
Memory-efficient and GPU-oriented visual anomaly detection with incremental
dimension reduction

Teng-Yok Lee Yusuke Nagai
Akira Minezawa

Information Technology R&D Center, Mitsubishi Electric Corporation
{lee.teng-yok@ap,nagai.yusuke@cw,minezawa.akira@ds}.mitsubishielectric.co.jp

Abstract

Recent studies show that the image features from pre-
trained convolution neural network (CNN) can be used for
anomaly detection, even without fine-tuning. A common
type of methods divides the image space into patches, and
estimates the distribution of CNN-based features per patch
of all training data. While this types of methods can achieve
high accuracies, the high dimensionality of CNN features
causes overhead to both computing and storage. In this pa-
per, we present an incremental algorithm to reduce the di-
mensionality of CNN features during the training. As our
algorithm ultimately computes the Truncated PCA of the
features, it only maintains the truncated singular values and
vectors during the training. Besides, to efficiently update
the truncated singular values/vectors of all patches, we fur-
ther optimize the algorithm in order to fully utilize GPUs
for parallel execution. We show that with our approach,
we can achieve high accuracies on the texture classes of
MVTec AD with small memory footprint and extreme high
speed (around 200FPS) on a single GPU.

1. Introduction

Given an image, visual anomaly detection aims to decide
whether the image is an anomaly with respect to the known
normal cases, and it will be ideal if the area of the anomaly
can be detected too. Recently, several methods have shown
that by using a deep convolution neural network (CNN) pre-
trained on ImageNet [17], we can extract highly effective
features for visual anomaly detection [5, 15, 16]. Given an
image, these methods forward the image through a CNN
and combine the extracted image features of multiple CNN
layers into a long vector. With the vectors of normal cases in
the training set, these methods estimate the corresponding
distribution, and use the distribution to compare against the
features of test images. Even though the CNN is not fine-
tuned for the target scenario, on datasets like MVTec [2],

these methods already can achieve higher accuracies that
other fine-tuning-based approaches.

On the other hand, since each combined feature can have
1000s of elements, the dimensionality imposes several chal-
lenges. The first issue is the overhead to store the features
and to estimate related parameters. PaDiM algorithm [5],
for instance, divides the image domain into 54×54 patches,
uses Wide ResNet (WRN) [19] to extract the features, and
computes the sample covariance matrix per patch. As the
original feature length of WRN is 1792, storing all sample
covariance matrices requires 54× 54× 1792× 1792 num-
bers, meaning 37 GB of space in single precision and thus
impractical.

It is thus natural to ask whether we can apply conven-
tional dimensional reduction techniques to shorten the fea-
ture vectors. Although it has been empirically shown that
using dimension reduction techniques like Principal Com-
ponent Analysis (PCA) could lead to lower accuracies than
using random sampling [5], random sampling still requires
hundreds of dimensions to achieve high accuracies, which
is still memory consuming. If dimension reduction could
achieve acceptable accuracies on certain scenario, it could
be considered as a trade-off between accuracies and other
engineering factors such as speed and memory consump-
tion.

While it is trivial to apply PCA once the features or sam-
ple covariance matrices of all training data have been com-
puted, as they could take GBs of memory to store, the mem-
ory usage is still challenging during the training. While
there are methods to incrementally apply singular value de-
composition [3, 4], these methods need to call complex lin-
ear algebra routines like QR decomposition multiple times,
which could be complicated to implement on GPUs. Such
a kind of routines could be sensitive to the numerical er-
rors during the iterative update, and thus double precision
arithmetic operations are often required. Consequently, al-
though the CNN part can be accelerated by GPU in single
precision, these methods might still require CPUs to exe-
cute, which lose the benefit of GPUs.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2908

…

Selected

CNN

layer

Selected

CNN

layer

Selected

CNN

layer

… … …

Feature

map

Concatenated

feature of the patch

Convolution Neural Network (CNN)

Forward

Feature

map

Feature

map

Figure 1. Feature extraction with CNN. After resizing the feature
maps of pre-specified layers into the same size, we can concatenate
the features of each pixel across these layers as the feature of the
corresponded image patch.

In this paper, we present a GPU-oriented algorithm to in-
crementally reduce the dimensionalities of multiple matri-
ces in parallel. Other than storing the features of all images
first, we examine the images in batches and udpate the sin-
gular values and vectors during the iteration. Our algorithm
is designed for sample covariance matrices, which is sym-
metric and thus can be computed with a single SVD, other
than executing QR decomposition multiple times. To fully
utilize GPUs, which could have limits on the matrix sizes
when solving SVD for multiple in parallel, we optimize the
update algorithm by limiting the matrix size, and deferring
unnecessary operations until all batches have been exam-
ined. With our incremental algorithm, we can efficiently
compute the decomposition with fixed and low memory
footprint during the training.

