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Abstract

Image anomaly detection aims to detect out-of-
distribution instances. Most existing methods treat anomaly
detection as an unsupervised task because anomalous train-
ing data and labels are usually scarce or unavailable. Re-
cently, image synthesis has been used to generate anoma-
lous samples which deviate from normal sample distribu-
tion for model training. By using the synthesized anoma-
lous training samples, we present a novel self-supervised
normalizing flow-based density estimation model, which is
trained by maximizing the likelihood of normal images and
minimizing the likelihood of synthetic anomalous images.
By adding constraints to abnormal samples in our loss
function, our model training is focused on normal samples
rather than synthetic samples. Moreover, we improve the
transformation subnet of the affine coupling layers in our
flow-based model by dynamic stacking convolution and self-
attention blocks. We evaluate our method on MVTec-AD,
BTAD, and DAGM datasets and achieve state-of-the-art
performance compared to flow-based and self-supervised
methods on both anomaly detection and localization tasks.

1. Introduction

Anomaly detection aims to detect samples that are obvi-
ously distinct from normal patterns. It is a trending topic
in computer vision with diverse applications, including in-
dustrial image defect detection, medical diagnostics, video
surveillance, etc. Nevertheless, anomaly detection is often
posed as a one-class classification problem because in many
cases only normal data is available for training. Moreover,
the scarcity and diversity of anomalous samples make the
collection of complete defective samples infeasible.

Most of the current anomaly detection approaches are
unsupervised methods [5, 6, 8, 27, 30, 35, 41, 43], which
are trained only on non-defect images. Those works are
based on generative models such as Adversarial Genera-

Figure 1. Overview of our self-supervised normalizing flow-based
model. First, we generate artificial defective images using a syn-
thetic anomaly module Second, we use a pre-trained model as our
feature extractor for both artificial defective images and original
normal images. Finally, we calculate Losssyn and Lossnormal

based on density estimation and train our model to learn the distri-
bution of normal features.

tive Networks (GANs) [1, 2, 20, 34, 35], Variational Au-
toencoders (VAEs) [6, 25, 45, 46], or normalizing flows
(NFLOWs) [13, 28, 29, 44]. After learning the probability
distribution of normal data, the out-of-distribution testing
images are detected as abnormal from the model inference.
However, model training without anomalous images faces
challenges of detecting defective images that are slightly
different from training samples due to the lack of knowl-
edge on the anomaly.

We can reduce the imbalance between normal and ab-
normal images for model training using synthetic images.
Some self-supervised approaches have recently utilized data
augmentation with traditional image processing methods to
produce synthetic anomalous data. After learning more in-
formation about potential anomalous regions, these self-
supervised methods have shown to be successful in distin-
guishing normal data from outliers.

In order to leverage the benefit of self-supervised meth-
ods and normalizing flow-based models, we propose a self-
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supervised normalizing flow-based model for anomaly de-
tection and segmentation, illustrated in Fig. 1. Our model
is trained on a set of real normal and synthetic abnormal
images. By employing a conditional loss on the abnormal
images, we can improve the density estimation of normal
feature with the proposed flow-based model.
The main contributions of our paper are summarized as fol-
lows:

• We present a self-supervised normalizing flow-based
model that includes synthetic abnormal data into train-
ing to improve the model accuracy on anomaly detec-
tion.

• We propose a conditional loss function in conjunction
with a stable training process to prevent our model
from being significantly influenced by extreme abnor-
mal samples.

• We propose a dynamic transformation network by al-
lowing the coupling layers to tune different learnable
layers for our flow-based model.

• Our self-supervised learning method achieves state-of-
the-art performance on several public anomaly detec-
tion benchmarks.

2. Related Work
Most existing unsupervised anomaly detection meth-

ods assume that only normal data is available during the
training. Some generative methods, such as autoencoder-
based [6,25,45,46] methods and GAN-based methods [1,2,
20,34,35], focus on image reconstruction and detect anoma-
lies based on image reconstruction errors. Anomalous re-
gions can be spotted as they are not well reconstructed by
the model trained on normal data only. However, these
methods face challenges in that their models reconstruct
well on normal and abnormal samples due to the general-
ization of CNN models.

