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Abstract

Recent Anomaly Detection techniques have progressed
the field considerably but at the cost of increasingly complex
training pipelines. Such techniques require large amounts
of training data, resulting in computationally expensive
algorithms that are unsuitable for settings where only a
small amount of normal samples are available for training.
We propose ‘Few Shot anOMaly dEtection’ (FewSOME),
a deep One-Class Anomaly Detection algorithm with the
ability to accurately detect anomalies having trained on
‘few’ examples of the normal class and no examples of
the anomalous class. We describe FewSOME to be of low
complexity given its low data requirement and short train-
ing time. FewSOME is aided by pretrained weights with
an architecture based on Siamese Networks. By means of
an ablation study, we demonstrate how our proposed loss,
‘Stop Loss’, improves the robustness of FewSOME. Our ex-
periments demonstrate that FewSOME performs at state-
of-the-art level on benchmark datasets MNIST, CIFAR-10,
F-MNIST and MVTec AD while training on only 30 nor-
mal samples, a minute fraction of the data that existing
methods are trained on. Moreover, our experiments show
FewSOME to be robust to contaminated datasets. We
also report F1 score and balanced accuracy in addition
to AUC as a benchmark for future techniques to be com-
pared against. Code available; https://github.
com/niamhbelton/FewSOME.

1. Introduction
Anomaly Detection (AD) refers to any technique that at-

tempts to detect samples that are substantially distinct from
the majority of other samples in a dataset. In recent years,
Machine Learning algorithms for AD have become increas-
ingly accurate, but at the cost of increased complexity. Self-

supervised techniques, in particular, have made significant
breakthroughs in terms of accuracy. However, most of these
methods have complicated training pipelines that involve
performing extensive transformations and augmentations to
the data during training. Such complex algorithms are not
suitable for the specific few-shot setting where only a few
examples (i.e. shots) of the normal class exist and no ex-
amples of the anomalous class exist. In this paper, we pro-
pose ‘Few Shot anOMaly dEtection’ (FewSOME), a deep
one-class AD algorithm that performs at State-of-the-Art
(SOTA) level with a fraction of the complexity of existing
methods in terms of training data size and training time.
FewSOME has a Siamese-like architecture that consists of
multiple branches of neural networks where each neural
network has shared weights. Data samples are input in tan-
dem into each neural network during training with the ob-
jective of transforming the data samples to representations
that are within close proximity of eachother. This archi-
tecture is suitable for AD given that Siamese Networks are
known for making predictions about unknown class distri-
butions [17]. As is common in recent AD techniques, Few-
SOME benefits from weight initialisation on the ImageNet
dataset [7, 8, 25]. FewSOME is trained using our proposed
loss, ‘Stop Loss’ denoted as Lstop to prevent ‘Representa-
tional Collapse’. Representational Collapse is a known is-
sue in one-class AD tasks where the model learns to map all
inputs to a constant output. Our proposed loss, ‘Stop Loss’,
can prevent this and improve the robustness of the model.

In this paper, we present FewSOME, a new SOTA in the
field of Few Shot Anomaly Detection (FSAD) on normal
data samples. In sections 5.1 and 5.2, we show that Few-
SOME can perform competitively with SOTA techniques
that were trained in the classical AD setting (i.e. trained on
large datasets) whilst having significantly lower complexity
in terms of training data size and training time. Our ex-
periments show that FewSOME is robust to contaminated
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datasets (section 5.3) and by means of an ablation study,
we show how our proposed loss ‘Stop Loss’ boosts model
performance and prevents representational collapse (section
6.1). Additionally, we report F1 score and balanced accu-
racy in addition to Area Under the Curve (AUC) as a bench-
mark for future techniques to be compared against.

2. Related Work
Traditionally, AD was performed using simple Machine

Learning approaches such as Isolation Forest [20] or sta-
tistical methods such as Kernel Density Estimation (KDE)
[15] and One-Class Support Vector Machine (OC-SVM)
[29]. However, the requirement for manual feature en-
gineering and the poor computational scalability of these
approaches led to the exploration of more advanced tech-
niques for AD.

