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Abstract

Digital twin is a problem of augmenting real objects with
their digital counterparts. It can underpin a wide range
of applications in augmented reality (AR), autonomy, and
UI/UX. A critical component in a good digital-twin sys-
tem is real-time, accurate 3D object tracking. Most ex-
isting works solve 3D object tracking through the lens of
robotic grasping, employ older generations of depth sen-
sors, and measure performance metrics that may not ap-
ply to other digital-twin applications such as in AR. In
this work, we create a novel RGB-D dataset, called Dig-
ital Twin Tracking Dataset (DTTD), to enable further re-
search of the problem and extend potential solutions to-
wards longer ranges and mm localization accuracy. To re-
duce point cloud noise from the input source, we select the
latest Microsoft Azure Kinect as the state-of-the-art time-
of-flight (ToF) camera. In total, 103 scenes of 10 common
off-the-shelf objects with rich textures are recorded, with
each frame annotated with a per-pixel semantic segmen-
tation and ground-truth object poses provided by a com-
mercial motion capturing system. Through extensive ex-
periments with model-level and dataset-level analysis, we
demonstrate that DTTD can help researchers develop fu-
ture object tracking methods and analyze new challenges.
The dataset, data generation, annotation, and model eval-
uation pipeline are made publicly available as open source
code at: https://github.com/augcog/DTTDv1.

1. Introduction
Augmented reality (AR) is a growing area of research in

both academia and industry. Two long-standing technical
bottlenecks for AR applications are 3D localization and its
solutions on mobile devices such as smartphones and wear-
able headsets. While localization using visual odometry in
static environments is a relatively matured technology as ev-
idenced by the number of available SLAM solutions [6,24],
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tracking individual objects in unknown or potentially clut-
tered environments is much more nascent. Potential solu-
tions are also essential to underpin a category of augmented
reality applications called digital twin. Examples include
replacing paper manuals for machine maintenance with vir-
tual 3D digital instructions and collaborative design of CAD
models. 3D object tracking is an essential part of any good
digital-twin solutions, aiming to estimate an object’s ro-
tation and translation relative to the camera with RGB or
RGB-D input and worn by the user.

Recent advances in precise 3D object tracking have been
driven by deep neural networks (DNN), which rely on high-
quality datasets to be trained effectively. Existing 3D ob-
ject tracking datasets include synthetic datasets [12, 25]
and real-world datasets [13, 14, 19–21, 29], with many past
demonstrations focusing on robot grasping tasks. Recent
DNN models are widely trained on these datasets in an
end-to-end manner to perform image semantic segmenta-
tion, object classification, and object pose estimation tasks
[10, 11, 15, 22, 27]. By employing fusion techniques on
aligned RGB images and depth maps, these approaches can
be robust to varying lighting conditions and object occlu-
sions. Many recent works are capable of performing 3D
object tracking with sufficient precision in real-world ap-
plications [27], demonstrating up to centimeter localization
accuracy, which may be sufficient for the use case of robot
grasping.

However, these solutions would reveal a new set of chal-
lenges when applied to mobile AR applications. Real-world
AR applications usually require accurate 3D object track-
ing at millimeter accuracy, from observation distance up to
one to two meters, and under various complex lighting con-
ditions. Unfortunately, most existing real-world 3D object
tracking datasets have been recorded with less than one me-
ter distance and under a fixed lighting condition (see Table
1).

Further compounding the above issues, these 3D ob-
ject tracking datasets rely on older-generation depth sen-
sors that are known to have high noise in depth estimation
beyond one meter, such as using low-power stereo cameras
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dataset data type ToF sensor texture depth occlusion average distance light variation # of frames # of scenes # of objects # of annotations
FAT [25] synthetic - ✓ ✓ ✓ - ✓ 60,000 3,075 21 205,359

ShapeNet6D [12] synthetic - ✓ ✓ ✓ - ✓ 800,000 - 12,490 -
StereoOBJ-1M [19] real × ✓ × ✓ - ✓ 393,612 182 18 1,508,327