This paper is organized as follows. After reviewing the
terminologies of visual anomaly detection in Section 2, we
describe our algorithm in Section 3. Section 4 shows the
accuracies of our algorithm on the MVTec AD dataset [2],
which shows that our algorithm is effectively on its classes
of texture types when being combined with recent CNN
like EfficientNet [18]. We discuss various issues about the
speed, memory usage, and parameters of our algorithm in
Section 5 and conclude with future work in Section 6.

2. Background

We first describe the basic idea to use CNN to extract
image features for visual anomaly detection, which is also
illustrated in Figure 1. Here we will use a single CNN to
extract the features from different locations in an image. As
each CNN layer leads to a 2D map of feature vectors, and
different CNN layer corresponds to different semantics in
the image, it is common to combine the features of multi-
ple pre-specified layers. Once these maps are resized to the
same spatial size, each pixel in the maps corresponds to a
patch in the image, and we can concatenate the features of
the same pixel in all layers to form the final feature vector
of this patch.

Given n normal images in the training set, we can use the
corresponded feature vectors per patch to model the distri-
bution of normal data. When testing an image, we compare
the feature vector of each patch in the test image against
the distribution of normal data. By mapping the compari-
son result to a numerical score per patch, we obtain a map
of anomaly scores, which can be used to infer whether the
image contains anomaly and where the anomaly could be.

A simple and yet effective distribution is multivariate
Gaussian distribution, which has been demonstrated by Rip-
pel et al. [15] and PaDiM by Defard et al. [5]. By denoting
the training features of a patch as x1, . . . xn, each of which
is a m-dimensional vector, the multivatiate Gaussian distri-
bution can be estimated by its sample mean µ and sample
covariance Σ per Equations 1 and 2, respectively:

µ =
1

n

n∑
i=1

xi (1)

Σ =
1

n− 1

n∑
i=1

xix
⊺
i − n

n− 1
µµ⊺ (2)

When testing a sample x, its Mahalanobis distance from
the multivariate Gaussian distribution can be used as its
anomaly score, which is

√
(x− µ)⊺Σ−1(x− µ). However,

the inverse of Σ cannot be stably computed since the rank
of Σ is lower than the feature length. One solution is adding
a weighted identity matrix to the covariance Σ before com-
puting the inverse. Another approach is applying truncated
singular value decomposition (TruncatedSVD) [6] to de-
compose Σ, and using the dominated singular values and
vectors to compute Mahalanobis distance.

More precisely, TruncatedSVD approximates Σ by
Ukdiag(σ1, . . . , σk)U

⊺
k , where σ1, . . . , σk are the top k

singular values, diag(σ1, . . . , σk) as a diagonal matrix
with the singular values along the diagonal, and the
columns of Uk are the corresponding singular vectors.
According to Equation 3, the Mahalanobis distance can
be computed by first projecting the vector x − µ as
diag(σ−1/2

1 , . . . , σ
−1/2
k)U⊺

k (x − µ), and the computing the
L2 norm of this projected vector.

(x− µ)⊺ Σ−1 (x− µ)

∼ (x− µ)⊺Uk diag(σ−1
1 , . . . , σ−1

k) U⊺
k (x− µ)

= (x− µ)⊺Uk diag(σ−1/2
1 , . . . , σ

−1/2
k)

× diag(σ−1/2
1 , . . . , σ

−1/2
k) U⊺

k (x− µ)

(3)

Another benefit of TruncatedSVD is that it can reduce
the storage overhead of Σ, which is O(m2), to O(m × k)
when using k singular values. While this is easy to achieve
once Σ has been computed, the computing of Σ could be

2909

storage-consuming. For small datasets like MVTec AD [2],
it is common to first compute the features of all data sam-
ples and then the sample covariance, but this approach is not
scalable for large datasets. Another approach is incremen-
tally updating the Gram matrix, which is

∑n
i=1 xix

⊺
i . This

approach requires a O(m2) buffer to store the sum, which
is data-independence but still challenge when the feature
length m is large.

3. Algorithm

This section describes our incremental dimension reduc-
tion algorithm to compute the TruncatedSVD of Σ. Our al-
gorithm divides the training feature vectors into B batches
where the feature vectors of the b-th batch are represented
by a matrix Xb of nb feature vectors as the columns. As the
sample covariance matrix Σ is equal to 1

n−1

∑B
b=1 XbX

⊺
b −

n
n−1µµ

⊺, our algorithm updates and stores the top singular
values and vectors of the Gram matrix, which is equal to∑B

b=1 XbX
⊺
b , when iterating through the batches. It should

be noted that the term batch here can be different from the
number of images to forward through the neural networks,
which is often called batches in literature too. Hereafter we
call the unit to update the dimensions as one step.

