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Abstract

Despite great advances have been made in the field
of domain adaptation (DA), the vast majority of current
methods in DA solve classical ML tasks, e.g. classifica-
tion. In this paper, we study a novel research direction:
semi-supervised anomaly detection with domain adapta-
tion. Given a set of normal data from a source domain and
a limited number of normal examples from a target domain,
the goal is to have a well-performing anomaly detector in
the target domain. We then present the Invariant Repre-
sentation Anomaly Detection (IRAD) to solve this problem
where we first learn to extract a domain-invariant repre-
sentation. The extraction is achieved by an across-domain
encoder trained together with source-specific encoders and
generators by adversarial learning. An anomaly detector
is then trained using the learnt representations. We evalu-
ate IRAD extensively on anomaly detection datasets, object
recognition datasets and digits benchmarks. Experimental
results show that IRAD outperforms baseline models by a
wide margin across different datasets. We derive a theoreti-
cal lower bound for the joint error that explains the perfor-
mance decay from over-training and also an upper bound
for the generalization error.

1. Introduction
Also known as novelty detection or outlier detection,

anomaly detection (AD) is the process of identifying abnor-
mal items or observations that differ from what is defined as
normal. Anomaly detection has been applied in many areas,
including cyber security (detection of malicious intrusions),
medical diagnosis (identification of pathological patterns),
robotics (recognize abnormal objects), etc. Anomaly de-
tection with different settings have been studied, for exam-
ple, many anomaly detection works aim to solve the semi-
supervised learning problem such that only normal data are
available for training [3, 24, 32]. The anomaly detection
models are expected to learn an anomaly score function
A(·) such that during testing anomalous data should be as-

signed higher anomalous scores than the examples labelled
as “normal.”

In practical applications, the normal data distribution can
have a shift. For example, in manufacturing, we have suf-
ficient amount of “normal” observations of engine type A
(source domain) and we want to design an anomaly de-
tection algorithm for a different but similar engine type B
(target domain). However, we may have only limited nor-
mal observations for the target domain. One option is to
re-collect a large-scale normal dataset in the new domain,
but this is often prohibitively costly and time-consuming
for many practical applications, e.g., medical healthcare and
autonomous driving [9, 34]. Can we design a system that
can leverage data from the both domains to learn an effi-
cient anomaly detection model for the target domain? In
this paper we attempt to address this important and interest-
ing question. This type of problem is also known as Do-
main Adaptation (DA), which studies the transfer learning
between the source and target domains [5, 15, 25, 34].

Surprisingly, domain-adapted anomaly detection has not
drawn as much interest as its classification peer, especially
comprehensive studies on semi-supervised anomaly detec-
tion in the domain adaptation setting are rare. As an effort
to solve the problem, we propose the Invariant Represen-
tation Anomaly Detection (IRAD) model. IRAD leverages
a shared encoder to extract common features from source
and target domain data. The shared encoder is adversarially
trained with a source-domain specific encoder and a gener-
ator. Such design is required to avoid overfitting the target
domain where training data are very limited. Then a simple
and off-the-shelf anomaly detection model, Isolation For-
est (IF), is trained on the extracted shared representations
of source and target domain. At test time, the trained IF
assigns the anomalous scores given the extracted features
from the test target data.

We evaluate IRAD thoroughly on cross-domain anomaly
detection benchmarks. Evaluation datasets are include
anomaly detection datasets (MvTec AD), standard digit
datasets (MNIST, USPS and SVHN) and Office-Home do-
main adaptation datasets. We compare IRAD to base-
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lines including the prevailing anomaly detection models and
competitive domain adaptation algorithms. Evaluation re-
sults show that IRAD outperforms the baseline models by
significant margins. For example, on Office-Home dataset
(Product→Clip Art), IRAD improves upon the best baseline
by almost 10%. In addition, we derive a lower bound on
the joint error on both domains for models based on invari-
ant representations, which explains the observation that the
accuracy on the target domain is inherently limited by the
“distance” between the source and target domains. We also
obtain a generalization upper bound that reveals the sources
of generalization error. We conduct ablation studies to con-
firm the effectiveness of objective functions in IRAD. The
content of this paper is also included in the first author’s
PhD thesis [31].

