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Abstract

Modeling the distribution of descriptors obtained by pre-
trained feature extractors is a popular approach for un-
supervised visual anomaly detection. While recent work
primarily focuses on the development of new methods that
build on such extractors, the importance of the selected fea-
ture space itself has not been sufficiently studied. We there-
fore conduct a systematic analysis of current anomaly de-
tection methods with respect to different feature extractors,
their intermediate layers, and pretraining protocols. We
show that the investigated methods are highly sensitive to
the particular choice of feature space. We further demon-
strate that using an optimal feature selection strategy can
significantly improve the anomaly detection performance,
up to a point where selecting a single feature layer outper-
forms computationally expensive ensembling approaches.

1. Introduction
The detection and precise localization of anomalous

structures in natural image data is an important and chal-
lenging problem in computer vision. It has applications
in various domains such as medical imaging [25, 36], au-
tonomous driving [7, 16], video surveillance [20, 27], or in-
dustrial inspection [4, 5]. Since anomalous training data is
often very difficult or even impossible to acquire [3], a lot
of effort is put into tackling the Anomaly Detection (AD)
problem in an unsupervised way, in which a model is only
given access to a training set of exclusively anomaly-free
images.

Pretrained deep feature extractors have become an es-
sential building block in many recent unsupervised AD ap-
proaches [6, 11, 26, 31, 35]. Such extractors are trained on a
very large dataset of natural images to solve a certain pretext
task that is not related to the AD problem. Most commonly,
networks trained for image classification on the ImageNet
dataset [18] are employed, which are readily available in
current deep learning frameworks.

Figure 1. Dependence of the anomaly detection performance of
PatchCore [32] on the underlying feature space using the example
of an image of a defective screw. The predicted anomaly maps
vary greatly depending on which feature extractor and intermedi-
ate feature layer is chosen.

A key reason for these generic feature extractors being so
widely used is their ability to differentiate between normal
and anomalous data by producing distinct features for the
two classes. This characteristic has led to the development
of robust unsupervised AD techniques that model the cor-
responding feature distribution of the anomaly-free training
data.

Surprisingly, a lot of effort has been directed towards the
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design of new AD models that build upon such pretrained
feature spaces, whereas very little work has explored the
importance of the employed feature extractors. Currently,
a large number of different extractors exists that could po-
tentially be used in such AD systems. What is worse, each
extractor typically contains hundreds of distinct feature lay-
ers, from which one must select a small subset – often only a
single layer. To overcome this problem, it is common prac-
tice to empirically select feature layers that work well on the
investigated problem. In particular, the research community
has neither agreed on using one specific feature extractor,
nor on a standardized feature selection strategy. This results
in a wide variety of different backbones being used across
research projects.

This raises the question how sensitive existing methods
are to the particular choice of feature space that they oper-
ate on. To answer this, we present a unified comparison of
three state-of-the-art AD approaches with respect to differ-
ent pretrained feature extractors. Our findings suggest that
there is a significant dependency on the used feature extrac-
tor and layer, which is qualitatively illustrated in Figure 1.
Besides, one can substantially improve the AD performance
by carefully selecting the appropriate feature space for a
given dataset.

In particular, our key contributions are:

• We perform the first systematic analysis of the de-
pendence of AD methods on different feature extrac-
tors, their intermediate layers, and pretraining proto-
cols. Our results indicate that existing methods tend to
be highly sensitive to these parameters and carefully
choosing an appropriate feature space is essential to
create accurate AD systems.

• We show that using an optimal feature selection strat-
egy for different object categories within a dataset
leads to significant performance gains. Our findings
motivate a new research direction within the academic
field of anomaly detection, i.e., the development of
methods that determine the best performing feature
layers as a function of the training data. In particu-
lar, the optimal selection of a single layer yields AD
results that are on par with computationally intensive
ensembling approaches.

2. Related Work
In recent years, a lot of work has been published on unsu-

pervised anomaly detection and localization. Liu et al. [21]
and Pang et al. [28] give a comprehensive overview. Re-
garding AD on natural images, existing methods can be
broadly categorized as either based on reconstruction ap-
proaches such as convolutional autoencoders [24] or based
on feature extraction from pretrained networks. In this pa-
per, we focus on the latter.

