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Abstract

Supervised learning for dermatology requires a large
volume of annotated images, but collecting clinical data
is costly, and it is virtually impossible to cover all clinical
cases. Unsupervised anomaly localization circumvents this
problem by learning the healthy data distribution. How-
ever, algorithms which use a generative model and localize
pathologic regions based on a reconstruction error are not
robust to domain shift, which is a problem for dermatology
due to the low level of standardization expected in many ap-
plications. Our method, SANO, uses score-based diffusion
models to produce a log-likelihood gradient map highlight-
ing areas that contain abnormalities. A segmentation mask
can then be calculated based on deviations from typical val-
ues observed during training. After benchmarking SANO
on an industrial dataset, we train it on a public non-clinical
dataset of healthy hand images without ornaments, evalu-
ate it on the task of detecting jewelry within images from
the same dataset, and prove its robustness by using it on
clinical pictures to localize hand eczema. We demonstrate
that SANO outperforms competing approaches from the lit-
erature without introducing additional computational costs.

1. Introduction
Skin diseases are a major concern globally, accounting

for a large number of clinic visits. In developing countries,
the lack of experts to diagnose and treat these conditions is
a critical issue, with a ratio of dermatologists to the gen-
eral population which can be as low as 1 to 216,000 [12].
This led to significant interest in developing systems capa-
ble of identifying and diagnosing skin diseases, also involv-
ing large organizations, with most efforts relying on super-
vised Deep Learning (DL) algorithms [23].

However, the requirement for large amounts of anno-
tated data poses significant challenges in the field of der-
matology. Although simpler than in other medical fields,
the collection of images is affected by uncontrolled acqui-
sition conditions such as camera model, lighting, and view
angle. Currently, no established method exists to standard-
ize images collected under these varied conditions. Further-
more, most of the current training data consist of white skin
samples, leading to a significant bias in the performance of
DL algorithms, particularly when applied to different skin
tones [1,15,18]. This is a major obstacle to the deployment
of teledermatology in emerging countries and raises ques-
tions about fairness for ethnic minorities. The acquisition
of sufficient data for rare pathologies is also a challenge,
particularly given the strong geographical dependence on
the data distribution. For example, insect bites are common
in Africa but rare in Europe [21,33]. In addition, annotation
is a time-consuming task that requires the expertise of clini-
cal professionals, making the process costly, particularly for
obtaining detailed segmentation masks. Finally, the annota-
tion process introduces human bias, as demonstrated by low
inter-annotator agreement in the field [27], whereas the gold
standard for dermatologic diagnosis is often histopathology,
which raises ethical concerns when a biopsy is not clinically
necessary.

Learning the appearance of healthy skin to locate abnor-
mal regions is an approach that alleviates many of the dif-
ficulties listed above. This approach, called unsupervised
anomaly localization, is sometimes referred to as semi-
supervised if the training data is filtered to be free of un-
healthy examples. Despite its potential in dermatology,
where images of healthy skin are easily available, this ap-
proach has limitations. It cannot produce a diagnosis and
often leads to less accurate segmentation masks.

To locate anomalies, typical unsupervised approaches
use a generative model to reconstruct healthy images. The

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2988



difference between an image and its reconstructed version
is then used to identify lesions. Researchers have ex-
plored the combination of unsupervised anomaly localiza-
tion with various generative models such as Variational Au-
toencoders (VAEs) [4,6,8,36], Generative Adversarial Net-
works (GANs) [3,5,28], and Diffusion Models [24,32,34].
While these methods perform well in highly standardized
medical imaging settings, they struggle in less controlled
conditions [16]. Recently, alternative strategies for unsu-
pervised anomaly localization have been proposed. These
include works that investigate the use of gradients of the
log likelihood with respect to inputs from EBMs to cre-
ate a normalcy score heatmap [13, 38], and other methods
that explore patch-based approaches to anomaly localiza-
tion [10, 35].

In this work, we present Score-based ANOmaly local-
ization (SANO), a new method for unsupervised anomaly
localization that leverages score-based diffusion models.
These models have been shown to achieve state-of-the-art
likelihood values by directly approximating the gradients of
the log likelihood [30]. Our approach is unique in combin-
ing the idea of using log-likelihood gradients for anomaly
localization with score-based diffusion models which are
trained to estimate precisely these gradients. Notably,
SANO does not require reconstruction, whose computa-
tional complexity is one of the main drawbacks of score-
based diffusion models. To the best of our knowledge,
and including recent reviews [9], this is the first work that
achieves unsupervised anomaly localization by combining
the two above-mentioned ideas, noting that they are partic-
ularly suited to be applied together.