TOD [20] real × ✓ ✓ × 0.65 × 64,000 10 20 64,000
LINEMOD [13] real × ✓ ✓ ✓ 0.88 × 18,000 15 15 15,784
YCB-Video [29] real × ✓ ✓ ✓ 0.85 × 133,936 92 21 613,917
LabelFusion [21] real × ✓ ✓ ✓ 0.99 ✓ 352,000 138 12 1,000,000

T-LESS [14] real ✓ × ✓ ✓ 0.77 × 47,762 - 30 47,762
DTTD (Ours) real ✓ ✓ ✓ ✓ 1.32 ✓ 55,691 103 10 136,226

Table 1. Comparison of DTTD dataset with other prior art. DTTD provides RGB-D data using Microsoft Azure Kinect ToF sensor for
longer-range object pose estimation problems. DTTD also measures rich object texture in different lighting conditions. To make a fair
comparison, we only present the average distance for real-world RGB-D datasets.

or structured-light cameras. We believe these depth cam-
eras have hindered possible improvement of future algo-
rithms to achieve accurate 3D pose estimation, especially
for digital-twin AR applications. Finally, solving 3D pose
estimation for AR applications has a certain level of expec-
tation of real-time performance. However, when depth data
in existing datasets are sparse given a 3D scene, running 3D
pose estimation could be time consuming [10, 11, 16].

In this paper, we introduce a new open-source dataset
to as our first step to fill the above gaps, called Digital
Twin Tracking Dataset (DTTD). As summarized in Table 1,
DTTD is designed to be a six degree-of-freedom (6-DoF)
pose estimation dataset that aims to address the pose esti-
mation problem for digital-twin applications. To this end,
we select 10 common objects similar to [3–5], purchasable
online or at local grocery stores, placing them in an in-
door room-scale environment where users using AR could
perform interaction tasks with these objects from roughly
0.7 meter to 1.5 meters. Adopting Microsoft Azure Kinect
time-of-flight (ToF) sensor, we collect aligned RGB and
depth frames with the expectation of a large field of view,
high image resolution (1280 × 720), and increased depth
accuracy [1, 17, 26]. The data is collected under different
lighting conditions with different levels of object occlusions
to simulate real-world digital-twin scenarios. We also cre-
ate a novel data annotation pipeline that makes use of an
OptiTrack1 motion capture system to provide ground truth
object pose annotations as well as per-pixel semantic seg-
mentation in every frame. In the end, we evaluate the per-
formance of the representative state-of-the-art pose estima-
tion algorithms on DTTD, and analyze possible challenges
that DTTD poses to the 6-DoF pose estimation task.

Our main contributions are summarized as follows:

1. DTTD is a real-world, high-quality 3D object track-
ing dataset with 10 objects and 103 scenes designed
for research in digital-twin AR use cases. This dataset
provides image data with a state-of-the-art depth cam-
era, providing high resolution, large field of view, and
accurate dense depth map. The data are collected from

1https://optitrack.com/

a wide range of distances within 1.5 meters and with
various lighting conditions.

2. We open source a pipeline for generating 3D object
tracking measurements using the OptiTrack motion
capture system and also provide manually annotated
and refined ground-truth scene labels.

3. Finally, we evaluate selected state-of-the-art methods
on DTTD to demonstrate its utility and efficacy. We
provide in-depth analysis from both model-level and
dataset-level perspectives to illustrate new challenges
in longer-range and wider lighting conditions.

2. Related Work

2.1. 3D Object Tracking Datasets

Existing object pose estimation algorithms are trained
and evaluated primarily on a handful synthetic and real-
world 3D object tracking datasets [12–14, 19–21, 25, 29].
Synthetic datasets use computer graphics rendering meth-
ods to generate photo-realistic images with various diverse
shapes and appearances. For example, FAT [25] renders 3D
objects embedded in realistic background images to gener-
ate measurement with pose annotation. Shapenet6D [12]
generates images with augmented object shapes, texture,
and background. Synthetic datasets typically require less
human labor for annotation. However, models trained on
synthetic datasets may have difficulties dealing with the
domain-transfer problem when the systems are later applied
in real world.