2. Related Work
One major class of anomaly detection algorithms is gen-

erative models that learn the normal data distribution via
generation processes, e.g., autoencoders (AE) and genera-
tive adversarial networks (GANs). For example, GANs [13]
are trained on images of healthy retina images to identify
disease markers [26]. Regularized Cycle-Consistent GAN
[32] introduces a regularization distribution to correctly bias
the generation towards normal data. Memory augmented
generative models [12, 33] maintain external memory units
that interact with the encoding process to store latent repre-
sentations of the normal data. An emerging type of anomaly
detection methods is self-supervised models [3, 11]. They
first apply different transformations to the normal data and
train a classifier to predict the corresponding transformation
that anomaly scores depend on.

Domain adaptation is to learn from source domain data
together with limited information of target domain in order
to have a well-performing model on the target domain. One
heavily studied direction is the unsupervised image classifi-
cation. Given labeled source-domain images and unlabeled
target-domain images, the goal is to obtain a target-domain
classifier. One type of methods learns a transformation
from the source to target domain [15,18]; some approaches
learn invariant representations between the two domains
[5, 28, 34]. There are also works addressing few-shot do-
main adaptation with various problem settings. Few-shot
domain translation [2, 7] learns a mapping function from
source to the target domain where limited target-domain
data are given. Since the data setting is similar to IRAD,
we include the one of state-of-the-art models BiOST [7] as
a baseline.

Previous works studying the task of cross-domain
anomaly detection typically have different problem setups
from this paper. For example, most works assume ac-
cess to labeled (both normal and abnormal) data at least
in the source domain: One-class Transfer Learning [6]

learns a regressor using labeled source data, which can
predict the target-domain anomaly distribution from the
normal distribution (estimated from target-domain normal
data). TAD [17] learns the conditional data distribution
with fully-supervised data in multiple target domains. A
few works use only normal data in the source and target do-
main. Collective-AD studies the collective anomaly detec-
tion problem, where the target domain is one of the source
domains, with a mixture of Gaussian graphical models [16].
AdaFlow investigates the multi-source transfer anomaly de-
tection problem by learning normalizing flows from target
domains to the source domain [30]. However, these works
assume sufficient normal data in the target domain are avail-
able, which can be a demanding condition to meet as men-
tioned before.

3. Methodology

Problem Statement We investigate the problem of
semi-supervised anomaly detection in the domain adapta-
tion setting. For training, the learning algorithm has ac-
cess to n data points {(x(i)

src, y
(i)
src)}ni=1 ∈ (X × Y )n sam-

pled i.i.d. from the source domain DS and limited target
data points {(x(j)

tgt, y
(j)
tgt)}

nt
j=1 ∈ (X × Y )nt sampled i.i.d.

from the target domain Dt (where nt is small and nt ≪ n).
Let y = 0 (y = 1) denote normal (abnormal). In semi-
supervised anomaly detection, we only have access to nor-
mal data, i.e., y(i)src = 0 and y

(j)
tgt = 0,∀i, j. The goal is to

build an anomaly score function A(xtgt) : X → a ∈ R
in the target domain. The test set consists of both normal
and abnormal target domain data. An evaluation metric of
learnt models is the area under the Receiver Operating Char-
acteristic (ROC) curve, or AUROC, w.r.t. the true labels and
anomaly scores of test examples.

3.1. Invariant Representations Extraction by Ad-
versarial Learning

Learning the domain-invariant features is a prevailing so-
lution for the domain adaptation problem [5, 10, 34]. IRAD
includes a shared encoder Esh to extract common features
between the source and target data, a method commonly
used in previous works [5, 10]. To enable an appropriate
split of shared and domain-specific components, IRAD also
trains a private encoder Epv in the source domain to remove
the source-specific information from the domain shared en-
codings (see Sec. 3.2). To ensure that the learned compo-
nents actually contain useful information, we also introduce
a generator to map from the latent space to data space in the
source domain Gsrc. The generator Gsrc, encoders Esh and
Epv are adversarially trained together using a discriminator
Dsrc in the source domain. The adversarial loss is given as
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follows:

min
{Esh,Epv,Gsrc}

max
Dsrc

Vsrc(Dsrc, Gsrc, Epv, Esh) =

Exsrc [logDsrc(xsrc)] + Exsrc [log(1−Dsrc(x
′
src)]