In the absence of a standard for medical anomaly detec-
tion, we first evaluate SANO on the MVTec benchmark [7].
We then apply SANO to localize jewelry on healthy hands
in the 11k Hands dataset [2, 14]. This scenario, although
not a clinical task, is potentially relevant for digital derma-
tology workflows where the presence of extraneous objects
can reduce suitability of data or violate data anononymiza-
tion policies. Finally, and most importantly, we consider
anomaly localization for the segmentation of hand eczema
in a private clinical dataset without retraining, under fairly
standard but different conditions from those of 11k Hands.
We demonstrate that SANO is significantly more robust
than all other considered methods under this domain shift,
making it a promising candidate for disease-agnostic seg-
mentation of pathological skin for digital dermatology.

2. Methods

2.1. Score-based diffusion models

Several generative modeling approaches were recently
unified under a single framework and grouped under the
common name of score-based diffusion models [30]. Mod-

els which belong to this class are associated with a stochas-
tic process x(t) indexed by a time variable t ∈ [0, 1] which
progressively maps a data point x(0) to a sample x(1) from
a prior distribution p1(x) representing random noise. The
transformation of data into noise admits a reverse process
that enables mapping a sample x(1) from the prior to a data
point x(0) following the data distribution p0(x), i.e. it con-
stitutes a generative model. This reversible transformation
process from x(0) to x(1) is defined by a Stochastic Differ-
ential Equation (SDE) and induces a one-parameter family
of probability distributions pt(x). The family smoothly in-
terpolates between the p1(x) and p0(x) and its evolution
with respect to t may be factorized into the product with a
transition kernel pt′(x′) = ptt′(x

′|x)pt(x).
The training process for score-based diffusion mod-

els consists in finding an approximation sθ(x, t) for the
gradient of the log likelihood with respect to the inputs,
∇x log pt(x), which is also called the (Stein) score func-
tion [22,31] of pt(x). The space of approximating functions
sθ(x, t) parametrized by θ is often taken to be a given deep
neural network architecture. The matching can be achieved
by minimizing the loss

J (θ) =
1

2

∫ 1

0

Ep0t(x′|x)p0(x)[
∥∇x′ log p0t(x

′|x)− sθ(x
′, t)∥22

]
dt. (1)

Note that, in this formulation, the analytic or numeric
tractability of the normalization factor for the time-
dependent probability distribution pt(x) is irrelevant. Re-
markably, it has been shown that although score-based dif-
fusion models do not directly optimize the likelihood of the
data, there is a way of weighting the integrand in (1) which
turns J (θ) into a lower bound for the likelihood [29, 30].
Empirical results in the same references demonstrate that
score-based diffusion models obtain very competitive like-
lihood values on a range of practical tasks.

The cited works on score-based diffusion models consid-
ered three types of SDEs: Variance Exploding (VE), Vari-
ance Preserving (VP), and sub-VP. This work will consider
the VP SDE, the simplest apart from VE which empirically
delivers worse likelihoods. The equation reads

dx(t) = −1

2
β(t)x(t)dt+

√
β(t)dw(t), (2)

where w denotes the standard Wiener process and β(t) is a
positive function. Following [17, 30], we also set

β(t) = β̄min + t(β̄max − β̄min). (3)

In particular, we note that these definitions yield a gaussian
transition kernel, which significantly simplifies calculations
and indicates that stochastic process evolution from t = 0
to t = 1 corresponds to gradual addition of gaussian noise.
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2.2. Anomaly localization with scores

The method for locating anomalies in images we use is
based on the idea that gradients of the log likelihood with
respect to input values are typically larger for inputs that
are unlike any training examples. Our approach is built
on score-based diffusion models, which are trained to ap-
proximate these gradients directly for all values of t, and
can be used to estimate them for data samples by simply
evaluating the approximated function sθ(x, t) at t = 0.
This corresponds to a single forward pass, in contrast to the
Energy-Based Models (EBMs) used in [13] which require
backpropagation during inference.