Methods based on Pretrained Extractors. These meth-
ods attempt to model the distribution of descriptors ex-
tracted from the anomaly-free images given a pretrained
backbone that is kept frozen during the entire AD process.
During inference, anomalies are detected as deviations from
this feature distribution under the assumption that the pre-
trained extractor produces different features for anomalous
test images.

One line of research fits traditional machine learning
models to the extracted descriptors. Cohen and Hoshen [11]
model the feature distribution using k-nearest neighbors and
compute anomaly scores as the distance to the nearest de-
scriptors from the training set. The current state-of-the-art
method PatchCore [32] extends this idea by an additional
coreset subsampling step [37] to reduce the number of de-
scriptors that need to be stored. In PADIM [12], the distri-
bution of multiple feature layers is fitted with a unimodal
Gaussian distribution. Reiss et al. [30] further adapt the
pretrained features to the specific dataset before computing
anomaly scores.

To circumvent the need for downsampling the potentially
very large number of training feature vectors that is required
to enable the use of shallow machine learning techniques, it
has become popular to employ student–teacher models for
anomaly detection [4, 6, 34, 35]. The key idea is to train a
randomly initialized student network to match the descrip-
tors extracted by a pretrained teacher network. These meth-
ods can be combined with normalizing flow modules [33]
that further improve the performance. In our study, we con-
sider the recently introduced Asymmetric Student Teacher
(AsymST) [34] and FastFlow [42] methods as popular rep-
resentatives from this class.

Feature Extractor Selection. All of the above methods
rely on the selection of specific feature extractors, feature
layers, and pretraining protocols. Interestingly, the research
community has not converged to the use of a single well-
performing feature extractor. For instance, PatchCore by
default uses Wide ResNet-50 [43], AsymST recommends
the use of EfficientNet-B5 [38], whereas FastFlow reports
best results for the CaiT-48-distilled transformer architec-
ture [39]. While some papers conduct ablation studies re-
garding the choice of feature extractor and feature layer
[8, 13, 27, 31, 32], the investigated backbones often differ
across research projects, which makes a direct comparison
difficult.

Many of the aforementioned methods additionally com-
bine features from different layers and extractors to fur-
ther enhance the AD performance. For example, the best-
performing PatchCore model uses an ensemble of features
extracted from a DenseNet-201 [17], a ResNeXt-101 [40],
and a Wide ResNet-101 [43]. Unfortunately, such ensem-
ble methods increase the size of the search space for suitable
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layer combinations exponentially and come at a significant
computational overhead, which may prevent their employ-
ment in real-world applications.

Feature Extractor Pretraining. To obtain descriptive
general-purpose features that can be used within an
anomaly detection system, a pretraining on a large dataset
of natural images is usually performed. The de facto stan-
dard is to use classification networks trained on ImageNet
in a supervised way. While these features were shown to
transfer well to the AD problem, it has been hypothesized
that high-level features from deeper layers may be biased
towards the particular ImageNet classes [32], which could
harm the AD performance.

An alternative pretraining strategy is to use self-
supervised representation learning techniques. Popular ex-
amples include MoCo [14], SwAV [9], SeLa [2], and Sim-
CLR [10]. These can be easily scaled to very large im-
age databases and have proven useful for unsupervised AD
[19, 22, 41, 44]. However, it is currently unclear how these
self-supervised protocols compare to the supervised base-
line when used in feature-based AD methods.

Against this background, it is challenging to assess the
impact of the chosen feature space on the AD performance.
This motivates us to conduct a unified analysis across dif-
ferent methods. Our study focuses on key hyperparameters
such as the pretrained backbone, the intermediate feature
layer, and the pretraining protocol.

3. Investigating the Importance of Feature Ex-
tractors: A Roadmap

This section describes the structure of our analysis and
the parameters we examine in detail. Figure 2 shows a
schematic overview of the problem setting. We are inter-
ested in the analysis of anomaly detection methods that op-
erate on descriptors extracted from a single feature layer of
a pretrained network. Given a set of network layers L that
extract feature maps from an input image, the AD method is
parameterized via the function L∗ = select(L) that selects
a single element L∗ from the set of available layers. In the
following, we study the effect of this selection function and
demonstrate its significant effect on the AD performance.