Another generative model, normalizing flows (NFs) have
been successfully used for anomaly detection [13, 28, 29,
44]. NFs models trained on normal samples and learn the
distribution. [29] proposed a multi-scale flow to obtain rep-
resentation from different scales of images. [13] used con-
ditional normalizing flows for multi-scale feature, and pro-
posed a new scoring function for anomaly localization. Af-
ter model training, the likelihood of individual images can
be considered as the anomaly score.

A recent emerging direction focuses on self-supervised
learning. One major family is based on reconstructing
non-defect images from generated defective images [25,
45, 46]. [45] trained autoencoder-based models to recon-
struct normal images and trained another model for cal-
culating an anomaly score on every pixel. Some methods

treat augmented images as negative samples and train pixel-
wise [36] or image-based [9, 19, 24, 38] classification mod-
els. On the other hand, [26] treats failure cases from the
training process of the generator as out-of-distribution sam-
ples. [16] utilizes an adversarial training strategy between
their random mask model and reconstruction model to learn
a feature representation with semantic information.

Although anomalous types are unpredictable, a small
number of (e.g., one to multiple) labeled anomaly exam-
ples are often available in many relevant real-world appli-
cations. Some supervised methods tried to learn feature
information on both anomalous and normal images. With
the additional knowledge of application-specific abnormal-
ity, supervised methods can detect samples that are slightly
different from normal images. [24] used a small set of real
abnormal images and utilized one-sided anomaly deviation
loss for model training on an imbalanced dataset. A multi-
task classification method is introduced in [9] to classify
normal data, real anomalous samples, and synthetic anoma-
lies. [37] fine-tuned their model with outliers to fail on re-
constructing out-of-distribution samples.

3. Proposed Method
To detect anomalous images, we aim to learn the

distribution of normal samples. Given N normal im-
ages U = {u1, u2, · · · , uN}, we apply the NSA
method [36] to generate N synthetic defect images S =
{s1, s2, · · · , sN}. After that, we combine normal im-
ages and synthetic images into our training dataset M =
{m1,m2, · · · ,mN ,mN+1,mN+2, · · · ,m2N}. The first N
samples are normal images, and the remaining N samples
are synthetic images.

The architecture and training pipeline of our proposed
model is illustrated in Fig. 3. We first use a deep model
pretrained on ImageNet [32] as our feature extractor ffe :
M → X . ffe extracts representation features xi for ev-
ery training image mi while the weights remain unchanged
during the model training.

After that, we train our normalizing flow-based model
to estimate the distribution of normal features. Our model
is also optimized to distinguish between in-distribution and
out-of-distribution data with the information from our syn-
thetic anomaly samples and self-supervised loss function,
which will be detailed in the subsequent subsections.

3.1. Self-Supervised Learning

In some self-supervised methods, their models learn
deeper representations of normal images by artificially gen-
erating abnormal images. Existing self-supervised meth-
ods, such as CutPaste [19], FPI [39], NSA [36] and
DRAEM [45], all employed some image synthesis methods
for generating anomalous images. To optimize our model
for distinguishing normal and anomalous samples during
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the model training, our training dataset contains normal
samples and synthetic anomalous samples. In this work,
we follow Poisson Image Editing proposed in [36] as our
image synthesis mechanism to generate anomalous images
that are close to real-world situations.

Figure 2 illustrates this synthetic anomaly generation
module. Given two normal images usrc and udest, we cut
patches from usrc and blend them on udest image. We first
sample the width and height from a truncated Gamma dis-
tribution and randomly resize the patch. Lastly, we use the
blending algorithm to blend the patch on udest at a random
place. We repeat the steps above to paste a random num-
ber of patches on udest to generate a synthetic anomalous
image. Besides, this method uses the brightness of object
images to produce an object mask for every object image
to avoid pasting the patches on the background. By creat-
ing object mask msrc and mdest for usrc and udest, we can
ensure that the patch contains object parts and confirm that
each patch is attached to the object.

Figure 2. Synthetic Anomaly Module. The image synthesis pro-
cess includes sampling width and height from a gamma distribu-
tion, producing object masks to avoid background for source and
destination images, and blending patches at random places in the
destination image.