In comparison, real-world datasets collect frames from
real scenes and then employ manual annotation to label
ground-truth 3D poses. Datasets such as YCB-Video [29],
LINEMOD [13], StereoOBJ-1M [19], and TOD [20] utilize
depth-from-stereo sensors to collect real 3D data. While
previous generations of stereo sensors primarily target use
cases within one-arm distance (i.e., about 0.7 meter), the
depth accuracy would degrade very rapidly as the range in-
creases [8]. Furthermore, stereo sensors also suffer from
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Figure 1. Illustration of data samples. DTTD dataset is collected under various real-world occlusion and lighting conditions. The first row
shows scene images of four representative conditions (normal, occlusion, dim, dark). The second and third rows show the corresponding
semantic segmentation labels and 3D bounding boxes, respectively. DTTD depth data have the same resolution as the scene images.

holes in the depth map when stereo matching fails, requir-
ing hole-filling algorithms [16] to preprocess the data and
hence sacrifice the solution speed.

TLess [14] is another option that collects data via time-
of-flight (ToF) sensors, which improves the quality of depth
data in room scale. Our DTTD dataset also uses state-of-
the-art ToF camera, namely, Microsoft Azure Kinect, to
capture meter-scale RGB-D data, and uses the OptiTrack
system to collect the ground-truth camera position.

Regarding the pose annotation pipeline, most existing
RGB-D datasets manually create their annotation by fitting
3D mesh models to 3D point cloud [13,14,28,29]. In order
to generate large quantities of labeled frames, annotation er-
rors up to a centimeter are tolerated. For example, LabelFu-
sion [21] combines human keypoint labeling with match-
ing algorithms to generate annotation. However, without
per-frame manual refinement, centimeter-scale error may
frequently occur, causing insufficient accuracy for tracking
tasks in AR and digital-twin applications. DTTD relies on
a combination of manual and automated refinement on each
frame to improve the annotation quality compared to the
existing works. More specifically, DTTD maintains accu-
rate camera positions using the Optitrack system to keep
objects’ poses consistent among frames, thus reducing the
annotation workload.

2.2. 6 DoF Object Pose Estimation

Most data-driven methods for object pose estimation
take RGB [18, 23, 29, 30] or RGB-D images [10, 11, 15, 22,
27] as input. Xiang et al. [29] propose a convolutional neu-
ral network for 3D pose estimation problem. To fuse differ-

ent data modalities more efficiently, Wang et al. [27] pro-
pose a network architecture to extract and combine pixel-
wise dense feature embedding for both RGB and depth
sources. Due to the architecture simplicity, this method
reaches high efficiency on predicting object poses. More
recent works [10–12] improve the performance with more
elaborate network architectures. For example, He et al. [10]
propose an improved bidirectional fusion network for key-
point matching, and achieve high accuracy on YCB-Video
[29] and LINEMOD [13] benchmarks. However, these
methods are less efficient due to the complicated hybrid net-
work structure and processing stages. For symmetric ob-
jects, Mo et al. [22] propose a symmetry-invariant pose dis-
tance metric to avoid local minima issues. Jiang et al. [15]
propose an L1-regularization loss, called abc loss, which
improves the pose estimation accuracy for non-symmetric
objects. Our work will focus on RGB-D data and evaluate
some of the recent methods on DTTD to create a baseline
benchmark.

3. DTTD Dataset

DTTD collects RGB images and depth images from 10
rigid objects together with their corresponding textured 3D
models. In total, there are 103 scenes that each includes
one or more of such objects with different orientations. The
dataset provides ground-truth labels about 3D object poses
and per-pixel semantic segmentation. Camera specifica-
tions, pinhole camera projection matrices, and distortion
coefficients are also provided in the dataset. The detailed
dataset protocol is described below.
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(b) spam_can (c) mustard (d) pink_expo_marker(a) mac_cheese (e) cheerios_box (g) tomato_can (h) cheez-it_box (i) clam_can(f) black_expo_marker (j) pop-tarts_box

Figure 2. Illustration of 3D CAD models of the 10 objects in DTTD. Notice that {d,f} and {g,i} are two pairs of objects that are
geometrically identical but have different color texture.