3.1. Incremental dimension reduction

For the first step, we collect more than k features to
form X1, and compute the initial TruncatedSVD such that
X1 ∼ Ukdiag(s1 . . . sk)V

⊺
k . For each of the following

steps, says b, our algorithm computes the TruncatedSVD
of

∑b−1
i=1 XiX

⊺
i +XbX

⊺
b , which is approximated by Equa-

tion 4 since we only keep the dominate k singular values
and vectors of

∑b−1
i=1 XiX

⊺
i :

b−1∑
i=1

XiX
⊺
i +XbX

⊺
b ∼ Ukdiag(s21, . . . , s

2
k)U

⊺
k +XbX

⊺
b (4)

By adding nb ones to the diagonal in the middle matrix,
Equation 4 can be rewritten by Equation 5:

[Uk, Xb]diag(s21, . . . s
2
k, 1, . . . , 1

nb

)[Uk, Xb]
⊺ (5)

Since the right matrix is the transpose of the left matrix,
based on the squared roots of the diagonal elements in the
middle matrix, we can define a matrix W by Equation 6,
add Equation 5 is equal to WW ⊺:

W = [Uk, Xb]diag(s1, . . . sk, 1, . . . , 1
nb

)

= [Ukdiag(s1, . . . sk), Xb] (6)

In summary, in every step, our algorithm computes the
matrix W , and applies TruncatedSVD to decompose W into
U ′
kdiag(s′1, . . . , s

′
k)V

′
k . U ′

k and s′i, . . . , s
′
k, respectively, be-

come the updated singular vectors Uk and singular values
s1, . . . , sk, which will be used in the next step.

3.2. Finalization

It should be noted that during the iteration, we are com-
puting the singular values and vectors of Gram matrix, not
the sample covariance yet. Thus at the end, we need one
more step to complete the calculation. When iterating the
data, we also accumulate all features into a m × 1 vector
xa. Once all steps are iterated, our algorithm computes the
mean µ = 1

nxa of all features, and cancels the mean per
Equation 7:

1/(n− 1)
B∑
i=1

XiX
⊺
i − n/(n− 1)µµ⊺

∼Uk{1/(n− 1)diag(s21, . . . , s
2
k)}U

⊺
k − n/(n− 1)µµ⊺

(7)

By projecting the mean vector µ to the space of U and then
reconstructing back to the original space, which becomes
UU⊺µ, Equation 7 can be rewritten by Equation 8:

Uk{ 1/(n− 1)diag(s21, . . . , s
2
k) }U⊺

k

− n/(n− 1)UkU
⊺
k µµ

⊺UkU
⊺
k

= Uk{ 1/(n− 1)diag(s21, . . . , s
2
k) }U⊺

k

−Uk{ n/(n− 1)U⊺µµ⊺U }U⊺
k (8)

Since the left matrices of both terms of Equation 8 are
identical, and so are the right matrices, we can combine the
middle terms of both, as shown in Equation 9:

1/(n− 1)diag(s21, . . . , s
2
k)− n/(n− 1)U⊺

k µµ
⊺Uk (9)

After solving the SVD of the matrix in Equation 9, which
becomes Rdiag(s21, . . . , s

2
k)R

⊺, the singular values are es-
sentially those of the sample covariance matrix, and we can
compute the singular vectors of the sample covariance ma-
trix by UkR.

It can be seen that when iterating through the steps,
we only maintain the accumulated vector xa, features of
the current step, and the TruncatedSVD matrices Uk and
s1m. . . , sk, all of which have fixed size. Because the sizes
of Uk and Sk are m×k and k×k, respectively, which are in-
dependent to the number of samples n. The final step needs
to compute the matrix inside the bracket of Equation 8,
which is a k × k matrix and still data-independent. As a
result, our algorithm can be executed with a small and fixed
memory space, even when be applied to a large dataset.

2910

3.3. GPU-oriented implementation

When implementing the algorithm in Section 3.1 on
GPUs, several factors should be considered. First, it could
be tricky to implement robust SVD routines from scratch on
GPUs, and thus we aim to fully utilize libraries like nVidia
cuSolver [8]. cuSolver provides routines that are similar to
LAPACK’s gesvd [9] to compute the SVD of multiple ma-
trices in parallel. Given a high dimensional tensor, these
routines consider the last two dimensions as those of the
matrices, and apply SVD to all matrices in a single function
call. Nevertheless, these APIs could fail when the matrix
size exceed 32 × 32 [8]. In Equation 6, the size of W is
m× (k + nb), which can easily exceed 32× 32.

To resolve this issue, other than computing Truncat-
edSVD on W , we compute it on W ⊺W instead. The singu-
lar vectors of W ⊺W are essentially the right singular vec-
tors V ′ of W , and we can obtain U ′

kdiag(s′1, . . . , s
′
k) by

computing WV ′⊺. While the singular values s′1, . . . , s
′
k

are essentially the L2 norm of the projected matrix, and
the singular vectors U ′

k are its normalized column vectors,
we defer the normalization till the finalization step. This
is because that the calculation of L2 norm is based on
the computing of squared root, which can accumulate nu-
merical errors during the iteration. As our algorithm uses
Ukdiag(s1, . . . sk) together during the iteration, as shown
in Equation 6, there is no need to separate the singular val-
ues s1, . . . sk and singular vectors Uk before the finalization
step.