We begin our study by motivating the use of the rela-
tive receptive field of feature layers as an important charac-
teristic to make layers within and across feature extractors
comparable. Next, we introduce our experimental setup that
allows a unified comparison of AD methods with respect
to the underlying feature space. We further design exper-
iments to demonstrate that estimating a suitable selection
function from the training dataset is a promising avenue for
future research since such selection strategies can signifi-
cantly improve the AD performance. Finally, we compare

Figure 2. Investigated setup of a feature-extraction-based anomaly
detection system. A single layer is selected from a certain feature
extractor to be used within the AD method.

the de facto standard of using a supervised protocol to pre-
train the feature extractor with alternative self-supervised
approaches.

3.1. Quantifying Semantics by Receptive Field Size

Layers from varying depth within a neural network pro-
duce feature maps with very different characteristics. The
spatial resolution of the feature maps often differ in ad-
dition to their capability to express semantic information.
Earlier layers tend to contain more fine-grained, low-level
information, whereas deeper layers predominantly capture
high-level, abstract semantics. These characteristics are hy-
pothesized to impact the AD performance [8,32]. However,
this effect has not yet been thoroughly studied since it is
challenging to compare the amount of semantic information
each layer captures. To gain insights into this hypothesis,
we propose to order feature layers by the size of their re-
ceptive field. This allows us to compare layers with respect
to the area of the input that they are sensitive to. While low-
level features focus on a small area of the input, high-level
semantic features capture long-range dependencies that re-
quire a considerably larger receptive field.

Following Luo et al. [23], we estimate the receptive field
of a layer based on the size of the input region that effec-
tively influences the activations of this layer. This is in
contrast to computing the theoretical receptive field, which
tends to overestimate the amount of pixels that actually con-
tribute to a feature [23]. Detailed information regarding the
gradient-based computation of the receptive field of feature
layers is given in our supplementary material. Since we are
interested in the fraction of the input image that affects a
certain feature, we divide the absolute size of the receptive
field in pixels by the dimensions of the input image, which
yields the size of the relative receptive field (RRF).

3.2. Varying Both Feature Extractor and Layer

To study the importance of the underlying feature space
for the AD performance, we vary the select function to
obtain different layers L∗ from various feature extractors.
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We consider three state-of-the-art AD methods: PatchCore
[32], FastFlow [42] and AsymST [34]. We assess the
effect on both anomaly classification and anomaly local-
ization performance to identify potential discrepancies be-
tween those measures. As feature extractors, we investigate
ResNet50 [15], Wide ResNet-50 [43], DenseNet-201 [17],
and EfficientNet-B5 [38], all pretrained on the ImageNet
classification task. These network architectures are widely
used in recent AD approaches.

For each feature extractor, we consider four distinct lay-
ers. These layers are sampled from the set of all possible
layers L such that they are distributed evenly over the RRF.
In all our experiments, exactly one layer is selected for anal-
ysis. Therefore, in total the AD performance is evaluated
for 16 different layers for each method.

Object Dependency. Anomaly detection datasets often
comprise multiple independent object categories. The pop-
ular MVTec Anomaly Detection Dataset (MVTec AD) [5],
for instance, contains 15 distinct categories of manufactured
objects. A separate anomaly detection system is trained on
each of them and the resulting performance measures are
averaged. Typically, AD methods employ the same feature
extractor across all categories of a dataset. In our study, we
are interested in how dependent the performance on indi-
vidual object categories is on the selected feature space and
if different feature extractors should be used for different
dataset classes. To this end, we identify the best-performing
layer for each dataset category and observe if a significant
variance occurs.

Image Size Dependency. The size of an input image to
a convolutional neural network directly correlates with the
spatial resolution of the resulting feature map. Since the ab-
solute receptive field does typically not depend on the input
size, the RRF is reduced for increasing input dimensions.
This, in turn, may affect the AD performance, since the
amount of semantic information within a layer is also af-
fected [8, 13]. Therefore, we study the effect of varying the
input image size as well.