Deep One-Class. Deep One-Class methods aim to learn
the features of normality in a dataset and classify data sam-
ples that diverge substantially from the extracted normal
features as anomalies. DeepSVDD [26] is one of the most
commonly known one-class AD techniques. It trains a net-
work that transforms the training samples to a representa-
tion space where normal samples are contained inside a hy-
persphere. Data samples whose representations fall outside
the radius of the hypersphere are considered to be anoma-
lies. The Deep Robust One-Class Classifcation (DROCC)
[12] significantly outperformed DeepSVDD by margins up
to 20% on some AD tasks by generating synthetic anoma-
lies on which the model could train on. A more recent
method, PANDA [25], shows that SOTA AD performance
can be achieved by training large neural network architec-
tures of ResNet-152 and WideResNet-50 with pretrained
ImageNet weights [8]. The newly proposed, Interpolated
Gaussian Descriptor (IGD) [7] trains a Gaussian classifier,
initialised with pretrained weights on the ImageNet dataset,
to minimise the distance between representations of nor-
mal images and the centre of the normal image distribu-
tion whilst also adversarially interpolating training samples.
They implement a critic module to constrain the training of
IGD to be based on normal samples that are representative
of the majority of normal samples, rather than anomalous
samples that may be present in the training data.

Generative. Deep Autoencoders and Generative Adver-
sarial Networks (GANs) have dominated the field of AD in
previous years [1,11,23,28,32,37,38]. Autoencoders learn
a mapping from the input to a latent space of lower dimen-
sionality. The images are then reconstructed from the latent
space and anomalies are identified by large reconstruction
errors. GANs for AD learn to generate normal samples.
During testing, the model attempts to match the test sample
to a point in the generator’s latent space. It then reconstructs
the test sample based on this point and anomalies are identi-
fied by large reconstruction errors. Although Autoencoders

and GANs can accurately detect anomalies, they have vari-
ous limitations; it can be difficult to estimate the intrinsic di-
mensionality of the data i.e. it requires manual selection of
the latent space dimensionality, they do not specifically tar-
get anomaly detection, they often have a significant number
of network parameters, they require large amounts of train-
ing data and it is computationally expensive to reconstruct
the entire image.

Self-Supervised. Self-Supervised techniques have pro-
gressed the AD field considerably in terms of accuracy.
GEOM [10], GOAD [4] and RotNet [9] are examples of
transformation based methods that apply transforms to the
training data such as flipping and rotating. They then train a
classifier to predict the transform applied. The training sam-
ple is classified as normal if the model can predict the trans-
form and an anomaly otherwise. Another method, Con-
trasting Shifted Instances (CSI) [34], contrasts each train-
ing sample with an augmentation of itself, where the aug-
mentation is considered to be a different class to the origi-
nal training sample. CSI can therefore, constrastively learn
meaningful representations of the normal class. Although
these techniques significantly outperform existing methods,
recent literature under-reports their limitations such as the
requirement for domain specific transformations. For ex-
ample, augmentations such as flipping an image of class
‘6’ will convert this to class ‘9’ in the handwritten digit
dataset, MNIST. Therefore, many of the recent approaches
have not tested their technique on the standard AD bench-
mark MNIST dataset, highlighting their lack of robust-
ness. It was also previously shown that the performance
of GEOM significantly decreases if applied to data that
has been augmented, whilst the performance of the one-
class method DROCC was unaffected [12]. These trans-
formations/augmentations also increase the complexity of
the training and testing pipeline with CSI requiring up to 40
augmentations at test time and thus, limiting their applica-
tion in the real-world.