3.2. Normalizing Flows Architecture

Normalizing flows [10, 11, 17] are trained to estimate
the likelihood of the training set directly. Their invertible
transformation function bijectively maps image distribution
pX(x) into a latent space distribution pZ(z). The likelihood
for arbitrary data distribution can be formulated as Eq. 1 by
utilizing the change of variables formula.

log pX(x) = log pZ(fθ(x)) + log

∣∣∣∣det ∂fθ(x)∂x

∣∣∣∣ (1)

The latent space distribution is often modeled as a stan-
dard Gaussian. Normalizing flow-based models are trained
to maximize the log-likelihood of training data using their
transformation function fθ(x).

We use the affine coupling layer in [10, 11] to form our
flow-based model architecture to efficiently calculate the
second part in Eq. 1. In one affine coupling layer, the input
x is randomly permuted and split across the channel dimen-
sion into two parts, x1 and x2. The output y is concatenated
by y1 and y2 along channel dimension. We illustrate this
structure in Fig. 3. The transformation in each layer fol-
lows the following equations

y1 = x1, (2)
y2 = x2 ⊙ exp(s(x1)) + t(x1), (3)

where ⊙ is the element-wise multiplication operation. Two
operation functions s(·) and t(·) are the output of one sub-
network, which will be described in Section 3.2.1. There-
fore, log

∣∣∣det ∂fθ(x)
∂x

∣∣∣ can be calculated by the Jacobian de-
terminant of this coupling layer. We stack N multiple cou-
pling layers in our model to enhance model complexity, thus
making our model capable of learning more complicated
distribution for normal samples. The Jacobian matrix of the
flow-based model can be computed by multiplying the Ja-
cobian matrix of each coupling layer.

3.2.1 Residual Connected Subnet

We propose a dynamic transformation subnet of our affine
coupling layers, illustrated in Fig. 3. In Eq. 3, s(·) and
t(·) are implemented by one neural network, i.e. the sub-
net of coupling layers. In order to learn both local and
global information, our subnet is combined with 1*1 and
3*3 convolution layers and one 4-head self-attention layer.
Besides, to dynamically tune different learnable layers, we
use the residual connection to contain the output of the for-
mer layer and the current layer, similar to [14, 15]. With
residual connections, we can consider that our subnets have
different branches of interior layers. Therefore, our sub-
net can integrate the advantages of convolution layers and
multi-head self-attention layers. They can also adjust the
number of layers during training time to learn an optimistic
subnet architecture for different datasets and classes. The
multi-head self-attention layer is identical to the one in the
Transformer [42]. In Section 5.2, we discuss the influence
of the combination of different layers and the residual com-
ponent.

3.3. Learning Objective

With the additional synthetic abnormal images, we can
extend the unsupervised normalizing flows in Section 3.2
to the self-supervised task. We first use a pretrained model
to extract normal and anomalous image features from our
training dataset T . Since normalizing flow-based models
are first designed to learn the distribution of given data, we
focus on learning the distribution of normal samples here.
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Figure 3. The architecture of our whole model. We illustrate one block inside our normalizing flow-based model. The input x is the
extracted feature of our training image m. Our model bijectively maps the image feature distribution into the latent space, modeled as a
Gaussian distribution.

Our model is optimized with two goals: 1. learn the dis-
tribution of normal samples and 2. refine the distribution
by employing abnormal samples as out-of-distribution con-
straints.

Given a set of N real normal features D = {xd}Nd=1 and
a set of N synthetic image features S = {xs}Ns=1, we train
our density estimation model to maximize the likelihood of
normal samples and minimize the likelihood of our synthe-
sized abnormal samples. We optimize our flow model fθ
with the following objective function:

argmax
θ

1

N

∑
xd∈D

log pD(xd)−
1

N

∑
xs∈S

log pS(xs) (4)

We reformulate our objective function to train our model to
minimize the negative log-likelihood for normal samples,
− log pD(xd), and maximize the negative log-likelihood for
synthetic anomaly samples, − log pS(xs). Therefore, fol-
lowing Eq. 1, we calculate the negative log-likelihood for
normal samples by