3.1. Scenes

A scene in DTTD consists of a static assortment of ob-
jects placed on a flat surface. Each scene is captured by a
single RGB-D camera whose movement is tracked by a mo-
tion capture system. The camera movement is standardized
as half-circle revolutions around the object(s), exposing dif-
ferent faces of the object(s) and varying levels of occlusion.
Each scene contains up to five objects. As shown in Fig-
ure 1, we purposefully collect scenes at multiple times of
the day with different lighting conditions. The metadata for
each frame contains labeled ground-truth object poses and
camera intrinsic and distortion parameters. Users of DTTD
may reproject the depth map into 3D point cloud using the
camera parameters.

3.2. Camera

RGB images and corresponding depth maps are col-
lected from a Microsoft Azure Kinect depth camera. During
manual data collection, the camera is attached to a cart and
pushed smoothly around the scene, minimizing the shaking
from the handheld operation. We then retrieve aligned RGB
and depth frames from Azure Kinect at 1280× 720 resolu-
tion and 30 frames per second (fps), with some tolerance of
latency. The frames are aligned and synchronized and re-
trieved through the Azure Kinect SDK. The Azure Kinect
SDK also provides radial and tangential distortion coeffi-
cients that we store in addition to the frames.

3.3. Object Models

DTTD provides textured 3D models for the 10 DTTD
objects. These models are scanned using the Polycam app
2 on an iPhone 12 Pro with its camera and LIDAR sensors.
For model refinement, we use Blender 3 to fix surface holes
and texture pixels that are scanned incorrectly. To make
the collected scenes compatible with other existing datasets,
part of the then DTTD objects overlap with the YCB-Video
dataset [29]. We use these 3D models to perform annota-
tion of our data as well as generate semantic segmentation.
Figure 2 shows the collected models. Figure 3 shows the
distribution of the occurrence of the objects appearing in

2https://poly.cam/
3https://www.blender.org/

Figure 3. Number of scenes where objects occur in DTTD.

different scenes. The distribution is nearly uniform.

3.4. Pose Annotation

We have created a novel data annotation pipeline to an-
notate and refine ground-truth poses for objects in the scene.
The pipeline first reprojects camera frames into correspond-
ing 3D point cloud and aligns virtual models as the initial
ground-truth pose. Then a combination of iterative closest
points (ICP) [2] registration methods and other refinement
techniques are used to refine both the camera and object
poses. Finally, a global pose refinement step is performed.
By reviewing the annotation results of each frame and each
object manually, investigators can ensure high-quality la-
bels in the dataset. Annotating one scene can take as lit-
tle as five minutes, depending on the quality of the auto-
matic refinement. In order to generate the per-pixel seman-
tic segmentation, the pipeline can further project the virtual
models onto the 2D camera plane using the camera intrinsic
and distortion parameters given the virtual models’ known
poses.

3.5. Data Synthesizer and Scene Augmentation

The open-source DTTD code has the ability to further
augment the dataset with synthetic images for training so-
phisticated deep learning models. We build our own data
synthesizer using the Open3D Visualization platform [31].
Users are able to import custom CAD models, cameras, and
backgrounds into the data synthesizer. The virtual cameras
in simulation capture five kinds of data, including RGB im-
ages, depth images, semantic segmentation, object rotation,
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Optitrack Prime 17w

Microsoft Azure Kinect

Figure 4. DTTD setup. The room is outfitted with 10 Prime
17W OptiTrack cameras to establish ground-truth 6 DoF orien-
tation in real-time. With objects resting on a flat support plat-
form, OptiTrack tracks the camera movement by OptiTrack mark-
ers glued onto the camera body. An ARUCO marker is placed
in the scene to calculate the offset between the camera coordinate
frame from where the objects are measured and the OptiTrack co-
ordinate frame from where the camera movement is measured.

and translation. We also add Random Movement Compo-
nent and Random Rotation Component to objects to cre-
ate diverse synthetic scenes. As part of our data generation
pipeline, we also provide the ability to render synthetic la-
beled data selected from the original DTTD object models.