Few-Shot Anomaly Detection (FSAD). DeepSAD [27],
an extension of DeepSVDD, was one of the first AD tech-
niques to adapt their loss function and training strategy to
consider labelled normal and anomalous data. Later studies,
focused on the FSAD setting where there is a large amount
of unlabelled samples and few shots of the anomalous class
available for training [21,22,35,36]. Liznerski et al. (2022)
[21] studied the zero-shot setting where the model trained
on all available unlabelled data but no anomalies. They use
pretrained weights from the Contrastive Language-Image
Pre-training (CLIP) [24] model. CLIP was trained on a
large dataset of image and text pairs with the objective of
related pairs being within close proximity to eachother in
representation space and unrelated pairs being distant from
eachother in representation space. Other works have studied
the separate FSAD setting where multiple normal classes
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exist in the data and there is only a few shots of each normal
class available for training [2, 14]. These techniques aim to
not only identify anomalies that are distant from the normal
data but they also aim to identify anomalies that exist in be-
tween the normal classes. FewSOME tackles the less stud-
ied FSAD setting, that requires no level of supervision, of
training on only few examples of the normal class. Recent
works have studied this setting for the specific use case of
detecting anomalies in industrial settings [3, 31]. They also
study the zero-shot setting, where the model has not seen
any examples of the normal or anomalous class but detect
anomalies by identifying image regions that break the ho-
mogeneity of the input data sample. The first work to train
on few shots of the normal class for more general AD was
the Hierarchical Transformation-Discriminating Generative
(HTDG) model [33]. They employ a generative model and
use self-supervision to perform AD based on only one, five
and ten shots of the normal data. Unlike FewSOME, they
compare their performance to competing methods trained
only in the few shot setting, whilst we show in sections
5.1 and 5.2 that FewSOME’s performance surpasses that of
HTDG and FewSOME also performs at the same level of
existing SOTA that were trained in the classical AD setting
(i.e. trained on large datasets).

Representational Collapse. Techniques with examples
of the anomalous class or techniques that synthetically gen-
erate anomalous samples can learn meaningful representa-
tions of the normal class through contrastive learning. How-
ever, one-class AD algorithms can be susceptible to Repre-
sentational Collapse as their objective to minimise the rep-
resentation space between training samples can be easily
satisfied by learning to map all inputs to a constant out-
put. One-Class method, DeepSVDD prevents Represen-
tational Collapse by removing bias terms and freezing the
value of its hypersphere centre during training. PANDA
prevents collapse by using early stopping and another tech-
nique known as ‘elastic regularisation’. Relatedly in the
field of visual representation learning, a recent technique
known as ‘Stop Gradient’ has been empirically proven to
avoid Representational Collapse by preventing the backflow
of gradients through one of the branches of a Siamese net-
work [6].

3. FewSOME
This section outlines FewSOME, visualised in Figure

1. Given a dataset X ⊆ Rd, a sample of size N is ran-
domly sampled from X so that the training data is RN =
{r1, ...., rN} ⊆ X . This is referred to as the ‘Reference
Set’. This is different to the standard training set as the size
of the Reference Set is typically a small fraction of the size
of the training set. A neural network, f , is then trained to
transform the input space RN ⊆ Rd to the representation
space f(RN ) ⊆ Rl. The representation space of RN is de-

noted as f(RN ) = {f(r1), ...., f(rN )}, where f(ri) is the
representation of ri in the form of a 1D feature embedding
with dimensions 1× l. The objective of the network, f , is to
learn weights W that minimise the Euclidean Distance (ED)
between feature embeddings of the Reference Set. This is
achieved by employing a distance-based loss function. The
distance component of the loss function, D(r) consists of
Ldist and Stop Loss, denoted as Lstop (equation 1). In each
epoch of the training process, D(ri) is computed for each
ri ∈ RN .