Our algorithm can be implemented by deep learning
frameworks by tensorflow [1] and pytorch [14], which can
easily utilize GPUs. Besides, by implementing our incre-
mental algorithm in the same framework as the CNN, we
can pass the feature vectors of CNN to our algorithm with-
out extra memory copying between CPU and GPUs, which
can otherwise dominate the computation. Another benefit
of using these frameworks is that they already utilize cu-
Solver’s APIs to compute SVD to multiple matrices in par-
allel when GPUs are available. The functions of tensorflow
and pytorch also can handle matrix larger than 32× 32, al-
though the speed can degrade. More details are discussed
in Section 5.

4. Experiments

This sections descries our experiment results. Our algo-
rithm is implemented by pytorch and torchvision. We use
the CNNs provided by torchvision, which were pre-trained
on ImageNet [17]. We used the MVTec AD dataset [2] to
benchmark. Our experiments first resized each image to
256 × 256 pixels by nearest-neighbor sampling, crop the
central 224×224 pixels of the resized images, and used the
cropped images to test the algorithms.

Our experiments were conducted on one Ubuntu16 com-

puter, and the speed was measured on one Intel Xeon
Gold 6230 CPU (2.10GHz) core alone and one nVidia
QuadroRTX6000 GPU. The batch size was 8 for all exper-
iments, and we used single precision arithmetic operations.
The performance of an experiment was measured by run-
ning all classes of MVTec AD, and using the total number
of frames of all classes divided by the total time as the FPS.
Note that here the timing excludes the I/O time to load im-
ages.

Regarding the step size, as the ideal matrix to compute
SVD on GPU is 32 × 32, 32 is the upper limit of step size.
It should be noted that during the incremental update, the
length of the matrix to computer SVD is the step size plus
the dimension to reduce, as shown in Equation 6. To find
a balance between the step size and the dimension to keep,
our experiments used 16 dimensions, which is the half of
32, and set the step size to 16 too. The exceptions are the
last batch, which might not have 16 images, and the first
one, which can collect 32 images to run the first SVD.

4.1. Impact of dimension reduction

Before we show the result of our algorithm, we first find
a case where dimension reduction can help. While existing
works [5, 15] show that dimension reduction methods like
PCA can lead to sub-optimal results on MVTec AD when
considering all classes, we wonder whether PCA could be
beneficial to certain types of objects. If yes, our algorithm
could have value. We are especially interested in the case
with extremely low dimensions, as the number of dimen-
sions should be lower than or equal to 32 in order to fully
utilize GPUs.

Table 1 shows the result of regular PCA on three
CNNs, which are ResNet18 [7], WideResNet50 [19], and
EfficientNet-b0 [18]. For ResNet18, we used the first three
layers to extract the features and reduced to 100 dimensions,
which are the same settings used by Defard et al. [5]. Our
implementation can achieve similar pixel-level ROCAUC
as reported by Defard et al., which are 93.7% and 93.5%
for texture and object types, respectively.

Table 1 also shows the result of 16 dimensions. Here we
show the results with regular PCA, meaning that we col-
lected all features into memory first and then applied PCA
in a single function call. It could be seen that when with
16 dimensions, the pixel-level ROCAUC dropped by 7 -
9%. This is also true with WideResNet50, which achieved
high pixel-level ROCAUC with 100 dimensions but low
ROCAUC with 16 dimensions. It should be noted that for
WideResNet50, the features were first sampled to 512 di-
mensions before applying PCA. Otherwise, the original di-
mension length is 1792, which requires 56 × 56 × 1792 ×
1792 values and cannot be computed.

Fortunately, when testing on EfficinetNet-b0, we found
that with only 16 dimensions, it still can achieve high RO-

2911

Table 1. ROCAUC of PCA on the MTVec AD dataset with various CNNs. Each tuple of numbers represents the accuracies of all classes,
texture classes, and object classes of the MVTec AD dataset.

Backbone ResNet18
WideResNet50

(reduced to 512 dims. first) EfficentNet-b0

Layers (1-based) 1,2,3 1,2,3 3,4,5,6
Dimensions 100 16 100 16 100 16
Image-level (%) 84.6, 93.8, 79.9 76.6, 89.7, 71.1 81.1, 92.7, 78.3 77.3, 90.7, 69.9 89.9, 99.7, 85.0 87.6, 99.2, 81.8
Pixel-level (%) 94.3, 95.7, 93.8 79.4, 83.3, 85.5 95.3, 96.0, 94.9 84.8, 75.4, 81.4 96.4, 97.2, 96.0 93.4, 95.7, 92.4

Table 2. Results of EfficientNet-b0 on the MTVec AD dataset with
different algorithm parameters. The features were reduced to 16
dimensions. The values of Incremental?” mean whether our incre-
mental approach (Y) or regular PCA (N) was used. The values of
”GPU Optimized?” mean whether Equation 6 (N) or Section 3.3
(Y) was used to update.

