in terms of spatial resolution, high-contrast
text reconstruction, and fine details recovery. Further, NeRT
is able to preserve the fine details, such as the wire fences,
while suppressing the blurring and tilting caused by atmo-
spheric turbulence.

Dynamic scenes. We present the moving car dataset [ 1] for
dynamic scenes. The distorted input image sequences de-
pict a car moving from back to front and from left to right.
Figure 4 presents the qualitative results from the dynamic
scene. Again we compare with other SOTA. NeRT is able
to recover a high-contrast license plate with higher fidelity.
To handle the dynamic scene, the image generator Z,, in
our unsupervised model converges to a reference frame as
a starting point during the first initialization step. During
the second iterative optimization step, the clean image gen-
erated by the image generator Z,, is further optimized given
dozens of distorted images.

5. Anytime reconstruction of continuous video
frames

Imagine some ground-based imaging systems that cap-
ture long-range video sequences continuously. Every sec-
ond, these passive imaging systems would capture some

TSR-WGAN NDIR

NeRT (Ours)

Figure 4. Qualitative results from the dynamic scene test dataset, moving car dataset [1]. We compare NeRT with other supervised [8,
12] and unsupervised [1,9] SOTA. We are able to recover high-contrast and fine details of the license plate while other methods show
blurry and low-contrast license plate numbers. NDIR [9], TSR-WGAN [8], and NeRT choose to recover the clean image based on the
newest frame while CLEAR [1] and TurbNet [12] decide to recover the clean image based on the oldest frame.
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Figure 5. NeRT converges ~ 48x faster after two-step opti-
mization (initialization). It takes a total of 2000 epochs (~ 8
minutes) to converge during the two-step optimization stage while
it only takes 60 epochs (~ 10 seconds) to converge during any-
time reconstruction.

latest video frames under the effect of atmospheric turbu-
lence. NeRT is optimal at recovering these continuously
captured video sequences because it can leverage the tilt-
ings and blurrings from previously captured video frames
to reconstruct the latest captured scene. We name the use of
the newest video frame for atmospheric turbulence mitiga-
tion, together with all the previous video frames, “anytime”
reconstruction.

Our method NeRT, like NDIR [9], has a separate grid
deformer Gy and a separate shift-varying blurring P, for
each distorted input image, and shares a single image gen-
erator Z across all the distorted images. During anytime
reconstruction, we simply initialize a new separate grid de-
former Gy and shift-varying blurring P, for the most re-
cent frame that is captured. All the other grid deformers
Gy, shift-varying blurring P, and the image generator 7,
can contain all the information of the previously observed
distorted frame, speeding up the anytime reconstruction.

Figure 5 demonstrates 48 x speedup of our method dur-
ing anytime convergence. It takes about 8 minutes to com-
plete the two-step initialization step. However, it only takes
about 10 seconds to converge for every newly captured
video frame.

6. Conclusions and discussions

We have proposed the first unsupervised and physi-
cally grounded model for atmospheric turbulence mitiga-
tion. Given multiple observed distorted images, our model
leveraged the physically correct tilt-then-blur model to re-
construct a clean and undistorted image. Our model could
generalize and outperform other SOTA in various scenar-
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ios, such as static scenes, dynamic scenes, and text recon-
structions. Our method converged 48 x faster on the latest
captured frame after the two-step initialization.
Limitations and future directions. Our shift-varying de-
blurring did not have any regularization. Thus, the recon-
structed clean image inevitably consisted of some noise due
to blind deconvolution. A more sophisticated shift-varying
deblurring process remains a future research direction. Ad-
ditionally, one might also leverage the implicit neural net-
work for image superresolution. As we know, the implicit
neural network is a continuous representation of the im-
age. More pixel coordinates queried into the implicit image
function lead to higher resolution images generated.
Acknowledgements. This work was supported by NSF
CAREER: IIS-1652633 and NSF Expeditions in Comput-
ing: IIS-1730574.
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