D(ri) =

K∑
k=1

(
||f(ri)− f(rk)||

)
︸ ︷︷ ︸

Ldist

+α||f(ri)− stop(f∗(ra))||︸ ︷︷ ︸
Lstop

(1)

3.1. Ldist

The Ldist component represents the Siamese architec-
ture of FewSOME. FewSOME differs from the typical
Siamese Network as it trains on only one class and the num-
ber of branches in the network is a hyper-parameter of the
model. The hyper-parameter K is the number of data sam-
ples in RN that are input into f in tandem with ri. The term
||f(.) − f(.)|| is the ED between two feature embeddings
divided by

√
l where l is the dimension of the 1D feature

embeddings. As the final layer of f is a Sigmoid layer, it
can be proven that dividing the ED by

√
l results in the term

||f(.)− f(.)|| being bounded between zero and one.
For each ri during training, rk is selected randomly.

A variation of FewSOME, named Smart FewSOME (S-
FewSOME) selects rk such that rk = argmaxrk ||f(ri) −
f(rk)|| where ri and rk ∈ RN . This is commonly done in
distance based loss functions such as triplet loss [30]. This
can speed up the convergence of the model, however, it in-
creases the complexity of the model.

3.2. Lstop

The Lstop component of D(ri) computes the distance
between f(ri) and f(ra) where ra ∈ RN . The data sam-
ple, ra is used to compute the ‘anchor’, f(ra). It is ar-
bitrarily selected from RN prior to training. The values
of f(ra) are computed as the first initial pass through the
model. Stop Gradient [6], denoted as stop in equation 1 is
then applied to f(ra). This prevents the back-flow of gra-
dients i.e. the weights are updated so that f(ri) is moved
closer to f(ra), rather than the weights updating to move
both f(ri) and f(ra) closer to each other. This results in the
value of f(ra) being frozen for the duration of model train-
ing. Frozen values are denoted by * in f∗(ra). We found
that the selection of ra had an insignificant impact on model
performance and model convergence (see also section 6.2).
Hyper-parameter α, 0 ≤ α ≤ 1, controls the trade-off be-
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tween Ldist and Lstop. The anchor in FewSOME behaves
differently to DeepSVDD’s frozen centre. For example, if
α < 1, minimising the distance from f(ri) to the anchor
f(ra) is not the primary objective when minimising D(ri)
and therefore, the anchor does not necessarily become the
centre. Our proposed loss is also less complex as the anchor
is computed based on a randomly selected training sample
and it does not require the representations for all training
samples to be calculated in order to assign its value, as is
required when assigning the value of DeepSVDD’s centre,
c.

Equation 2 shows the objective function. The first term
is equal to Contrastive loss1 when y = 0. During training, y
will always equal zero in FewSOME as all samples in RN

are of the same class. The last term shows the weight decay
regularization where 0 <= λ <= 1.

min
D(ri),W

1

N

N∑
i=1

1

2
D(ri)

2 +
λ

2
||W ||2 (2)

During testing, samples from a test set T ⊆ Rd are input
into f to transform them to the representation space. The
transformed test samples are then ranked by an anomaly
scoring function, s. Existing anomaly scoring functions
score a test sample based on its distance to the centre of
the normal class representation space. We found that as-
signing an anomaly score to test point, ti ∈ T , based on the
distance between f(ti) and the nearest representation in the
Reference Set, f(r) ∈ f(RN ), and the distance from f(ti)
to the anchor, f∗(ra) gave optimal results (equation 3).

s(ti) = argminf(r){||f(ti)−f(r)||+α||f(ti)−f∗(ra)||}
(3)

3.3. Properties to Prevent Representational Col-
lapse

We define Representational Collapse as the case in which
all feature embeddings of the Reference Set are equal to the
mean feature embedding of the Reference Set i.e. ∀ r ∈
RN : 1

N

∑N
i=1 f(ri) = f(r). In simpler terms, collapse

results in the model mapping all inputs to a constant output.
We outline two scenarios in which collapse could occur and
the measures that were taken to prevent it;

1. In the absence of Lstop: if the weights of any layer
in f converge to all zeros, this would result in ∀ r ∈
RN : 1

N

∑N
i=1 f(ri) = f(r). Although the model has

not learned the features of normality, it has in theory

1Contrastive Loss = 1
N

∑N
i=1

1
2
(1 − yi)(||(xi − xj ||)2 +

1
2
(yi)MAX(0,margin − (||(xi − xj ||)2, where N is the number of

samples, y is the label (y = 0 when both samples are the same, y = 1
when two samples are different), ||(xi − xj || is the ED between two data
samples xi and xj and the margin is an arbitrary small number.

achieved its objective of minimising the representation
space with Ldist = 0. However, we prevent this sce-
nario by including Lstop which minimises the distance
between f(RN ) and non-zero value f∗(ra). This en-
sures that the model has not achieved its objective by
outputting constant representations.