+ Exsrc,xtgt [log(1−Dsrc(x
′
tgt)]

+ Exsrc
[log(1−Dsrc(xrnd)] (1)

where x′
src = G(Epv(xsrc) + Esh(xsrc)) represents the

reconstruction of the source data; x′
tgt = G(Epv(xsrc) +

Esh(xtgt)) denotes the generation using the extracted com-
mon information Esh(xtgt) from the target data and private
encodings from the source data; xrnd = G(z+Esh(xsrc))
is generated using a variable z sampled from a random dis-
tribution (empirically we find N (0, 1) works well) together
with shared encodings Esh(xsrc). The xrnd term is de-
signed to avoid the scenario in which the private encoder is
(incorrectly) so powerful that all latent information for the
source domain is encoded with Epv . By taking a random
vector as part of the input, the shared encoder is trained ad-
versarially to capture the essential information of the source
data such that the generated xrnd is close to xsrc. We con-
duct an ablation study about xrnd in Sec. 5. The discrim-
inator Dsrc is trained to distinguish real source data xsrc

from x′
src, x′

tgt, and xrnd. The shared encoder Esh, Epv ,
and Gsrc are trained to maximize the error Dsrc makes. At
optimality, x′

src, x′
tgt, and xrnd should resemble real data

xsrc w.r.t. Dsrc.
Besides adversarial training, we also optimize with the

following cycle consistent losses:

l1 = ∥xsrc − x′
src∥2, l2 = ∥xsrc − x′

tgt∥2 (2)

The first loss enforces the cycle consistency property in the
source data space. The second one ensures that compo-
nents extracted from the target data Esh(xtgt) are actually
shared features such that they reside in the same subspace
as Esh(xsrc). The cycle consistency losses are crucial in
our experiments with high-dimensional real-world images
(e.g., in Office-Home dataset where image sizes are usu-
ally larger than 300 × 300). We speculate this is due to the
instability in GAN training for high-dimensional data [1].
Stronger signals like direct cycle consistency losses should
help the optimizations of generators and encoders.

3.2. Split of Private and Shared Components

The subspace of shared and private encodings of the
source data should be dissimilar since they extract differ-
ent features of xsrc. For instance, in a domain adaptation
problem on MNIST (source) and SVHN (target), denoted
as MNIST→SVHN, the shared encodings should learn to
extract information relevant to the digit, while the private
encodings are expected to contain components about dig-
its style, size, etc. To enforce this characteristic, we intro-
duce an optimization objective to minimize the similarity

between the (normalized) shared encodings and private en-
codings, similar to [5]:

ldis = ∥Esh(xsrc)
TEpv(xsrc)∥ (3)

Also, the shared encodings extracted from two domains are
expected to be similar, since they should capture the com-
mon information between the two domains. Therefore, we
minimize the negative of inner product between the (nor-
malized) shared encodings of the source and target data:

lsim = −∥Esh(xsrc)
TEsh(xtgt)∥ (4)

We show in Fig. 8 that lsim objective is essential to ensure
proximity between the shared encodings extracted from the
source and target data. Without lsim, we observe that the
shared encodings of the source and target data are too far
apart which undermines the performance of the anomaly de-
tection algorithm. More details on this ablation study will
be given in Sec. 5.

The final objective function of IRAD is the weighted sum
of the losses mentioned above:

Vsrc + α1l1 + α2l2 + β(ldis + lsim) (5)

Empirically, we find α1 = 1, α2 = 1, β = 0.5 works
well. Unless otherwise stated, these values are used in the
experiments.

3.3. Anomaly Detection

After the shared encoder is trained, we can conveniently
leverage an off-the-shelf anomaly detection algorithm A′

to train an anomaly detection model using the shared rep-
resentations extracted from both source and target data in
the training set. In general, any semi-supervised anomaly
detection models can be used here. In this paper, we ex-
plore the options of using Isolation Forest (IF) [20] and
One-Class SVM (OCSVM) [27] as A′ in IRAD, denoted
as IRAD (IF) and IRAD (OC) respectively in later sections.
The description of IF and OCSVM can be found in the next
section. We choose IF and OCSVM because they are pre-
vailing and effective methods with the standard implemen-
tation available [22]. We conduct detailed comparisons be-
tween IRAD(IF)/IRAD(OC) and vanilla IF/OCSVM in the
experiments.