Optimal Feature Selection Functions. Many AD meth-
ods combine feature maps from various layers or form an
ensemble of different extractors to reach high AD perfor-
mance [8,32]. While obtaining state-of-the-art results justi-
fies this strategy, it comes with a higher computational cost
that may prevent it from being employed in applications
with strict runtime and memory requirements.

Since using only a single extractor and layer is usually
more efficient, we raise the question if it is possible to match
the performance of ensemble-based methods by carefully
selecting a single layer that is most appropriate to the spe-
cific AD problem. To answer this question, we design a

series of oracle selection functions that gradually assume
more knowledge about the optimal feature selection strat-
egy. We begin by computing the expected AD performance
when sampling a feature layer randomly from the set of all
available layers and extractors. We then assume knowledge
about the feature extractor with the best mean performance
and compute the expected AD performance sampling only
from the layers of this extractor. Next, we additionally as-
sume knowledge about the single layer that yields the best
average performance across a dataset. This is compared to a
selection strategy where the single best layer for each object
category is known. Finally, we compute the performance
that could be reached by using the optimal layer for each
dataset object as well as the optimal image size.

This hypothetical optimal feature selection framework
provides insights in the potential that lies in adaptive selec-
tion functions that are derived from the anomaly-free train-
ing data. In particular, our experiments show that selecting a
single object-specific feature layer matches the performance
of computationally expensive ensemble approaches.

3.3. The Importance of Supervised Pretraining

The de facto standard for feature-based AD methods is to
use backbones that were pretrained on the ImageNet dataset
in a fully supervised way. However, self-supervised pre-
training strategies start to show impressive levels of perfor-
mance in many downstream tasks, and some works already
begin to integrate them into their AD systems. We are there-
fore interested if some pretraining protocols are more suit-
able for the anomaly detection downstream task than others.
In particular, given a specific layer L∗ from the overall set
of layers L, we assess how the pretraining protocol influ-
ences the expressiveness of the corresponding feature map
and the final AD performance.

For this analysis, we reduce the overall set of possi-
ble layers to one particular feature extractor, ResNet-50
[15], for which weight initializations from a diverse set
of pretraining strategies are readily available. As a base-
line, we compare against the supervised ImageNet pretrain-
ing. We then test weights obtained from the following self-
supervised pretraining paradigms: SimCLR [10], MoCo
[14], SwAV [9] and SeLa [2]. To enable a fair comparison,
each of these use the ImageNet dataset as well. In addition,
we compare against a random weight initialization.

4. Experiments and Results

We conduct extensive experiments on the frequently
used MVTec AD anomaly detection dataset, which com-
prises 15 categories of industrially manufactured objects
that need to be inspected for various defects. For AsymST
[34] and PatchCore [32], we build on the publicly available
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Figure 3. AD performance on MVTec AD of the evaluated methods for distinct feature spaces. Varying the feature extractor and the
intermediate layer results in significant performance changes of both anomaly classification and localization.

code bases1,2 from the original authors. For FastFlow [42],
we use the implementation available in the anomalib li-
brary [1]. We extend the implementations such that various
feature extractors and pretraining protocols can be tested.
If not stated otherwise, we initialize all feature extractors
using the official PyTorch [29] weights. We analyze four
different backbone architectures: ResNet-50, Wide ResNet-
50, DenseNet-201, and EfficientNet-B5. From each back-
bone, we extract four layers. The exact layer identifiers and
further details on weight initializations for all our experi-
ments are listed in the supplementary material.

To study the effect of different feature spaces on the
anomaly detection performance, we fix the hyperparame-
ters of the AD methods and only vary the selected layer
of the feature extractor. For all evaluated methods, we set
the parameters to the values recommended by the original
authors except for the following changes. For PatchCore,
we sample a fixed number of 1000 coreset features in each
experiment instead of sampling a fraction of all available
training features. Hence, the method is not sensitive to the
spatial resolution of the chosen feature layer and the num-
ber of training samples. For AsymST, we reduce the num-
ber of sub-epochs to 40 for faster training. For FastFlow, we
disable early stopping and train for a fixed number of 200
optimization steps. If not mentioned otherwise, all meth-
ods process images that are resized to a fixed side length

1github.com/marco-rudolph/ast
2github.com/amazon-science/patchcore-inspection

of 256 × 256 pixels. We do not apply center cropping and
normalize images using the official ImageNet statistics.