To obtain anomaly scores, we first combine the color
channels into the square of the gradient vector for each
pixel. We then apply a Gaussian filter to the gradient
heatmap to increase the scale that defines an anomaly while
retaining pixel-level resolution. The filter scale can be tuned
using a validation set, but in our approach we fix σ = 4
based on an initial guess of the minimal resolution scale
for anomaly masks, which are unlikely to be determined by
isolated pixels.1 Our approach models the empirical gradi-
ent distribution for normal data as a zero-centered Gaussian,
isotropic in color, with the same variance for all pixels. Un-
like [13], we did not find any benefit in normalizing gradi-
ents pixel by pixel.

Once the anomaly score heatmap has been obtained, gen-
erating a segmentation map involves setting a threshold.
Any density estimation technique applied to the distribution
of scores of a validation set can in principle be used for this
task. In cases where a validation set containing both normal
and anomalous data is available, the appropriate objective
can be optimized to determine the threshold. If only normal
data is available, the threshold may be chosen by setting the
expected false positive rate among the validation examples.

Alternatively, if a validation set is not available, a heuris-
tic recipe can be used, assuming the score distribution is
centered around zero. Anomalies can be identified as those
pixels whose gradients deviate from zero by more than a
certain number of standard deviations. This recipe provides
a reasonably conservative normalcy criterion, even for non-
Gaussian distributions, as the Mahalanobis squared norm is
dominated by the longest tails.

3. Experiments
In this section, we demonstrate the capacity of SANO

to localize anomalies within images without supervision.
To this end, first we evaluate SANO with competing ap-
proaches on an industrial benchmark dataset. Then we
repeat the comparison for finding jewelry on images of
healthy hands, and for segmenting dermatologic lesions on

1To ensure a fair comparison, for all hand models we choose whether
to apply this smoothing based on a validation set.

a different dataset without retraining.

3.1. Datasets

MVTec [7] is a benchmark dataset for anomaly localiza-
tion in the context of industrial inspection. It consists of 15
different object and texture categories and is widely used
to evaluate the performance of anomaly localization algo-
rithms. The dataset provides pre-defined splits for training
and testing. Since this dataset is usually evaluated with met-
rics which do not require a threshold, we do not require a
validation set. To asses the performance of our method, we
train and evaluate on a separate model for each texture and
object.

11k Hands [2, 14] is a public dataset that contains
11,076 hand images from 190 subjects with a resolution of
1600×1200 pixels. Each hand was photographed from the
dorsal and palmar sides with a uniform white background
and the same indoor lighting, approximately at the same
distance from the camera. We train models on 5,589 hand
images without jewelry, use a validation set of 1,022 images
(324 without and 698 with jewels) to determine the thresh-
old and a final test set of 4,434 images (1953 without and
2481 with jewels) to evaluate the localization of jewelry.
The ratio jewels pixels is 0.49% in the test set. Finally, the
splits were always grouped by subjects with fixed ratios to
avoid data leakage.

PhotoBox is a private dataset collected at a university
hospital2 containing images of hand eczema from a total of
131 patients. Both hands were photographed together from
the dorsal and palmar sides for each patient. The pictures
were taken in a closed structure where hands are inserted
through a slit, illuminated by LEDs, and the background is
a uniform green surface. The camera was connected to a
tablet to guide the patient in the placement of the hands. All
images, which have a resolution of 3456×2304, were man-
ually annotated by an expert dermatologist. We split the
sets of images with anomalies into two parts of equal size
and used one for tuning the threshold parameters and the
other for evaluation. As in the previous case, the splits were
always grouped by patient images.

3.2. Training

To train the score-based models, we resize all images
to 256×256 pixels and do not employ data augmentation.
We approximate the score using a U-Net for sθ(x, t) as
suggested by [11]. We set the training objective as in
Eq. (1) with the choice in Eq. (3), 1000 diffusion time steps,
βmin = 10−4, and βmax = 0.02, using a public codebase3

2To be replaced with the explicit name after double-blind review.
3https://github.com/yang-song/score_sde_pytorch
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Image VQ-VAE SANO Mask SANO Ground Truth

(a) Palmar

Image VQ-VAE SANO Mask SANO Ground Truth

(b) Dorsal

Figure 1. Heatmap of anomalies in the 11k Hands dataset, comparing SANO and the second-best model (VQ-VAE). The figure shows
the original image, anomaly detections by both models, the binarize mask of SANO, and the ground truth segmentation mask. Warmer
colors indicate higher anomaly scores. The ground truth segmentation mask provides a reference for the accuracy of the model’s anomaly
detections.

adapted for the purpose. We set the batch size to 64 and
optimize for 400k iterations with the Adam [19] optimizer
and a learning rate of 2× 10−4.