For testing, given a test example x, we encode x to the
shared subspace between source and target space Esh(x).
The anomaly score A(x) is then given as A′(Esh(x)).
Fig. 1 illustrates an overview of IRAD framework where the
source and target domain is Carpet and Leather respectively
from MVTec AD dataset.

4. Experimental and Theoretical Results
We evaluate IRAD extensively on various kinds of

benchmarks. The datasets include a recent comprehen-
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Figure 1. The overview of Invariant Representation Anomaly Detection (IRAD). IRAD first learns to extract shared features of normal
source (category Carpet from MVTec AD) and target (Leather) data by adversarial learning and dividing the latent space of source data.
An anomaly detector is then trained with the extracted features (dashed green box) of the source and target domain.

sive anomaly detection benchmark MVTec AD [4]; sec-
ond, MNIST digit images (source domain), SVHN and
USPS (target domain); third, Office-Home object recogni-
tion Dataset [29]. Finally, we also derive the theoretical
bounds for joint error and generalization error of IRAD,
which are consistent with experimental observations.

4.1. MVTec AD Dataset

MVTec Anomaly Detection (MVTec AD) [4] is a real-
world, comprehensive and multi-object dataset. We build
an AD domain adaptation benchmark by leveraging tex-
ture pattern objects in MVTec AD, including Carpet (C),
Leather (L), and Wood (W). For example, assume the
source and target domain is Carpet and Leather respectively,
denoted as C → L. In the training phase, images of Carpet
and a limited number of Leather images are available (im-
ages from both domains are normal). Test data include im-
ages of normal and abnormal Leather images. We use the
original train/text split in the dataset. We compare IRAD
with the following baselines:

Isolation Forest (IF) is a tree ensemble method that
“isolates” data by randomly selecting a feature and then
randomly selecting a split value between the maximum and
minimum values of the selected feature to construct trees
[20]. The averaged path length from the root node to the
example is a measure of normality. We experiment with
two types of isolation forest: IF (T) trained with only target
data; IF (S+T) trained with both source and target data.

One Class Support Vector Machines (OCSVM) is a
classical anomaly detection algorithm similar to the regular
SVM. OCSVM is a kernel-based method that learns a de-
cision function for novelty detection [27]. It classifies new
data as similar or different to the normal data. Similar to
IF, we test with two variants of OCSVM: OCSVM (T) and
OCSVM (S+T).

Bidirectional One-Shot Unsupervised Domain Map-
ping (BiOST) is a recent work on few-shot domain transfor-

mation [7]. BiOST learns a encoder-generator pair for each
domain respectively. Networks are then trained with across
domains cyclic mapping losses and a KL divergence in the
latent space similar to the one in Variational Autoencoder
(VAE). The anomaly score of a target data example is its
reconstruction error. BiOST is a representative baseline of
methods that leverage cross-domain transformation [15,30].

Deep Support Vector Data Description (DSVDD) is a
competitive deep learning one-class classification model for
anomaly detection [24]. DSVDD projects data to a sphere
in the latent space by learning the feature encoder and the
data center of the sphere. We train DSVDD on the union of
source and target domain data.

Data Augmentation (AGT): We also test an intuitive
approach by augmenting the target domain training data,
denoted as “AGT.” The data are augmented by image ro-
tations and flipping. An IF is then trained on the augmented
data.

The training and implementations details are as follows.
The encoders Esh and Epv in IRAD are ResNet-50 [14] pre-
trained on ImageNet where the last layer is removed, and a
fully connected layer is added. The decoder is a ten-layer
transpose convolution neural networks. The discriminator
Dsrc is a ResNet-18 network (without pretraining) followed
by a final layer for classification. To improve the optimiza-
tion process, we use the adversarial objective as in least-
square GANs [21]. To have a fair comparison, baseline
models with encoding networks, e.g., DSVDD and BiOST,
also leverage the pretrained ResNet-50 as the encoders. The
size of latent representation output by encoder is 128 cho-
sen by cross-validation. More details on implementations
and training are available in the appendix. The number of
target training data nt = 10.