Lnormal

=
1

N

∑
xd∈D

− log pD(xd)

=
1

N

∑
xd∈D

[
− log pZ(fθ(xd))− log

∣∣∣∣det ∂fθ(xd)

∂xd

∣∣∣∣] .
(5)

Inspired by [12, 18], our loss function for synthetic anoma-
lous samples is defined as

Lsyn =
1

N

∑
xs∈S

− log pS(xs) · I[log pS(xs) > c

∧ log pS(xs) > min(log pD(xd))], (6)

where c is a constant threshold and I[·] is an indicator func-
tion. We only include synthetic samples satisfying the con-
dition in I[·] to compute our synthetic distribution. In or-
der to prevent the log-likelihood of synthesized samples

log pS(xs) from reaching to −∞, we follow the setting
in [18] to encourage the flow to push the synthetic log-
likelihood at least the threshold c. Because our normal im-
ages and synthetic images are slightly different, our second
condition, inspired by [12], removed the synthetic samples
fulfilling our training optimization (the likelihood of all nor-
mal samples should be larger than synthetic samples) from
the loss function.

The final loss Ltotal for training our self-supervised
flow-based model is given by Eq. 7, which is designed to
prioritize decreasing the negative log likelihood for normal
images.

Ltotal = Lnormal − Lsyn (7)

3.4. Scoring Function

After the training, we follow other 2D flow-based meth-
ods [29, 44] and use the calculated likelihood of testing
samples as the classification criteria between normal and
anomalous samples. Given a testing image p, we use fea-
ture extractor ffe and our self-supervised flow fθ to cal-
culate the likelihood z ∈ RH×W×C . Samples with lower
likelihood would be considered anomalous. Therefore, we
upsample the negative likelihood −z and aggregate the val-
ues along channel-wise dimension as our anomaly segmen-
tation score. Otherwise, the detection anomaly score for ev-
ery image is the maximum value of its segmentation map.

4. Experimental Results
We perform our experiments on MVTec-AD [4],

BTAD [23], and DGAM [22] datasets. These datasets are
popular benchmarks for image anomaly detection. The per-
formance of our model and all related methods included
in our comparison is evaluated with the Area Under the
Receiver Operating Characteristic Curve (AUROC) % at
image-level and pixel-level, with numbers in Bold repre-
senting the best results in the comparison and the under-
lined numbers representing the best result among all self-
supervised methods.
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4.1. Experimental Comparisons

In these experiments, we choose CaiT [40], a trans-
former model proposed by Facebook AI Team, as our pre-
trained model. Our flow-based model is implemented based
on [3] framework. We compared our method with several
state-of-the-art methods. DifferNet [28], CFLOW-AD [29],
and CS-Flow [29] are unsupervised normalizing flow-based
models. DRAEM [45], CutPaste [19], and NSA [36] are
self-supervised methods. Note that we used unofficial im-
plementation from [31] for BTAD experiments.

4.1.1 Results on MVTec AD

Table 1 and Table 2 show the image-level and pixel-level
anomaly detection experimental results on MVTec-AD. Our
model achieves a 100% AUROC score in eight classes. The
average score of 15 classes gives the highest 98.7% AU-
ROC score among these methods. Moreover, our model
outperforms other methods in texture classes, which reach
a 99.9% average score. Among all self-supervised meth-
ods, our method outperforms all competitors in 13 classes
and reaches state-of-the-art results. With the additional in-
formation on potential defective images, we exceed some
challenging classes, such as hazelnut and metal nut. Dif-
ferent from CutPaste [19], we use brightness to avoid the
background of object classes in our synthetic mechanism.
We not only obtain a higher score on texture classes but also
highly exceed CutPaste on object classes with the help of
natural synthetic anomaly images. Moreover, unlike other
self-supervised classification models, our training loss func-
tion focused on learning the distribution of normal samples.
Our models can detect anomaly types different from our
synthesized training samples and they are not easily influ-
enced by artificial defect types. Besides, our model exceeds
CS-Flow, the other 2D normalizing flow-based method, in
pill and capsule classes. Those classes have relatively small
objects, and some models tend to detect small defects in
the background. In addition, although our loss function was
designed to optimize the model for the anomaly detection
task, our AUROC score exceeds 95% in every class and gets
a 98.1 average score in the anomaly segmentation task.