4. Data Generation Pipeline
4.1. Collection Setup

We collect the data in a single room outfitted with an Op-
tiTrack motion capture system with 10 Prime 17W cameras
to cover the room space. Calibration of the system using
OptiTrack’s Motive software reports a mean 3D reprojec-
tion error of 0.8mm. We calibrate the depth camera to the
OptiTrack system using an ARUCO marker in the center of
the room. The camera is instrumented with six OptiTrack
markers to define a rigid body. Then the single rigid body
can be tracked by the OptiTrack software. The OptiTrack
software returns a set of translation and rotation parameters
for each rigid body in each frame during recording. Figure
4 illustrates the setup of a standard scene.

4.2. Sensor Timestamp Synchronization

The presence of multiple sensors during the data col-
lection procedure requires reasonable time synchronization,
although the synchronization does not need to be at high
frame rates.

More specifically, the Azure Kinect camera captures
frames at 30 fps, with some error due to system latency. The

OptiTrack system is set up to output poses at 60 Hz. The
two are then synchronized by matching computed poses
from camera frames computed using the ARUCO marker
with OptiTrack poses. We optimize the matching by min-
imizing the mean squared error. We use linear interpola-
tion to estimate sub-interval poses from the OptiTrack. We
also smooth the OptiTrack pose estimation jittering using a
Kalman filter with a constant velocity model. This method
generally yields good data alignment.

4.3. Extrinsic Calibration

One important step of our data generation pipeline is
to ensure the OptiTrack is properly tracking the coordinate
frame of the camera sensor itself, which we denote as goc
(transform from the camera sensor to OptiTrack). The Op-
tiTrack is directly tracking the coordinate transform of the
rigid body defined by its markers on the camera. This co-
ordinate transform has a translation and rotation frame with
respect to the actual camera sensor. We refer to this coor-
dinate frame as gov (transform from virtual camera to Opti-
Track), or the virtual camera pose.

We refer to the extrinsic calibration as calculating the
transformation between the OptiTrack’s virtual camera rigid
body coordinate system and the camera sensor’s own co-
ordinate system, or gcv (transform from virtual camera to
camera sensor). In order to solve this extrinsic transfor-
mation, we first measure the position and rotation of an
ARUCO marker in the OptiTrack world coordinate system,
goa (transform from ARUCO marker to OptiTrack). We
then capture a sequence of frames with the camera observ-
ing the ARUCO marker and the OptiTrack observing the
camera. Using the known pose of the ARUCO marker in
the camera sensor gca (transform from camera sensor to
ARUCO marker), we can solve for the pose of the cam-
era sensor in the OptiTrack world coordinate system, goc
(transform from the camera sensor to OptiTrack):

goc = goa · g−1
ca (1)

Now that we have a virtual camera pose gov and a camera
sensor pose goc, both in OptiTrack world coordinates, we
can solve for an extrinsic transform for each frame and save
the average extrinsic:

gcv = g−1
oc · gov (2)

We perform averaging over the translation using the arith-
metic mean and the rotation in the quaternion space.

Once this extrinsic transformation has been computed, as
long as the OptiTrack system remains running, we can now
directly track the pose of the camera sensor itself through
OptiTrack’s real-time tracking of the virtual camera rigid
body, which significantly expands our ability in DTTD to
track long-duration, large-transformation 3D motions while
keeping precision of the pose labeling automatically.
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4.4. Annotation Pipeline

Initial Pose Annotation. Our initial pose annotation is
performed in a 3D environment using Open3D visualiza-
tion framework [31]. We reproject RGB and depth maps
into point cloud using camera intrinsic and distortion coef-
ficients. We then place virtual models into the scene using
ICP initialized by a rough user approximation of the center
of each object in the scene. Annotators can then individu-
ally adjust position and rotation of virtual models as well
as perform incremental algorithmic alignment until virtual
models are fully aligned with the point cloud. Once the
annotated poses for the objects are satisfactory, they are
saved and used to transform the objects into every subse-
quent camera frame in the sequence.