Experimental results averaged on 10 runs with different
random seeds are presented in Fig. 2. Recall the evalua-
tion metric is AUROC w.r.t. the true labels and anomaly
scores of test examples. For a clearer visualization, best
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Figure 2. AUROC% of IRAD and baselines on MVTec AD dataset in six different adaptation settings (x-axis). Our IRAD models are
highlighted in red text.
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Figure 3. Experiments results (AUROC%) on digits datasets with MNIST as the source and USPS as the target domain. Our IRAD models
are highlighted in red text.

three models for each class are presented here. Full results
of all baseline models, including standard deviations, are
available in Table 1 in the appendix. IRAD (IF) outperforms
other baselines in all six adaptation settings. Also note that
IRAD (OC) outperforms the vanilla OCSVM, which further
validates the effectiveness of the extracted shared features.

4.2. Digits Anomaly Detection

We then evaluate on digits datasets with two adaptation
scenarios: adaptation from MNIST (source) to USPS (tar-
get) and MNIST (source) to SVHN (target). An example
of the evaluation setup is as follows. Following previous
works on anomaly detection [11, 24, 32], assume digit 0
is the normal class. In the training phase, digit 0 from
source domain (e.g., MNIST) as well as a limited number
of digits 0 from the target domain (e.g., USPS) are available
(nt = 50). We explore with different values of nt in IRAD
in the discussion section. Test data contain all the categories
of digits in the target domain where digits 0 are labelled as
“normal” and other digits are labelled as “abnormal.” We
use the original train/test split in the target dataset.

Images are preprocessed into gray scale single-channel
images of size 32 × 32 so that they can be input to the
same network. The shared encoder, private encoder and
discriminator in IRAD follow the configurations in stan-
dard DCGANs [23]. To ensure a fair comparison, we use
the same neural network architectures in IRAD, BiOST and
DSVDD (the feature extractor). Hyperparameters are cho-

sen by cross-validation, e.g., the size of latent representation
output by encoder is 64.

Fig. 3 and Fig. 4 shows result of MNIST→USPS and
MNIST→SVHN respectively (averaged over 10 runs) by
regarding each class of digits as normal. Full results con-
taining all evaluated models are available in Table 2 and
Table 3 in the appendix. For AGT methods, image trans-
formations that can change the digits (e.g. 9 and 6) are
avoided. IRAD outperforms all baseline models in both do-
main adaptation settings. An interesting observation is that
IF (S+T) actually performs worse than IF (T). We specu-
late that this is because MNIST and USPS digits are from
close but still distinct distributions. MNIST data actually
add noises to the training of IF and undermine the perfor-
mance. We provide a theoretical explanation for this obser-
vation in Section 4.4.

4.3. Objects Recognition Anomaly Detection

The Office-Home objects recognition dataset [29] is a
prevailing and challenging domain adaptation benchmark.
The images are high-dimensional where the average side
length is more than 300. We test with ten categories that
have reasonably sufficient data for evaluation in Clip Art
and Product domains domains, as listed in the x-axis in
Fig. 5. Object examples are shown in the appendix. We
test on two experimental scenarios: Product→Clip Art and
Clip Art →Product. Since the number of images in a do-
main is limited, we augment the training data in the source
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Figure 4. Experiments results (AUROC%) on digits datasets with MNIST as the source and SVHN as the target domain. Our IRAD models
are highlighted in red text.

Bike Calculator Drill Hammer Kettle Knives Pan Paper Scissors Soda

30
40
50
60
70
80
90 OCSVM(S+T) OCSVM(T) BiOST DSVDD IF(S+T) IF(T) AGT IRAD(OC) IRAD(IF)

Figure 5. Results (AUROC%) on Office-Home dataset with Clip Art as the source and Product as the target domain. Our IRAD models
are highlighted in red text.

domain by rotations and flipping, which increases the size
of training source data by eight times. For a fair compar-
ison, baseline models are also trained with the augmented
datasets. The number of target domain images in the train-
ing set nt = 10.

Experiment results are shown in Fig. 5 and Fig. 6. Full
results averaged on 10 runs of all baselines are available in
the appendix. In each bars cluster, the corresponding ob-
jects category on the x-axis is regarded as the normal class.
IRAD shows strong performance in both adaptation scenar-
ios and outperforms all baseline models in 18 out of 20 ex-
periments. We will show later that cycle-consistency losses
are crucial in the high-dimensional Office-Home dataset.
We speculate that due to the increased complexity in im-
ages and the generation process, the transformation-based
BiOST is not as good as in digits benchmarks.