2. In the presence of Lstop: if the weights of any layer
in f converge to all zeros and bias terms exist, f can
achieve its objective by updating the bias terms so that
each feature embedding is equal to the feature embed-
ding of the anchor i.e. 1

N

∑N
i=1 f(ri) = f∗(ra) . Sim-

ilar to DeepSVDD, we prevent this type of representa-
tional collapse by removing bias terms.

4. Experiments

FewSOME was evaluated on four benchmark datasets,
MNIST [19], Fashion-MNIST (F-MNIST) [39], CIFAR-
10 [18] and MVTec AD [5]. The former three datasets con-
sist of ten classes. Following standard AD protocol, each
class was set to normal and all other classes were set to
anomalies. MVTec AD has 15 classes consisting of high-
resolution images of different industry objects and textures.
Within each class, there is a training set of normal images
and a test set of normal and anomalous samples. Ten models
were trained for each normal class. Each of the ten models
were trained on different randomly sampled Reference sets
from the provided training data.

4.1. FewSOME Implementation Details

The model backbone for MNIST, CIFAR-10 and F-
MNIST is a simple architecture we name ‘VGG-3’ based
on the first three blocks of VGG-16. Following the train-
ing protocol of previous SOTA DROCC, 20% of the official
training data was used as a validation set to tune the model
parameters. The hyper-parameters of FewSOME include
the Reference Set size, N ∈ {30, 60}, K ∈ {1, 2, 3}, fea-
ture embedding dimension, l ∈ {1024, 2048}, batch size
∈ {1, 8, 16, 30}, α in the range [0.01, 1] and learning rate
in the range [1e − 2, 1e − 8]. The early stopping criteria
for FewSOME is to stop training once the rate at which the
training loss is decreasing is less than 0.5% for a patience of
two. The optimiser was Adam [16]. The image dimensions
in MVTec AD range from 700×700 to 1024×1024. These
images were rescaled to 128 × 128. A larger architecture,
ResNet-18 [13] was then employed as the model backbone
and the feature embedding dimension, l was set to 1000. For
MVTec, the average best result (averaged over ten seeds) on
the test set was reported as was done for competing methods
for fair comparison. Weights were initialised using Kaim-
ing initialisation or with weights pretrained on ImageNet.
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Figure 1. Training process for the MNIST dataset when the normal class is equal to five. In each iteration, ri ∈ RN and {r1, ...rK} ∈ RN

are input into the network f to obtain the feature embeddings, f(ri) and {f(r1), ...f(rK)}. The values of f∗(ra) are obtained in the first
initial pass through the model and they are unchanged throughout training. The Ldist is calculated in parallel with Lstop to obtain
D(ri). The model is trained with the objective of minimising D(ri). The VGG-3 architecture is shown in the figure where ‘conv’ refers
to a convolution, ‘Max Pool’ refers to a Max Pooling operation and ‘FC’ refers to a Fully Connected layer. The figure also depicts a
hypothetical example of the feature embeddings projected into 2D space. The blue dots are the feature embeddings of the Reference Set.
The green dot is ra ∈ RN , the yellow dot is ri ∈ RN and the red triangle is an anomaly during testing. Before training all feature
embeddings are dispersed in the 2D space. After training, the feature embeddings of the Reference Set are closer together, while the
anomalous sample is distant from the Reference Set.