Incremental? N N Y Y
GPU Optimized? N Y N Y
Image
ROCAUC (%)

Texture 99.2 99.2 99.2 99.2
Object 81.8 82.5 83.0 81.8

Pixel
ROCAUC (%)

Texture 95.7 95.7 95.7 95.7
Object 92.3 92.3 92.6 92.4

Training
Speed (FPS) ALL 10.1 7.7 7.9 192.8

Inference
Speed (FPS) ALL 187.9 188.7 180.1 192.3

Table 3. Image-level ROCAUC (%) of EfficientNet family on the
MTVec AD dataset. The features were reduced to 16 dimensions
with our incremental approaches and GPU-oriented optimization.

EfficientNet 0 1 2 3 4 5 6
All 87.6 88.3 89.1 87.4 86.3 85.4 85.7
Texture 99.2 98.4 98.9 97.9 98.3 98.1 98.2
Object 81.8 83.3 84.3 82.2 80.2 79.0 79.4
carpet 99.6 99.8 99.8 99.5 99.6 99.8 99.6
grid 98.8 94.5 97.1 92.7 98.7 97.6 98.3
leather 100.0 100.0 100.0 100.0 100.0 99.7 99.3
tile 98.7 98.3 98.7 98.2 97.9 96.1 97.3
wood 99.0 99.3 98.8 99.0 95.5 97.3 96.6
bottle 96.0 99.1 98.2 98.7 84.4 96.1 94.8
cable 85.8 86.9 86.0 83.9 83.1 86.9 86.2
capsule 87.4 91.4 90.5 90.5 91.1 89.2 89.6
hazelnut 49.5 51.2 56.0 48.8 48.2 49.5 46.4
metal nut 88.4 89.3 90.3 91.4 87.0 59.8 73.9
pill 78.5 84.9 81.0 81.1 83.0 74.4 76.8
screw 53.5 51.9 51.9 46.8 45.6 47.9 46.7
toothbrush 87.2 87.8 96.7 94.2 91.4 91.7 89.4
transitor 97.2 99.2 98.4 96.1 97.3 96.4 95.5
zipper 94.9 91.7 93.8 90.7 91.5 98.1 94.6

Table 4. Pixel-level ROCAUC (%) of EfficientNet family on the
MTVec AD dataset. The features were reduced to 16 dimensions
with our incremental approaches and GPU-oriented optimization.

EfficientNet 0 1 2 3 4 5 6
All 93.5 93.0 92.6 92.2 91.9 88.1 88.6
Texture 95.7 95.1 94.8 94.8 95.4 89.8 90.9
Object 92.4 91.9 91.5 90.9 90.2 87.2 87.5
carpet 98.9 98.6 98.7 99.1 99.3 95.8 94.8
grid 92.7 90.6 89.4 88.7 92.9 81.8 85.0
leather 99.4 99.4 99.2 99.2 99.2 97.8 98.2
tile 94.2 92.9 92.8 93.5 93.1 85.1 87.9
wood 93.2 94.1 93.9 93.6 92.5 88.3 88.4
bottle 97.3 97.5 96.7 97.0 96.8 94.5 93.5
cable 89.0 88.2 86.8 86.9 84.8 79.5 79.2
capsule 97.7 97.6 97.4 97.5 97.8 95.3 95.2
hazelnut 86.8 85.7 86.0 83.8 81.2 75.6 73.6
metal nut 91.8 89.3 89.6 87.8 87.0 82.5 86.5
pill 84.8 85.2 84.8 81.7 79.8 78.9 80.2
screw 87.5 86.3 85.3 85.7 84.7 82.9 82.3
toothbrush 97.2 97.1 97.2 97.8 98.0 95.3 95.9
transitor 95.4 95.3 95.3 94.6 94.8 93.8 93.8
zipper 96.9 96.6 96.4 96.7 97.0 93.7 94.8

CAUC. Here we use layers 3, 4, 5, and 6 (1-based) because
these layers have the features maps in 56 × 56, 28 × 28,
28 × 28, and 14 × 14 pixels, respectively, which are the
same as the first 3 layers of ResNet18 and WideResNet50.
Later sections show the results on EfficinetNet-b0 of these
layers with our incremental algorithm.

4.2. Speed and accuracy of incremental update

Table 2 show the accuracies and speed of different set-
tings of PCA. The columns with ”Incremental?” as ”N”
mean that the results were measured when the PCA was
computed in a single shot after iterating through all data.
The columns with ”GPU Optimized?” as ”N” list the re-
sults that were measured by directly applying SVD to ma-
trix in Equation 6, other than using the optimized algorithm
in Section 3.3. The results of our proposed method are listed
in the rightmost column.