Alongside the score-based diffusion model we train
several other Deep Learning (DL) models for compari-
son. More specifically, we consider a simple Autoen-
coder (AE), a Variational Autoencoder (VAE) [20, 26],
and a Context-encoding Variational Autoencoder (ceVAE)
[37] taken from the repository for the Medical Out-Of-
Distribution Challenge of MICCAI 2020;4 VQ-VAE from
[25]; and AnoVAEGAN, which was proposed in [6].

3.3. Evaluation

We first evaluate the performance of anomaly localiza-
tion models for finding defects in the industrial images of
MVTec and jewelry on the healthy hands of 11k Hands. In
these two cases, we use the same preprocessing pipeline as
for training. Then, to investigate the robustness with respect
to domain shifts for the models trained on 11k Hands, we
use them to detect hand eczema in the PhotoBox dataset.
In order to keep domain shift sizeable and at the same time
to have a chance of success, we purposefully ignore that
in PhotoBox both hands are captured simultaneously (in
contrast to 11k Hands), but we use color segmentation to
change the green background into uniform white (as is the
case in 11k Hands).

We evaluate the performance of the different anomaly
scoring systems using standard metrics which do not re-
quire a threshold, namely the Area Under the Precision-
Recall Curve (AUPRC) and the Area Under the Receiver
Operating Characteristic curve (AUROC).

4https://github.com/MIC-DKFZ/mood

For obtaining segmentation metrics, we selected a
threshold that maximized the F1 score in the correspond-
ing validation set. This threshold value was then used to
generate binary masks for each image in the test set, which
allowed us to calculate the best Dice coefficient and the best
Intersection over Union (IoU).

4. Results

4.1. Segmentation of anomalies in MVTec

First, we benchmark SANO for anomaly localization on
MVTec. As shown in Tab. 1, most algorithms achieve a
good result in this setting. In particular, SANO outperforms
EBM [13], even though both use the gradients of the log
likelihood to obtain the affected area. This suggests that
modelling the score sθ(x, t) directly could be an advantage
in terms of metrics besides reducing computational cost.
For textures, SANO obtains better results compared to the
considered baselines, and in the case of objects, it main-
tains good performance except on the cable and transistor
images.

4.2. Segmentation of jewelry

In the broad context of dermatology, we present results
for anomaly localization applied to finding jewelry in the
11k Hands dataset. All considered algorithms achieve rea-
sonably good performance, as shown in Tab. 2. The re-
ported uncertainties are estimates of expected variations due
to the finite size of the evaluation set, computed as the stan-
dard deviations of 1000 bootstrap runs where random selec-
tion with replacement was stratified over individuals in the
dataset. We observe that SANO outperforms all considered
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Category SSIM-AE l2-AE AnoGAN EBM SANO

Te
xt

ur
e

Carpet 0.87 0.59 0.54 0.63 0.84
Grid 0.94 0.90 0.58 0.86 0.97
Leather 0.78 0.75 0.64 0.87 0.99
Tile 0.59 0.51 0.50 0.57 0.91
Wood 0.73 0.73 0.62 0.74 0.86

O
bj

ec
t

Bottle 0.93 0.86 0.86 0.72 0.81
Cable 0.82 0.86 0.78 0.56 0.55
Capsule 0.94 0.88 0.84 0.64 0.76
Hazelnut 0.97 0.95 0.87 0.78 0.98
Metal Nut 0.89 0.86 0.76 0.65 0.66
Pill 0.91 0.85 0.87 0.75 0.98
Screw 0.96 0.96 0.80 0.87 0.95
Toothbrush 0.92 0.93 0.90 0.68 0.84
Transistor 0.90 0.86 0.80 0.74 0.61
Zipper 0.88 0.77 0.78 0.55 0.92

Table 1. AUROC results for anomaly localization on MVTec. A
model was trained for each texture/object separately. Results from
other benchmarks taken from [7, 13].