4.2. Competing Methods Implementation Details

We compare FewSOME against typical baseline meth-
ods. We primarily compare FewSOME against DeepSVDD
and DROCC as they are proven SOTA also belonging to
the ‘Deep One-Class’ class of AD techniques. As the
original papers do not report on all benchmark datasets,
we implement both models for F-MNIST and MVTec and
we additionally implement DROCC for MNIST. We tuned
DROCC’s hyper-parameters using grid-search on a valida-
tion set of 20% of the provided training data for MNIST,
CIFAR-10 and F-MNIST. For MVTec, the average best re-
sult (averaged over ten seeds) on the test set was reported.
For MVTec, DROCC’s model backbone was scaled up from
a LeNet architecture to a ResNet-18. As DeepSVDD re-
quires pretraining of an autoeconder, it was too computa-
tionally expensive to increase the size of its architecture to
a ResNet-18 for training on MVTec. Therefore, the images
were further downsized to 64 × 64 and we increased the
number of model parameters by two million by adding con-
volutional layers and kernels. Although newer techniques
such as PANDA and IGD also belong to the ‘Deep One-
Class’ category, it would not be a fair comparison to com-
pare them to FewSOME given FewSOME’s simple train-
ing pipeline and smaller architecture. The recent technique,

PANDA employs ResNet-152 and WideResNet-50 archi-
tectures. IGD additionally has a complex training pipeline
that involves reconstructing the images and adversarially
generating training samples.

5. Results
5.1. Comparative Analysis

Table 1 shows the Area Under the Curve (AUC) averaged
over all classes (ten seeds per class) compared with other
SOTA on the provided test sets. Figures with an asterick are
reported based on our implementation. FewSOME and the
Smart FewSOME (S-FewSOME) variation show substan-
tial performance improvements over baseline and genera-
tive models with training data sizes of N = 30 for MNIST,
CIFAR-10 and F-MNIST and N = 60 for MVTec, a frac-
tion of the training data that competing methods use (com-
peting methods train on 5,000 images for CIFAR-10 and
6,000 images for MNIST and F-MNIST). It can be noted
that S-FewSOME results in only marginal increases in per-
formance in some cases compared to standard FewSOME,
indicating that the lower complexity standard FewSOME
model is sufficient. As it is known that 90% of the test
data are anomalies, test samples with anomaly scores in the
10th percentile and above are classified as anomalies for all
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Table 1. AUCs in % averaged over each normal class (ten seeds
per class) on MNIST, CIFAR-10, F-MNIST and MVTec AD. *
Results based on our implementation. † Few-Shot learning ap-
proaches (trained on few shots of normal data).

Model MNIST CIFAR-10 F-MNIST MVTec

Baselines
OC-SVM [29] 91.3 64.8 × ×

KDE [15] 86.9 64.9 × ×
Generative
DCAE [32] 89.7 59.4 × ×

MinLGAN [38] × 68.7 × ×
LSA [1] × 64.1 × ×

OCGAN [23] 97.5 65.7 × ×
AnoGAN [28] 91.3 61.8 - 50.3
MEMAE [11] 97.5 60.9 × ×
CAVGA [37] 98.6 73.7 88.5 ×
HTDG† [33] 87.2 70.2 91.2 78.0
One-Class

DeepSVDD [26] 92.4 64.8 90.7* 72.2*
DROCC [12] 87.8* 76.9 90.5* 74.5*
FewSOME† 98.0 76.6 93.1 84.7

S-FewSOME† 98.1 76.9 93.1 82.3

models. The F1 score and balanced accuracy were then cal-
culated, averaged across all classes and reported in Table
2. Although FewSOME and DROCC perform similarly for
CIFAR-10 in terms of AUC, Table 2 demonstrates that Few-
SOME outperforms it in terms of F1 score and balanced ac-
curacy. This highlights the necessity for metrics in addition
to AUC to be reported with all AD algorithms.