Table 2 lists the accuracies and performance of these

2912

capret/cut/008

leather/color/004

tile/gray stroke/015

wood/liquid/006

Figure 2. Detected anomaly of the MVTec AD dataset. The
columns from left to right show the input images, pixel-wise
ground truths, and the heat maps. Each color bar indicates the
color mapping of the corresponding heat map. Each caption indi-
cates the object type, anomaly type, and the image name, of the
corresponding row.

combinations. While all can achieve similar and high accu-
racies on texture types, the difference on object types can
be apparent. The difference is related to numerical pre-
cision, which will be discussed in Section 5. Regarding
performance, as suggested by the rightmost column of Ta-
ble 2, combining incremental update and the GPU-based
optimization can achieve highest speed (200FPS), which is
20 times faster than regular PCA (10.1 FPS).

In contrast, collecting all features together and apply-
ing the GPU-oriented optimization actually slow down the
computation. This is because that the matrices now be-
comes large than 32× 32. This is also true when incremen-
tally updating the singular values and vectors without the
GPU-oriented optimization, which is the slowest combina-
tion here since the SVD routines were called by multiple
steps.

grid
good
006

grid
good
019

transistor
bend lead

001

Figure 3. Visualization of false positives of the MVTec AD
dataset. The color bars next to the heat maps indicate the color
mapping. Each caption indicates the object type, the type of
anomaly, and the image name. Here good means normal cases.

4.3. Backbone complexity

We also tested different backbones of EfficientNet, as
shown in Tables 3 and 4. While all achieved high accu-
racies on the texture classes, we found that stronger back-
bones (b4-b6) achieved lower accuracies than weaker ones
(b0-b3). If we check the accuracies of texture type alone, b0
actually performed best, as the image-level ROCAUC of all
classes are higher than 98.7%. We hypothesize that because
these strong CNNs generate longer features, more dimen-
sions are required to preserve the information. In contrast,
for MVTec AD, the combination of efficienenet b0 and di-
mension reduction is a good choice for texture type objects.

4.4. Qualitative study

Figure 2 shows the visualization when testing on sam-
ples of the texture types of the MVTec AD dataset. As our
algorithm can achieve high accuracies on texture types, the
visualizations verifies that the location of the anomaly can
be correctly located. On the other hand, as the accuracies on
object types were low, we found that the current algorithm
is sensitive to changes of local patterns. The left and middle
of Figure 3, for instance, show the results of two normal im-
ages of type grid. Although this is one of the texture types
of MVTec AD, the two images were incorrectly detected
as anomaly, and the heat maps incorrectly highlight multi-
ple locations in the images. One more example is the right
one of Figure 3, which shows the heat map of an abnormal
case of the transistor. Although this abnormal image was
correctly detected, it was because of the background, not
the real anomaly. For instance, areas near the holes in the
background were incorrectly highlighted.

We hypothesize that these kinds of false positive can be
reduced by using data augmentation during the training. To
verify this hypothesis, we tested data augmentation on the
object type grid with EfficientNet-b0 as follows. During the
training, after resizing each image into 256×256 pixels, we
randomly cropped 224 × 224 pixels to extract the features.
Table 5 shows the statistics of 100 trials. It can seen that

2913

Table 5. Accuracies with EfficientNet-b0 on class grid of the
MVTec AD dataset with random cropping. The statistics were
measured by 100 trials.

Random cropping? N Y
Min. Avg. Max.

Image ROCAUC (%) 98.8 97.7 98.9 99.7
Pixel ROCAUC (%) 92.7 92.3 92.7 93.2

by average, the image-level ROCAUC was improved from
98.8% to 98.9%.

5. Discussion
5.1. Memory usage

With our dimension reduction algorithm, we can reduce
the memory overhead to calculate the anomaly score. When
using layers 3-6 of EfficientNet-b0, which leads to features
of 256 dimensions, storing th sample covariance matrices in
single precision as PaDiM requires 56×56×256×256×4 =
0.82GB of memory space. While 0.82GB seems small
nowadays, we should remind that this is mainly for tex-
ture types of MVTec AD dataset. For other object types,
more dimensions are required, and thus a memory-efficient
algorithm like ours is still crucial. By reducing the dimen-
sions to 20, our method can reduce the memory usage to
56× 56× 256× 20× 4 = 64MB.

5.2. Impact to the entire system

When considering the entire system, it should be noted
that the CNN model also requires memory space to forward
the images. Namely, the overall memory usage depends on
the model and number of images to forward. In our bench-
mark, the WideResNet50 of torchvision required 1.3GB of
memory space when processing a single image. For com-
puters with limited memory space, even with our incremen-
tal algorithm, we still suggest to use light-weight models.
Also, since no training of the CNN is involved, it is recom-
mended to set the batch size to 1 when forwarding images
through the CNN.