Model AUROC AUPRC Dice IoU
AE 0.946(1) 0.123(14) 0.231(14) 0.130(9)
VAE 0.937(2) 0.131(11) 0.227(11) 0.149(7)
ceVAE 0.941(2) 0.102(16) 0.173(16) 0.095(9)
VQ-VAE 0.946(2) 0.416(22) 0.448(15) 0.289(10)
AnoVAEGAN 0.943(2) 0.101(12) 0.189(15) 0.091(9)
SANO 0.963(2) 0.422(10) 0.551(13) 0.383(8)

Table 2. Scores for unsupervised jewelry localization on the 11k
Hands dataset. The standard deviation over 1000 bootstrap runs is
reported in brackets as the uncertainty on the last digits. The best
results are highlighted in bold.

reconstruction-based approaches. Some example masks ob-
tained with SANO are illustrated in Fig. 1. The model is
able to correctly segment jewels on both the dorsal and pal-
mar sides of hands, and gets qualitatively worse results on
wrist jewelry. Note that sleeves without jewels are not con-
sidered anomalies as they are present in the training set.

4.3. Segmentation of hand eczema

Finally, in Tab. 3 we report the results of the models
trained on jewelry-free, healthy hands of 11k Hands on the
localization of hand eczema in the PhotoBox dataset, again
including uncertainties from 1000 bootstrap runs.

As discussed in Sec. 3.3, switching from jewelry lo-
calization in 11k Hands to hand eczema segmentation in
the PhotoBox dataset constitutes a sizeable domain shift.
Reconstruction-based anomaly localization methods are
deeply affected by the context change, as reflected by the
considerable drop in scores and by the masks in Fig. 2
which highlight small shifts in the reconstruction. The situ-

Image VQ-VAE SANO Mask SANO Ground Truth

Figure 2. Heatmap of anomalies in the PhotoBox dataset, com-
paring SANO and the second-best model (VQ-VAE). The figure
shows the original image, anomaly detections by both models, the
binarize mask of SANO, and the ground truth segmentation mask.
Warmer colors indicate higher anomaly scores. The ground truth
segmentation mask provides a reference for the accuracy of the
model’s anomaly detections.

Model AUROC AUPRC Dice IoU
AE 0.641(3) 0.089(10) 0.151(9) 0.081(8)
VAE 0.634(5) 0.094(7) 0.153(13) 0.085(4)
ceVAE 0.714(5) 0.103(8) 0.178(11) 0.094(10)
VQ-VAE 0.819(4) 0.151(11) 0.280(14) 0.140(9)
AnoVAEGAN 0.769(3) 0.119(4) 0.184(3) 0.099(12)
SANO 0.912(3) 0.268(11) 0.358(12) 0.231(10)

Table 3. Scores for unsupervised eczema segmentation on the Pho-
tobox dataset. The standard deviation over 1000 bootstrap runs is
reported in brackets as the uncertainty on the last digits. The best
results are highlighted in bold.

ation is significantly better for SANO which, despite a no-
ticeable worsening of performance, still obtains good re-
sults and achieves a Dice score of 0.358 and an IoU of
0.231. Looking at Fig. 2 we can indeed see that SANO
correctly marks the region where the lesion is located.

5. Conclusions
This research paper introduced SANO, a novel method

for unsupervised anomaly localization that utilizes the log-
likelihood gradient magnitude from score-based diffusion
models. Unlike other approaches based on generative mod-
eling, SANO does not rely on reconstruction to identify
anomalous regions.

After demonstrating that SANO is competitive on a pub-
lic benchmark dataset of industrial defects, our study fo-
cused on learning the characteristics of healthy hands with-
out jewelry from the public 11k Hands dataset. These were
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then used to predict anomalous regions on photographs with
and without jewelry from the same dataset, and on clinical
images of hands affected by eczema from a somewhat sim-
ilar but different context. The results show that SANO out-
performs several other unsupervised anomaly localization
methods in the same-domain images and its performance is
superior by a large margin in case of a domain shift.

These observations demonstrate that SANO is an impor-
tant step in developing DL solutions for digital dermatology
which work under a wide range of conditions both for clin-
ical tasks such as skin lesion segmentation and non-clinical
goals such as guaranteeing image quality and preserving pa-
tient privacy
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