5.2. Training on Few Normal Samples

Five models were trained for each normal class in
MNIST and CIFAR-10 with varying number of shots (i.e.
training dataset sizes) ranging from two to 50. We repeat
the experiments with competing methods DeepSVDD and
DROCC. We also report the results of the previous SOTA in
FSAD on normal data samples, HTDG. HTDG, as outlined
in section 2, is a generative model that uses self-supervision
to detect anomalies. In this section, we introduce an addi-
tional competing method, IGD [7]. IGD, as outlined pre-
viously, is a deep one-class method that uses ImageNet
weights and adversarially generates samples during train-
ing. They then classify anomalies by measuring their dis-
tance to a Gaussian centre of the normal class representa-
tion space. We include this as a competing method as they
specifically demonstrate the performance of their method
on small datasets.

For this experiment, FewSOME and DeepSVDD were
trained until the rate at which the training loss was decreas-
ing was less than 0.5% for a patience of two. As DROCC
does not benefit from pretrained weights, we used the same

Table 2. F1 score and Balanced Accuracy in % averaged over
each normal class (ten seeds per class) on MNIST, CIFAR-10, F-
MNIST and MVTec AD. All results are based on our implementa-
tion. The model ‘S-FewSOME’ is the Smart FewSOME variation.

MNIST CIFAR-10 FMNIST MVTec

F1
DeepSVDD 96.6 91.0 95.4 83.1

DROCC 95.0 92.1 95.3 83.7
FewSOME 98.2 92.1 96.0 85.7

S-FewSOME 98.2 92.9 96.0 84.9
Balanced Accuracy

DeepSVDD 82.7 55.1 76.8 57.1
DROCC 73.7 58.0 76.2 58.0

FewSOME 90.9 60.6 80.2 63.2
S-FewSOME 91.0 64.5 80.2 61.6

stopping criteria but with increased patience from two to
ten. Due to IGD’s architecture of a generator and critic
module that behaves similar to a GAN discriminator, mon-
itoring the training loss was an ineffective method for early
stopping. Therefore, we evaluate it on the test set every
20 epochs and report the best result. Table 3 displays the
AUC averaged over all normal classes for the varying train-
ing data sizes. There are three primary findings from Table
3. Firstly, FewSOME achieves almost optimal performance
on as little as N = 2. Secondly, FewSOME outperforms
the current SOTA in FSAD on normal examples, HTDG.
Thirdly, FewSOME outperforms IGD, the SOTA for AD on
small datasets. This is a notable result as IGD has a complex
training pipeline that consists of a classifier, generator and a
critic module that performs similar to a GAN discriminator,
whilst FewSOME is a single network with a small number
of model parameters ranging from four million to 11 million
depending on whether VGG-3 or ResNet-18 is employed.

Figure 2 visualises how FewSOME reaches its peak
performance when N = 30, whilst both DROCC and
DeepSVDD require all available training data to achieve
their peak performance. The figure also shows FewSOME
requires less training time than competing methods.

5.3. Contaminated Datasets

The following experiment was conducted by contaminat-
ing the training data with anomalies at rates of 1%, 5%, 10%
and 20%. The results were averaged over normal classes.
The results reported in Table 4 show that FewSOME is ro-
bust to contamination in the data, achieving 96% of its peak
performance on both CIFAR-10 and MNIST despite 20%
of the Reference Set being contaminated with anomalies.
At all levels of contamination, FewSOME is outperforming
DeepSVDD and DROCC.
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DROCC
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achieved

Figure 2. Top row: Percentage of peak performance achieved for each model at different training dataset sizes (averaged over all classes,
5 seeds per class) for MNIST and CIFAR-10. Bottom row: The average training time for each model at different training dataset sizes
(averaged over all classes, 5 seeds per class) for MNIST and CIFAR-10. Stars represent the training data size where the model achieves its
peak AUC.

Table 3. AUC in % averaged over each normal class on MNIST
and CIFAR-10 for shots (i.e. training set sizes) ranging from two
to 50. All results are based on our implementation with the excep-
tion of HTDG. DeepSVDD has been abbreviated to DSVDD and
FewSOME has been abbreviated to FSOME.