Regarding the impact to speed, we found that with the
settings of the rightmost columns of Table 2, our algorithm
used 1/3 of the training computation time. This means that
without our incremental algorithm and GPU-oriented opti-
mization, the dimension reduction can totally dominate the
computation time, making the entire system tens of times
slower, as listed by the left three columns of Table 2.

5.3. Numerical precision

As Table 2 shows different accuracies with different set-
tings, we empirically found that the differences were due
to numerical precision. Table 6 shows results of the same
settings as Table 2 but in double precision instead. It can

Table 6. Results of EfficientNet-b0 with different numerical pre-
cision and SVD algorithms. The other experiment settings are the
same as those of Table 2.

Incremental? N N Y Y Y
GPU Optimized? N Y N Y Y
Precision double single
SVD Algorithm gesvdj gesvd
Image
ROCAUC (%)

Texture 99.2 99.2 99.2 99.2 99.2
Object 82.8 82.8 83.0 83.0 83.0

Pixel
ROCAUC (%)

Texture 95.7 95.7 95.7 95.7 95.7
Object 92.4 92.4 92.6 92.6 92.6

Training
Speed (FPS) ALL 0.8 0.5 1.2 63.8 3.5

Inference
Speed (FPS) ALL 158.3 151.1 156.8 154.5 198.7

be seen that now the experiments with and without GPU-
oriented optimization can have the same accuracies. It is
noteworthy that even in double precision, our incremen-
tal algorithm with the GPU-oriented optimization still can
achieve 60 FPS for training, while the speed of the other
combinations drops to 3 FPS.

Besides numerical precision, the difference is also re-
lated to the underlying SVD algorithm. While pytorch by
default uses the gesvdj routine of cuSOLVER, which is es-
sentially the Jacobi eigenvalue algorithm [11], since pytorch
1.13, it is possible to choose other SVD routines such as
gesvd1. The rightmost column of Table 6 shows the re-
sults with gesvd as the SVD algorithm in single precision.
While the difference between experiments with and without
GPU-oriented optimization was also eliminated, the speed
became extremely slow.

Based on the findings above, if numerical precision is
crucial, we recommend using double precision, which still
can achieve 60 FPS with our algorithm. On the other
hand, as our method can achieve better accuracies for tex-
ture types even with very few dimensions, single precision
should be sufficient in such a case.

5.4. Dimensions and step sizes

We also analyzed the impact of dimensions and step
sizes, which are summarized in Tables 7 and 8, respectively.
It can be seen that when the step size is fixed to 16, the accu-
racies increase when dimensions increase. In contrast, the
impact of step size is less apparent. Based on this finding,
we tested with more dimensions to preserve, as shown in
Table 9. For each number of dimension, the step size is ad-
justed so the sum of step size and dimension is fixed to 32.
While using 16 dimensions leads to the highest image-level
ROCAUC, pixel-level ROCAUC can be further improved

1https://pytorch.org/docs/stable/generated/torch.linalg.svd.html

2914

Table 7. Results of EfficientNet-b0 with different numbers of di-
mensions with identical step size (16).

Dimensions 4 8 12 16
Image
ROCAUC (%)

Texture 99.0 99.2 99.3 99.2
Object 81.5 80.1 81.7 81.8

Pixel
ROCAUC (%)

Texture 95.6 95.5 95.5 95.7
Object 89.8 90.9 91.8 92.4

Training
Speed (FPS) ALL 190.2 190.8 191.8 192.8

Inference
Speed (FPS) ALL 190.4 188.5 190.4 192.3

Table 8. Results of EfficientNet-b0 with different step sizes with
identical number of dimensions (16).

Step size 4 8 12 16
Image
ROCAUC (%)

Texture 99.2 99.2 99.2 99.2
Object 81.5 82.4 82.2 81.8

Pixel
ROCAUC (%)

Texture 95.7 95.7 95.7 95.7
Object 92.4 92.4 92.4 92.4

Training
Speed (FPS) ALL 163.1 178.3 181.2 192.8

Inference
Speed (FPS) ALL 188.9 190.5 186.2 192.3

Table 9. Results of EfficientNet-b0 with different numbers of di-
mensions. The sum of dimensions and batch size is fixed to 32.

Dimensions 8 16 24 31
Step size 24 16 8 1
Image
ROCAUC (%)

Texture 99.2 99.2 99.3 99.3
Object 81.4 81.8 79.5 80.5

Pixel
ROCAUC (%)

Texture 95.5 95.7 96.2 96.6
Object 90.9 92.4 93.2 93.7

Training
Speed (FPS) ALL 201.0 192.8 177.1 84.6

Inference
Speed (FPS) ALL 192.2 192.3 184.5 188.9

by increasing the dimensions. Meanwhile, it can be seen
that when the dimension increases, implying a smaller step
size, more steps were required and thus the training speed
became slower.