To compute the AD performance on MVTec AD, we use
the evaluation scripts3 released by the dataset authors [5].
This requires the anomaly images to finally match the reso-
lution of the original dataset images, for which we use bilin-
ear upsampling. The performance in terms of image level
classification is measured by the area under the receiver
operating characteristics curve (AU-ROC1.00 ). The local-
ization quality is evaluated by integrating the per-region-
overlap curve to a false positive rate of 0.3 (AU-PRO0.30 ).

4.1. Sensitivity on Feature Extractor and Layer

The AD performance of all evaluated methods when
varying the selected feature extractor and intermediate fea-
ture layer is shown in Figure 3. The four layers of each
feature extractor are ordered by their relative receptive field
(RRF). Layers with larger RRFs stem from deeper hierar-
chy levels of the respective feature extractor. The top and
bottom row show the classification and localization perfor-
mance, respectively.

The particular choice of feature space has a signifi-
cant impact on the AD performance for all methods. For
AsymST, FastFlow, and PatchCore, the difference between
the best and worst classification scores across extractors and
layers is approximately 20%, 25%, and 10%, respectively.
The corresponding localization scores even vary by 45%,

3mvtec.com/company/research/datasets/mvtec-ad
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40%, and 30%.
Figure 3 further shows that there is no single best-

performing feature extractor. While EfficienNet-B5 gen-
erally achieves good results for anomaly classification, its
anomaly localization accuracy significantly falls behind the
other extractors. DenseNet-201 in particular achieves ro-
bust localization scores across all methods. Interestingly,
this also indicates that a high classification accuracy does
not necessarily imply accurate anomaly localization, and
vice versa. Such differences can also be observed for indi-
vidual feature layers that differ in the size of their RRF. For
AsymST, for example, selecting the EfficientNet-B5 layer
with the largest RRF results in the highest AU-ROC1.00 ,
whereas the best AU-PRO0.30 is obtained using an early
DenseNet-201 layer with a significantly smaller RRF.

Variations over Distinct Object Categories. Our exper-
iments above report the AD performance averaged over all
15 objects of MVTec AD. To analyze the influence of the
underlying feature space on the distinct categories, Figure 4
shows the number of objects for which a particular layer
yields the best performance for PatchCore [32]. For both
anomaly classification and localization, the best-performing
layer depends on the inspected object. Again, deeper layers
tend to perform better for classification, while earlier lay-
ers are more often the optimum choice for localization. We
obtain similar results for AsymST [34] and FastFlow [42],
which are provided in the supplementary material. Surpris-
ingly, for PatchCore the last of the investigated layers never
performs best, while for other methods this layer may lead
to the top performance on average, e.g., for classification
with EfficientNet-B5 with AsymST and FastFlow (cf. Fig-
ure 3). This highlights once more that extractors behave
differently depending on the method in which they are used.

In general, Figure 4 indicates that the optimal extractor
and layer strongly depends on the specific object category.
From a practical point of view, this implies that a certain
choice of extractor and layer does not necessarily general-
ize well to new application scenarios. An object-specific
selection strategy for feature extractor and layer may have
the potential to mitigate this problem.

Influence of Image Size. To analyze the influence of the
input image size on the AD performance, we re-evaluate all
methods with varying input dimensions. In addition to our
default image size of 256 × 256 pixels, we test image sizes
of 384 × 384 and 512 × 512 pixels. Figure 5 depicts the
performance for AsymST when using WideResNet-50 and
DenseNet-201 as feature extractors. Results for FastFlow
and PatchCore are found in our supplementary material.

Since the RRF decreases with increased input size, the
curves shift in the negative x-direction. At the same
time, we notice that the performances of the layers are

Figure 4. Number of object categories from MVTec AD for which
an intermediate layer yields the best performance for PatchCore.
For each feature extractor, the layers are ordered by their RRF
from small to large.

also affected, which confirms that the input image size
is another important parameter to consider for feature-
extraction-based AD. Curiously, for different image di-
mensions the performance of layers with similar RRF re-
mains comparable. This indicates the tendency that the per-
formance of a feature layer is rather defined by its RRF
than by its architectural hierarchy level. For instance, for
WideResNet-50, the localization performance peaks for the
second layer with image size 256, but for the third layer
with image sizes 384 and 512. A similar trend can also be
observed for the other evaluated methods and extractors, as
shown in the supplementary material.