Model 2 5 10 20 30 40 50

MNIST
HTDG × 85.9 87.2 × × × ×

DSVDD 75.9 78.8 80.0 80.9 81.1 81.4 81.6
DROCC 64.3 70.3 66.1 74.2 72.1 69.7 70.9

IGD 80.1 83.4 88.5 90.2 92.8 93.9 94.7
FSOME 90.1 95.5 97.0 97.8 98.1 98.2 98.2

CIFAR-10
HTDG × 67.5 70.2 × × × ×

DSVDD 57.4 58.6 59.7 60.0 59.4 59.2 59.8
DROCC 54.2 55.3 55.6 55.5 56.2 55.1 55.5

IGD 54.2 58.2 65.4 73.3 74.6 75.8 74.6
FSOME 64.4 69.6 72.5 75.1 76.6 76.2 75.8

6. Further Analysis
6.1. Ablation Study on Lstop

A barplot in Figure 3 shows the percentage performance
increase in average AUC over ten seeds for each normal

Table 4. AUC in % averaged over each class (five seeds per class)
at varying levels of contamination in the training data. Results
based on our implementation.

Model 1% 5% 10% 20%
MNIST

DeepSVDD 92.9 90.4 87.4 82.9
DROCC 82.8 82.7 77.9 76.9

FewSOME 97.2 96.7 95.8 93.7
CIFAR-10

DeepSVDD 63.1 62.3 61.5 60.3
DROCC 70.1 69.6 68.9 68.4

FewSOME 76.0 75.1 74.8 73.7

class in the MVTec dataset as a result of including Lstop

in the loss function. The plot shows significant increases
of up to 60% in one case, demonstrating the importance of
including Lstop in the loss function. Representational col-
lapse can be identified when the model immediately reaches
an almost-zero training loss [6]. The training plots in Figure
3 show that the train loss immediately achieves almost zero
values without Lstop. However, the inclusion of Lstop reg-
ularises the model to prevent representational collapse and
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Figure 3. The barplot shows the percentage performance increase
in average AUC over ten seeds as a result of including Lstop in the
loss function. The figure also depicts two examples of the training
loss at each epoch of training with and without Lstop.

boosts the model performance.

6.2. Sensitivity Analysis on Reference Set, N and
choice of Anchor

A sensitivity analysis was conducted to assess how the
model performance is impacted depending on (a) the choice
of Reference set, (b) choice of N and (c) choice of the train-
ing sample, ra that is used to compute the anchor. For each
value of N , ten models were trained based on different ran-
domly sampled Reference sets and randomly sampled ra.
Figure 4 shows the model’s performance on MNIST with
the normal class set to zero and CIFAR-10 with the nor-
mal class set to ‘airplane’. The results show that the perfor-
mance increases as N is increased from two to five before
plateauing at N = 5 for both datasets. From this, we outline
the following guidelines for choosing N.

1. Increase N until the performance begins to plateau and
there is little variability in model performance between
choice of Reference Set.

2. In the absence of labelled data, our experiments have
shown N = 30 to achieve good performance across all
datasets.

As there is little variability in model performance once
N is large enough (i.e. greater than N = 5), we can also
conclude that the selection of the Reference set and ra does
not impact performance. Therefore, random sampling is an
effective method for selecting the Reference set and ra.

7. Conclusion
In this paper, we presented FewSOME, a new SOTA in

the field of FSAD on normal data samples. By reporting
on AUC, F1 scores, balanced accuracy and training times,
we have demonstrated FewSOME’s ability to perform at
SOTA level having trained on a fraction of the data that ex-
isting approaches require. Our extensive experiments have

Figure 4. AUC in % averaged over ten different randomly sampled
Reference Sets for different values of N and different selections of
the anchor.

shown that our proposed loss, ‘Stop Loss’ prevents rep-
resentational collapse and boosts performance. We have
also demonstrated that FewSOME is robust to contaminated
datasets and it is insensitive to choice of Reference Set and
anchor.
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