To further verify the impact of dimensions, we tested an-
other dataset Magnetic Tile [10]. Similar to MVTec AD,
we resized the images to 256×256 pixels and used the cen-
tral 224 × 224 pixels to extract the features. Among the
normal images, we use the images with labels exp1 for test-
ing and the others for training. We fixed the step size to
16. Table 10 shows the accuracies and speed with different
numbers of dimensions. It can be seen that when using only
16 dimensions, both image-level and pixel-level ROCAUC

Table 10. Results of EfficientNet-b0 on the dataset Magnetic
Tile [10].

Dimensions 16 32 48 64
Step size 16 16 16 16
Image ROCAUC (%) 75.8 80.5 86.9 89.6
Pixel ROCAUC (%) 75.0 74.3 74.9 75.8
Training Speed (FPS) 267.8 5.4 5.3 3.3
Inference Speed (FPS) 221.2 215.7 212.8 203.3

were limited to around 75%. When using more dimensions,
the image-level ROCAUC was apparently improved. On
the other hand, the training speed was hugely reduced since
the sum of dimension number and step size exceeded 32.
A future work is optimizing our algorithm to support more
dimensions without impacting the speed on GPUs.

6. Conclusion

This paper presents an incremental dimension reduction
method to compute the truncated PCA. This algorithm is de-
signed when using CNN-based features for visual anomaly
detection and especially optimized for GPUs. When the
dimensionality is low, which is still sufficient to detect
anomaly in certain types of objects, we can achieve 100s of
FPS on a single GPU, and our method is memory efficient
during both the training and testing stages. In the future,
we would consider other types of backbones like transform-
ers [12] and non-linear score calculation such as K-nearest-
neighbor. A target is applying our dimension reduction
approach to reduce the memory bank of PatchCore [16],
which is required when a single Gaussian distribution is
insufficient to describe the normal data. We would also
like to extend our method to supervised or semi-supervised
cases [20], and integrate with other error metrics [13].

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. 4

[2] Paul Bergmann, Kilian Batzner, Michael Fauser, David Sat-
tlegger, and Carsten Steger. The mvtec anomaly detection
dataset: A comprehensive real-world dataset for unsuper-

2915

vised anomaly detection. International Journal of Computer
Vision, 129:1038–1059, 2021. 1, 2, 3, 4

[3] M. Brand. Incremental singular value decomposition of un-
certain data with missing values. In ECCV, 2002. 1

[4] M. Brand. Fast low-rank modifications of the thin singular
value decomposition. Linear Algebra and Its Applications,
415(1):20–30, 2006. 1

[5] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and
Romaric Audigier. Padim: a patch distribution mod-
eling framework for anomaly detection and localization.
arXiv:2011.08785, 2020. 1, 2, 4

[6] Per Christian Hansen. The truncatedsvd as a method for reg-
ularization. BIT Numerical Mathematics, 1987. 2

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 4

[8] https://docs.nvidia.com/cuda/cusolver/index.html. cu-
SOLVER API Reference. nVidia Corporation. 4

[9] https://netlib.org/lapack/. LAPACK: Linear Albegra PACK-
age. 4

[10] Yibin Huang, Congying Qiu, Yue Guo, Xiaonan Wang, and
Kui Yuan. Surface defect saliency of magnetic tile. In CASE:
Proceedings of the IEEE International Conference on Au-
tomation Science and Engineering, 2018. 8

[11] C.G.J. Jacobi. Crelle’s Journal, 1846(30):51–94, 1846. 7
[12] Pankaj Mishra, Riccardo Verk, Daniele Fornasier, Claudio

Piciarelli, and Gian Luca Foresti. Vt-adl: A vision trans-
former network for image anomaly detection and localiza-
tion. In ISIE 2021: Proceedings of the IEEE International
Symposium on Industrial Electronics, 2021. 8

[13] Ibrahima J. Ndiour, Nilesh A. Ahuja, and Omesh Tickoo.
Subspace modeling for fast out-of-distribution and anomaly
detection. In ICIP, 2022. 8

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeruIPS. 2019. 4

[15] Oliver Rippel, Patrick Mertens, and Dorit Merhof. Modeling
the distribution of normal data in pre-trained deep features
for anomaly detection. arXiv:2005.14140, 2020. 1, 2, 4

[16] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard
Schölkopf, Thomas Brox, and Peter V. Gehler. Towards to-
tal recall in industrial anomaly detection. arXiv:2106.08265,
2021. 1, 8

[17] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision,
115(3):211–252, 2015. 1, 4

[18] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling forconvolutional neural networks. In ICML,
2019. 2, 4

[19] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In BMVC, 2016. 1, 4

[20] Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang,
and Onkar Dabeer. Spot-the-difference self-supervised pre-
training for anomaly detection and segmentation. In ECCV,
2022. 8

2916