4.1.2 Results on BTAD Dataset

Table 3 and Table 4 show our experimental comparison re-
sults on BTAD dataset. Our model outperforms other com-
petitive methods on Product 02. By sampling the width and
height from a truncated gamma distribution, the synthesiz-
ing mechanism tends to create defective images with small
defective areas. Our model can learn to compute the lower
likelihood of images slightly different from normal samples.
However, unlike CFLOW-AD [13] trained three flow-based
models with different image sizes, we trained with only one

Table 1. Image-level anomaly detection comparison results on
MVTec-AD trained on full-dataset.

Unsupervised Methods Self-Supervised Methods
[28] [13] [29] [45] [19] [36] Ours

carpet 84.0 100 100 97.0 93.9 95.6 99.7
grid 97.1 97.6 99.0 99.9 100 99.9 100
leather 99.4 97.7 100 100 100 99.9 100
tile 92.9 98.7 100 99.6 94.6 100 100
wood 99.8 99.6 100 99.1 99.1 97.5 100

Avg.Texture 94.6 98.7 99.8 99.1 97.5 98.6 99.9

bottle 99.0 100 99.8 99.2 98.2 97.7 100
cable 86.9 100 99.1 91.8 81.2 94.5 98.1
capsule 88.8 99.3 97.1 98.5 98.2 95.2 97.6
hazelnut 99.1 96.8 99.6 100 98.3 94.7 100
metal nut 95.1 91.9 99.1 98.7 99.9 98.7 100
pill 95.9 99.9 98.6 98.9 94.9 99.2 99.6
screw 99.3 99.7 97.6 93.9 88.7 90.2 94.1
toothbrush 96.1 95.2 91.9 100 99.4 100 92.2
transistor 96.3 99.1 99.3 93.1 96.1 95.1 99.1
zipper 98.6 98.5 99.7 100 99.9 99.8 100

Avg. Object 95.5 98.0 98.2 97.4 95.5 96.5 98.1

Avg. All 94.9 98.3 98.7 98.0 96.1 97.2 98.7

Table 2. Pixel-level anomaly segmentation comparison results on
MVTec-AD trained on full-dataset.

CFLOW
[13]

DRAEM
[45]

CutPaste
[19]

NSA
[36] Ours

carpet 99.3 95.5 98.3 95.5 99.3
grid 99.0 99.7 97.5 99.2 98.3
leather 99.7 98.6 99.5 99.5 99.5
tile 98.0 99.2 90.5 99.3 96.5
wood 96.7 96.4 95.5 90.7 95.4

Avg. Texture 98.5 97.9 96.3 96.8 97.8

bottle 99.0 99.1 97.6 98.3 98.1
cable 97.6 94.7 90.0 96.0 97.7
capsule 99.0 94.3 97.4 97.6 98.6
hazelnut 98.9 99.7 97.3 97.6 99.1
metal nut 98.6 99.5 93.1 98.4 98.2
pill 99.0 97.6 95.7 98.5 98.9
screw 98.9 97.6 96.7 96.5 98.9
toothbrush 99.0 98.1 98.1 94.9 98.6
transistor 98.0 96.4 93.0 88.0 95.6
zipper 99.1 98.8 99.3 94.2 99.0

Avg. Object 98.7 97.6 95.8 96.0 98.3

Avg. All 98.6 97.3 96.0 96.3 98.1

complex flow model. On the other hand, our loss function
focuses on the identification of anomaly images. Therefore,
despite the fact that our model is capable of detecting im-
ages with slight defeats, our pixel-level segmentation results
on minor scratches on Product 02 are not accurate enough.
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Table 3. Image-level anomaly detection comparison results on
BTAD [23] full dataset.

Unsupervised Methods Self-Supervised Methods
[28] [13] [29] [45] [19] [36] Ours

Product 1 99.1 97.4 99.4 98.6 99.8 100 99.2
Product 2 85.4 85.9 87.5 78.1 87.1 84.7 92.2
Product 3 98.5 99.4 100 98.8 100 99.0 98.3

Average 94.3 94.2 95.6 91.9 95.6 94.6 96.6

Table 4. Pixel-level anomaly segmentation comparison results on
BTAD [23] full dataset.