Based on these results, we hypothesize that there is a
correlation between the RRF of a layer and its respective
AD performance. A possible cause for such a correlation
may be the size of the anomalies within the test dataset.
It seems reasonable to assume that a certain defect size is
captured best on a specific hierarchy level of the convolu-
tional feature extractor. Thus, when changing the input im-
age size and, in doing so, the absolute defect size, the opti-
mum RRF passes to another layer. However, we leave more
fine-grained experiments to test this hypothesis for future
work.

Oracle Feature Selection Functions. The results from
the above experiments highlight the potential benefits that
a problem-specific selection of a suitable feature extractor
and intermediate layer could yield. To theoretically investi-
gate how such an optimal selection strategy would affect the
AD performance, we derive a series of oracle feature selec-
tion functions. These functions explore different parameter
subsets and select the best possible combination. We use
independent oracles for classification and localization and
keep the image size fixed to 256 × 256 pixels unless stated
otherwise.
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Figure 5. Varying the input image size for AsymST when using
Wide ResNet-50 and DenseNet-201 as feature extractors. Increas-
ing the input dimension reduces the RRF and also affects the per-
formance of the individual feature layers.

Figure 6 shows the anomaly classification and localiza-
tion performance for different oracle levels. As a baseline,
the average performance over all layers and feature extrac-
tors is reported for each method. It represents the expected
value of a random layer selection (random). Next, the or-
acle is allowed to select the most suitable feature extrac-
tor, i.e., the extractor with the highest average performance
over its intermediate layers (best feature extractor). Al-
ready this first optimum on the extractor level leads to a
considerable increase in AD performance across the exam-
ined methods. Then, the oracle selects the best of the 16 lay-
ers across all available extractors (best layer). As expected,
this leads to further performance improvements. Addition-
ally enabling the oracle to pick the optimal extractor and
layer per object category (best layer per object) results in
near state-of-the-art AD performance across methods. Clas-
sification AU-ROC1.00 (localization AU-PRO0.30 ) becomes
99.3% (93.8%) for AsymST, 98.3% (91.0%) for FastFlow,
and 99.4% (95.3%) for PatchCore. Finally, instead of us-
ing a fixed input image size, we allow the oracle to choose
the optimal input dimension from all three investigated im-
age sizes before selecting the best layer per object (best img
size & layer per object). This enables AsymST and Patch-
Core to nearly perfectly solve the image-level classification
on MVTec AD with an AU-ROC1.00 of 99.7% and 99.9%,
respectively.

Quantitative values for the last two oracles are also pro-
vided in Table 1. We additionally report the AD perfor-
mance of the evaluated methods in their original training
configuration, which includes using model ensembles with
distinct feature extractors (FastFlow, PatchCore) as well as
concatenating features from multiple layers (PatchCore).

Figure 6. AD performance for different oracle feature selection
functions. Successively including knowledge on best-performing
parameters for feature extraction leads to state-of-the-art perfor-
mances for all evaluated methods.

Although such oracles are just a theoretical construct, the
ideal layer selection strategies push the AD performance
towards the limits for all investigated methods. Often, the
original setting is even outperformed, which demonstrates
that utilizing just a single layer of a feature extractor can
match the accuracy of computationally more expensive en-
sembling approaches. Therefore, we believe trying to auto-
matically identify such an optimal selection strategy based
on the anomaly-free training dataset is a very promising but
yet unexplored research direction.

Table 1. Classification AU-ROC1.00 (localization AU-PRO0.30 ) for
AsymST, FastFlow, and PatchCore using the two best-performing
oracle feature selection functions. Additionally, the performance
of the evaluated methods in their original training configuration is
reported, which includes ensembling strategies if applicable.