4.4. Bounds for the Joint Error and the Generaliza-
tion Error

Recent theoretical works on classification domain adap-
tation discover that minimizing the empirical error on the
source domain can be detrimental for the model’s perfor-
mance in the target domain [34]. We observe the same
phenomenon in domain-adaptation AD that overtraining
IRAD leads to less accurate detection, as shown in Fig. 7.
The adaptation performance first grows and gradually de-

creases after 5 epochs. We derive an information-theoretic
lower bound of the joint error (Thm. 1) to explain this phe-
nomenon.

We start with definitions and notations. Let DYS and
DYT denote the marginal label distribution in the source and
target domains. The projection from the data space X to the
latent invariant representation space Z, induced by Esh in
the case of IRAD, is denoted as g. The hypothesis (label-
ing) function h is shared between two domains that map
invariant representations Z to predictions Ŷ . For IRAD, the
hypothesis h is induced by the IF learned on the invariant
representations (IF learns the anomaly function). To ease
the proof process, we assume the anomaly scores are trans-
ferred to classification probabilities, for example by apply-
ing a threshold.

The above process can be denoted as the Markov chain
X

g−→ Z
h−→ Ŷ [10, 34]. Let dJS denote the JS distance

which is the square root of JS divergence [8]. Let εS (h ◦ g)
and εT (h ◦ g) denote the error of the learned model in the
source and target domain respectively. Then we have the
following theorem on the lower bound for joint error (the
proofs of theorems are provided in the appendix):

Theorem 1. Assume the chain is Markov, a lower bound
for the joint error on the source and target domains is:

2963



Bike Calculator Drill Hammer Kettle Knives Pan Paper Scissors Soda
30

40

50

60

70

80
OCSVM(S+T) OCSVM(T) BiOST DSVDD IF(S+T) IF(T) AGT IRAD(OC) IRAD(IF)

Figure 6. Results (AUROC%) on Office-Home dataset with Product as the source and Clipart as the target domain. Our IRAD models are
highlighted in red text.
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Figure 7. Overtraining to minimize the source domain error hurts
the performance on the target domain (experiments conducted on
MNIST→USPS).

εS (h ◦ g) + εT (h ◦ g) ≥ 1

2
dJS(DYS ,DYT )2 (6)

Remark: Since the definitions of normal data are dif-
ferent in source and target domains, dJS(DYS ,DYT ) > 0.
This term is dataset-intrinsic and independent of the learn-
ing models. The lower bound explains the phenomenon in
Fig. 7: overtraining to minimize εS actually increases the
error on the target domain εT . Learning without adaptation
(e.g. IF (S+T)) can have small εS but still large error in
the target domain. This lower bound also holds for other
domain adaptation anomaly detection methods that use in-
variant representations. This theorem reveals that to have a
well-performing model on the target domain, one needs to
balance between learning effective invariant representations
for accurate AD on the source domain while accommodat-
ing the target domain data. This trade-off is hard to avoid
and is a consequence of our assumption that the data for T
is insufficient for accurate training of the model. So the best
outcome is a balanced trade-off between our learning from
S and making corrections based on our limited sampling of
T . We use cross-validation to estimate the optimal number
of training epochs as mentioned before.

We also derive an upper bound for the generalization er-
ror. Let fS , fT be the true labeling function for the source

and target domains respectively. Let D̂S and D̂T denote the
empirical source and target distributions from source do-
main samples S and target domain samples T of size nt:

Theorem 2. For a hypothesis space H ⊆ [0, 1]X , ∀h ∈ H,
∀δ > 0, w.p. at least 1− δ:

εT (h) ≤ ε̂S(h) + dH̃

(
D̂S , D̂T

)
+ 2RadS(H) + 2RadS(H̃) + 2RadT(H̃)

+ min {EDS
[|fS − fT |] ,EDT

[|fS − fT |]}

+O(
√

log(1/δ)/nt)

H̃ := {sgn (|h(x)− h′(x)| − t) |h, h′ ∈ H, t ∈ [0, 1]}

RadS denotes the empirical Rademacher complexity w.r.t.
samples S (see the formal definition in the appendix).