CFLOW
[13]

DRAEM
[45]

NSA
[36] Ours

Product 1 94.7 78.6 96.7 96.9
Product 2 96.8 75.4 88.9 92.8
Product 3 99.6 66.3 99.5 99.5

Average 97.0 73.4 95.0 96.4

4.1.3 Results on DAGM

DGAM [22] is a synthetic anomaly detection dataset fo-
cused on texture surfaces. Most of the existing methods
compare their results on the image-level anomaly detection
task because DGAM only provides weak segmentation la-
bels, roughly indicating the defective area using ellipses.

Table 5 shows our image-level comparison results. [21]
and [7] are self-supervised methods, which were trained on
the whole training dataset, including both normal and defec-
tive images with segmentation labels. Unsupervised meth-
ods [2,20,28] and self-supervised methods [19,33,45] skip
all labeled anomaly training data. The results show that
our model significantly exceeds all unsupervised and self-
supervised competitors. We reach a 100% AUROC score in
nine classes and have a 100% average score. Moreover, We
achieve the performance of those supervised methods, but
our model is trained on normal images only.

4.1.4 Few-shot Experiment

We extend the training setting to a few-shot learning area
on MVTec-AD [4] and BTAD [23] to ensure the model’s ro-
bustness. In our few-shot scenario, we trained models on 16
random normal images and evaluated them on the full test-
ing dataset. Table 6 shows the detection results on MVTec,
and Table 7 shows the segmentation results on BTAD. The
experimental results demonstrate that our model achieves
high anomaly detection and segmentation results with lim-
ited training data and our model significantly outperforms
the other methods.

By stacking different learning layers in our subnet, our
model is capable of learning diverse features. Moreover,

Table 5. Image-level anomaly detection comparison results on
full-dataset. We use C, SL, USL, and SSL abbreviations for class,
supervised, unsupervised, and self-supervised learning, respec-
tively.

SL USL SSL
[21] [7] [2] [20] [28] [33] [19] [45] Ours

C 1 100 100 58.3 99.1 59.7 50.7 56.1 96.1 99.6
C 2 94.0 100 56.1 100 82.9 50.5 87.8 98.3 100
C 3 100 100 55.1 99.1 69.8 58.7 57.1 99.5 100
C 4 100 100 53.7 99.0 97.3 70.0 71.3 99.6 100
C 5 100 99.9 57.4 100 61.2 63.6 47.4 92.1 100
C 6 100 100 66.8 97.5 97.0 92.3 68.8 100 100
C 7 100 100 52.4 99.8 68.5 54.0 96.5 99.7 100
C 8 99.0 100 53.7 99.8 52.1 49.1 53.4 99.9 100
C 9 100 100 52.3 99.5 78.2 54.6 51.9 98.9 100
C 10 100 100 52.2 99.2 79.1 49.6 74.7 96.0 100

Avg. 99.3 100 55.8 99.3 74.6 59.3 66.0 98.0 100

Table 6. 16 shot image-level anomaly detection comparison results
on MVTec-AD.

Unsupervised Methods Self-Supervised Methods
[28] [13] [29] [45] [19] [36] Ours

carpet 77.0 99.0 100 95.4 80.4 82.8 99.4
grid 65.8 97.3 93.3 99.2 98.3 98.6 99.9
leather 92.9 100 100 95.2 100 88.9 100
tile 98.9 99.1 99.9 99.6 98.9 99.6 100
wood 99.2 99.0 99.5 89.3 100 83.2 100

Avg. Texture 86.8 98.9 98.5 95.7 95.5 90.6 99.9

bottle 98.5 100 100 99.4 99.9 93.9 99.9
cable 86.4 95.0 94.4 88.6 89.8 87.0 93.7
capsule 61.4 95.2 83.1 75.4 86.8 80.0 94.8
hazelnut 97.3 99.0 97.9 92.5 98.0 86.1 99.8
metal nut 77.7 98.8 99.1 98.6 91.4 89.4 100
pill 65.1 94.4 90.9 92.6 90.5 86.2 97.2
screw 75.9 70.3 65.2 67.2 79.8 99.8 71.4
toothbrush 92.3 99.7 85.6 100 100 100 92.2
transistor 76.6 92.8 98.0 92.8 93.3 85.0 96.9
zipper 88.3 97.0 95.3 99.1 99.5 99.2 99.6