AsymST FastFlow PatchCore

best layer per object 99.3% (93.8%) 98.3% (91.0%) 99.4% (95.3%)

best img size &
layer per object

99.7% (95.3%) 98.9% (92.3%) 99.9% (96.1%)

reproduced results 98.9% (81.2%) 96.9% (92.5%) 99.3% (95.5%)

4.2. Influence of Different Pretraining Strategies

Figure 7 presents the influence of different pretraining
strategies when using a ResNet-50 feature extractor for
FastFlow. The results for the other methods are provided
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in the supplementary material. Since the estimation of the
RRF is gradient-based, it depends on the model weights
and, thus, was recomputed for the different weight initial-
izations. Indeed, changes of the RRF can be observed
across all layers.

In general, significant performance differences occur for
a single layer when using different pretraining strategies.
As expected, initializing the feature extractor with random
weights does not result in competitive AD performance. Su-
pervised ImageNet pretraining significantly improves the
performance over this random baseline. However, using
the examined self-supervised pretraining techniques leads
to comparable results, except for SimCLR.

Our experiments indicate that representations from self-
supervised learning can transfer well to the anomaly detec-
tion problem and that supervised techniques are not neces-
sarily required. However, no single pretraining paradigm
consistently outperforms all others. Since there is still
room for improvement, even better weight initializations
for feature-extraction-based unsupervised AD may exist.
Thus, one possible avenue for future research is the con-
struction of feature extractors that are more tailored towards
the anomaly detection problem itself, e.g., by pretraining on
a large AD-specific dataset.

5. Conclusion
This paper investigated the importance of pretrained fea-

ture extractors in unsupervised visual anomaly detection
systems. While recently a lot of new AD methods that build
on pretrained feature spaces have been developed, little ef-
fort has been directed towards understanding the impact that
the particular choice of feature space can have on the AD
performance. To date, the community lacks systematic ap-
proaches to select a suitable feature extractor and interme-
diate layer and relies on empirical selections that work well
for an investigated problem.

We conducted a systematic analysis of three state-of-the-
art AD methods and tested their performance on 16 indi-
vidual feature layers, originating from four different feature
extractors. Experiments on the MVTec AD dataset reveal
that all examined methods tend to be highly sensitive to
the particular choice of feature space and no single best-
performing feature extractor exists. We further show that
the optimal feature layer may also vary with respect to the
inspected object category, the input image size, and the used
pretraining protocol.

Finally, we show that using an optimal feature selec-
tion strategy with respect to the distinct objects of the
MVTec AD dataset can significantly improve the perfor-
mance. By using only a single feature layer, we reach
results up to 99.9% AU-ROC1.00 for anomaly classifica-
tion and 96.1% AU-PRO0.30 for anomaly localization. This
matches the performance of the current state of the art,

Figure 7. AD performance of FastFlow with ResNet-50 as feature
extractor using different pretraining strategies. Weight initializa-
tions obtained from self-supervised paradigms are a competitive
alternative to supervised ImageNet pretraining.

which relies on computationally expensive feature ensem-
bling techniques. This result motivates a new research di-
rection, i.e., the development of methods that select appro-
priate feature layers as a function of the anomaly-free train-
ing data.

In future work, our studies may be continued in a va-
riety of ways. First, the presented experiments can be re-
peated on additional AD datasets, e.g., VisA [44] or MVTec
LOCO [4]. Second, testing the effect of even more interme-
diate layers within feature extractors would be of interest to
see if even better AD performances can be achieved by en-
abling more fine-grained layer selections. Third, our work
may be extended to ensembling techniques that require fea-
ture selection functions that choose multiple extractor lay-
ers. In particular, studying the effect that combining differ-
ent feature layers in ensembling approaches has on the AD
performance is a promising avenue for future research. As
in the single-layer setting, it would be interesting to develop
object-specific feature selection strategies.
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Georg Langs, and Ursula Schmidt-Erfurth. f-AnoGAN: Fast
Unsupervised Anomaly Detection with Generative Adver-
sarial Networks. Medical Image Analysis, 54, 2019. 1

[37] Ozan Sener and Silvio Savarese. Active learning for con-
volutional neural networks: A core-set approach. In 6th In-

ternational Conference on Learning Representations, ICLR
2018, 2018. 2

[38] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 2, 4

[39] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
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