Remark: this bound is formed by the following compo-
nents (left to right): (1) empirical error on S, (2) distance
between the training sets of S and T , (3) complexity mea-
sures of H and H̃, (4) differences in labels between source
and target, (5) error caused by limited target samples.

5. Discussion
Ablation Study of Objective Functions. To better un-

derstand the objective functions of IRAD, we conduct the
following ablation studies by removing certain terms in the
training process. We first investigate Eq. (4) that encourages
the similarity between the shared encodings of the source
and target data. Ideally, the shared encodings Esh(xtgt) and
Esh(xsrc) should reside in the same region. For the pur-
pose of illustration, we visualize Esh(xtgt) and Esh(xsrc)
in 2D by linear PCA as shown in the left sub-figures of
Fig. 8(a) and Fig. 8(b). With the similarity objective func-
tion in Eq. (4), Esh(xtgt) and Esh(xsrc) are close in the
latent space (Fig. 8(a)); without Eq. (4), Esh(xtgt) and
Esh(xsrc) are apart (Fig. 8(b)). We also plotted the magni-
tude of normalized inner products between 10 Esh(xtgt)
and Esh(xsrc) in the right sub-figures in Fig. 8(a) and
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Figure 8. Ablation study (digit 7, MNIST→USPS) on the similarity objective function in Eq. (4). Part (a) is training with Eq. (4): the
left figure shows the 2D linear PCA projection of Esh(xtgt) and Esh(xsrc). The right sub-figure shows the magnitude of normalized
inner products of ten randomly selected Esh(xsrc) and Esh(xtgt). Part (b) is trained without Eq. (4). Esh(xtgt) and Esh(xsrc) are
geometrically and numerically apart from each other in this case.

Full Model w/o Cycle-Consistency Losses w/o 𝑥!"# in Eqn. (1)
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Figure 9. (a) Shared features of normal (blue) and abnormal (red) target domain data. The first and second rows are “Calculator” and
“Pan” (“Product”→“Clip Art”). The first column is training with the full model and normal and abnormal encodings are well separated.
The second column is training without the cycle-consistency losses. Third column is from removing the term xrnd in Eq. (1). Normal
and abnormal data in the two later cases are mixing, making detection hard. (b) AUROC on MNIST→USPS with different numbers of
target-domain training data. We only present 5 digits due to the space limit; the full results are provided in the appendix.

Fig. 8(b). The results indicate that optimizing with Eq. (4)
indeed makes Esh(xtgt) and Esh(xsrc) close numerically.

We further study the cycle-consistency losses in Eq. (2).
We find them critical in Office-Home dataset evaluations.
Training without them can lead to more than 10% de-
crease in performance. We visualize the extracted fea-
tures from the normal and abnormal target data, Esh(xnor)
and Esh(xabn), in 2D with PCA. Ideally, Esh(xnor) and
Esh(xabn) should be separated so the abnormal can be de-
tected. This is what we observe when training with the full
model (the first column of Fig. 9(a)). However, if opti-
mized without Eq. (2), encoded normal and abnormal data
are mixing together (the second column in Fig. 9(a)). We
also investigate term xrnd in Eq. (1). Removing xrnd from
the adversarial training results in Esh(xnor) and Esh(xabn)
mingling together (the third column of Fig. 9(a)). We con-
jecture that for high dimensional data like images, it is chal-
lenging for the discriminator to form an effective decision
boundary [32], therefore additional regularization terms
(xrnd) and objective functions (cycle-consistent losses) are
helpful for modeling the normal data distribution.

Effects of the number of target domain training data.
We investigate IRAD performance w.r.t. the number of
target-domain training data nt. The results are presented
in Fig. 9(b) with nt = 10, 20, 50, 100. IRAD is able to
leverage more target data to achieve better performance.

6. Conclusion

We proposed IRAD to address the domain adaptation
problem in anomaly detection. IRAD first learns invari-
ant representations between the source and target domains.
This is achieved by isolating the shared encodings from
domain-specific encodings through adversarial learning and
enforcing subspace similarity/dissimilarity. The domain-
invariant representations are then used to train an anomaly
detection model in the target domain. IRAD significantly
outperform baseline models in most experiments on real-
world anomaly detection datasets. We prove a lower bound
for the joint error and an upper bound for the generalization
error. Experimental observations corroborate our theoreti-
cal results.
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