Avg. Object 82.0 94.2 91.0 90.6 92.9 90.7 94.6

Avg. All 87.3 95.8 93.5 92.3 93.8 90.7 96.4

our self-supervised conditional loss function prevents our
model from focusing on abnormal features, so optimiza-
tion to learn the distribution of normal features prevails over
minimizing the likelihood of abnormal features. Therefore,
our model remains high accuracy on some challenging ob-
ject classes, such as pill, hazelnut, and screw, with limited
training samples. The few-shot experiments prove that the
performance of our model remains stable for both full-shot
and few-shot scenarios.

4.2. Qualitative Results

The segmentation comparison maps in Fig. 4 illustrate
that our model is capable of detecting various defect types
and can accurately detect defect regions regardless of the
texture classes or object classes. Although our model can
not calculate diverse scores for normal and anomalous pix-
els, our results are closer to the ground truth compared to
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Table 7. 16 shot pixel-level anomaly detection comparison results
on BTAD.

CFLOW
[13]

DRAEM
[45]

NSA
[36] Ours

Product 1 94.1 68.3 49.8 96.3
Product 2 95.6 77.2 92.0 93.4
Product 3 99.4 73.9 81.2 99.4

Average 96.4 73.2 74.3 96.4

other methods, especially on different sizes of rectangle de-
fect regions, which are similar to our synthetic samples.

The visualization results on BTAD are shown in Fig. 5.
The boundary of the defective areas is slightly blurry be-
cause we up-sampled the segmentation results to match the
original mask size. However, our model can still accurately
detect abnormal areas. Our anomaly segmentation map,
taking the third image of Product 02 as an example, illus-
trates the defective areas closer to the actual anomaly than
the ground truth mask.

Figure 4. Pixel-level anomaly segmentation results of different
classes in the MVTec-AD [4]. The bottle, cable, wood, and tile
are from top to bottom. We compare our visualization results with
CS-Flow [29] and NSA [36].

4.3. Complexity Analysis

We compare the model size and average inference time
with other flow-based models. Note that we only calculate
the parameters in flow models without the variables in the
deep pretrained feature extractors and compare the total in-

Figure 5. Examples of our anomaly segmentation results for three
products of BTAD [23]. Product 01, Product 02, and Product 03
are listed from the left column to the right, respectively. We visual-
ize the testing image, the ground truth mask, and our segmentation
result.

Table 8. Flow-based model size (denoted as F-Model Size) and
average inference time (denoted as Inf. Time) comparison results
on class bottle in MVTec-AD.

Differnet
[28]

CFLOW
[13]

CS-Flow
[29] Ours

N Coupling Layers 8 4 4 5
F-Model Size (M) 172.1 81.6 275.2 3.5

Inf. Time (FPS) 0.56 9.3 5.23 2.16
Inf. Time (s/img) 1.8 0.11 0.19 0.46

ference time, including feature extraction. Table 8 shows
the comparison results. We used Intel® Core™ i7-6700
CPU @ 3.40GHz and GeForce® GTX TITAN and set the
batch size to 16 in this experiment. Since we only train one
flow-based model to compute the density distribution of one
feature scale and the subnet in our flow model is composed
of only four layers, our model size is much smaller than the
others.

The results in section 4.1 show that our lightweight
model can reach high performance with lesser than ten per-
cent trainable parameters. The experimental results in sec-
tion 5.1 also prove that we can improve the density es-
timation task on normal samples with our self-supervised
loss function and additional synthesized defective samples,
so our flow model can learn accurate normal distribution
with the limited learning variables. However, we stack five
coupling layers to build our flow-based model and use self-
attention layer in our subnet, so the inference time of our
lightweight model is longer than CFLOW-AD [13] and CS-
Flow [29].

5. Ablation Study

5.1. Impact of Out-of-distribution Loss

Most of the existing normalizing-based models are un-
supervised methods, and they are trained on defect-free im-
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Table 9. Comparison results of our flow-based model with differ-
ent training strategies on MVTec-AD [4]. Bold represent optimal
results.

Training Method Avg. Texture Avg. Object Avg. All

D
et Ours (unsupervised) 99.1 96.4 97.3

Ours (self-supervised) 99.9 98.0 98.7

Se
g Ours (unsupervised) 97.3 98.0 97.7

Ours (self-supervised) 97.8 98.3 98.1

ages only. In this ablation experiment, we study the influ-
ence of synthetic images and our self-supervised loss. Ta-
ble 9 shows the comparison results between self-supervised
and unsupervised models on MVTec-AD [4].

Our self-supervised model raises 1.6% and 1.3% AU-
ROC average score of object classes on full-dataset and 16
few-shot training scenarios. The results show that by hav-
ing synthetic anomaly training images and optimizing the
model on the classification task during training time, we
enhance the performance of our model on both texture and
object classes. Furthermore, we provide a different direc-
tion for optimizing normalizing flow-based models with the
conditional self-supervised loss function. Note that our syn-
thesized anomaly training images are produced by cutting
and blending patches of normal images. Hence, the artifi-
cial defect areas are wildly different from actual anomaly
types, such as cable swap of cable and glue of leather.
Moreover, our self-supervised loss function is devised to
prioritize learning the distribution of normal samples, so
the synthetic samples can be considered as auxiliary sam-
ples to assist learning the normal feature distribution more
precisely.

5.2. Impact of Different Subnet and Residual Com-
ponents

In this ablation study, we perform experiments to study
the influence of different subnet. We designed three differ-
ent subnet models. The first subnet model consists of three
convolution layers with different kernel sizes. The second
subnet model contains convolution layers with different ker-
nel sizes and multi-head self-attention. And the last one is
the architecture we use in this method, which includes ad-
ditional residual components. These subnets are illustrated
in Figure 6.

Table 10 summarizes the experimental results. Every
flow-based model with different subnets is trained on full
MVTec-AD with our self-supervised optimization mecha-
nize. Our model with only convolution can achieve quite
confirming results. However, the performance on object
classes drops severely after including the multi-head self-
attention layer. Although we want to increase the complex-
ity of our subnet, the full MVTec-AD dataset provides only
hundreds of training samples for each class. It does not pro-
vide enough data for training complex models like multi-

Table 10. Comparison results of different subnets on MVTec-
AD [4]. The image-level and pixel-level results are denoted as
Det and Seg, respectively.

Subnets Avg. Texture Avg. Object Avg. All

D
et

Ours (convolution) 99.0 96.7 97.5
Ours (w/o residual) 99.6 90.5 93.9
Ours (w/ residual) 99.9 98.0 98.7

Se
g

Ours (convolution) 97.2 98.0 97.7
Ours (w/o residual) 97.6 97.0 97.2
Ours (w/ residual) 97.8 98.3 98.1

head self-attention. Therefore, we join different layers with
residual units to optimize the benefits of the convolution
layer and the multi-head self-attention layer. The results
show that our model with residual component achieves the
best performance.

Figure 6. Ablation study of different subnets in our normalizing
flow model. The above three subnet models, called as convolution,
without residual, and with residual, are included in the ablation
study. The results for the ablation study are given in Table 10.

6. Conclusions

In this paper, we proposed a self-supervised normalizing
flow-based model that combines the advantages of the nor-
malizing flow-based model and the self-supervised learning
approach. By conditionally optimizing our model to max-
imize the likelihood of normal features and minimize syn-
thetic anomaly features, we enhance the model for learning
the distribution of normal features more accurately. Fur-
thermore, we provide a different direction for optimizing
normalizing flow-based models with the conditional self-
supervised loss function. On the other hand, we improve
the proposed model by applying a dynamic transformation
subnet for our affine coupling layers. The proposed resid-
ual subnets integrate the advantages of convolution and self-
attention blocks. The experimental results demonstrate that
our model achieves state-of-the-art performance on several
public anomaly detection benchmarks.
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