Scene Pose Refinement. After transforming each virtual
object into every frame, we perform a frame-wide global
pose refinement using ICP to refine camera poses. Finally,
we have another manual refinement phase, where annota-
tors can review each frame in 2D to ensure good alignment.
The environment allows the annotator to adjust the camera
translation and rotation in a very similar manner as in the
object adjustments during the annotation phase.

5. Experiments
5.1. Benchmark and Evaluation

Train/Test Split. DTTD provides a recommended
train/test split as follows. The training set contains 8726
keyframes extracted from 92 video sequences and the test-
ing set contains 1111 keyframes extracted from 11 video
sequences. Scenes with occluded objects and different
lighting-conditions are split randomly across the train-
ing/testing sets. In addition, 20000 synthetic images are
provided for training on our dataset by randomly placing
objects in a scene as described in section 3.5. Users of
DTTD can opt to render additional synthetic data using the
data synthesizer provided by DTTD.

Evaluation Metrics. Following [29], we can evaluate
baseline methods with the average distance metrics ADD
and ADD-S. Suppose R and T are ground truth rotation and
translation and R̃ and T̃ are predicted rotation and transla-
tion. The ADD metric computes the mean of the pairwise
distances between the 3D model points using ground truth
pose (R, T ) and predicted pose (R̃, T̃ ):

ADD =
1

m

∑
x∈M

∥(Rx+ T )− (R̃x+ T̃ )∥,

where M denotes the point set sampled from the object’s
3D model and x denotes the point sampled from M .

The ADD-S metric is designed for symmetric objects
when the matching between points could be ambiguous.
The formula is expressed through the closest point distance

between x1, x2 ∈ M :

ADD−S =
1

m

∑
x1∈M

min
x2∈M

∥(Rx1 + T )− (R̃x2 + T̃ )∥

Following [19, 27, 29], a 3D pose estimate can be con-
sidered to be correct if the average distance error is smaller
than a pre-defined threshold. To avoid calculating the suc-
cess rate only with respect to an ad hoc threshold, we mea-
sure AUC (i.e., the area under the success-threshold curve)
under various distance thresholds, with the threshold value
having the x-axis and can be normalized to a relative range
between 0 and 1. As a result, AUC with its values also be-
tween 0 and 1 can be calculated as a performance metric of
ADD and ADD-S.

5.2. Baseline Methods

We evaluate DenseFusion [27] and DenseFusion with
abc loss [15]. We also provide evaluations on FFB6D [10]
with and without hole filling algorithm [16] applied. We
train the above methods on the training sets with synthetic
data and report their performance on the test set.

DenseFusion [27] is a holistic method that directly re-
gresses 3D pose of objects in a given RGB-D image. The
model extracts features from RGB images and point clouds
using separate CNN and point cloud encoders and then per-
forms per-pixel dense fusion with confidence score for pose
estimation.

DenseFusion with abc loss [15]. Jiang et al. [15]’s work
demonstrate the benefits of abc loss on improving model’s
performance on ADD AUC metric. The abc loss Labc is
defined as the L1 distance between the points sampled on
the objects model in the ground truth pose and correspond-
ing points on the same model transformed by the estimated
pose.

FFB6D [10] is a keypoint-based method that recovers
object pose parameters by regressing on the most confident
3D keypoint features given an RGB-D image. The model
extracts the pointwise RGB-D features for 3D keypoints lo-
calization of each object using a full flow bidirectional fu-
sion network that facilitates the learning of an object’s geo-
metric and appearance representation. A Least-Squares Fit-
ting algorithm is applied on selected 3D keypoints in the
object coordinate system and camera coordinated system to
obtain optimized pose parameters. Note that the hole filling
algorithm [16] becomes a design choice when dealing with
sparse depth data.

5.3. Experimental Results and Dataset Analysis

Implementation Detail. We train the DenseFusion and
DenseFusion with abc loss (we set α = 1 in overall learning
objective described in section 5.2) with batch size of 1 for
64 epochs. Notice that we train and evaluate both methods

3294



DenseFusion [27] (per-pixel) DenseFusion [27] (per-pixel) + abc loss [15] FFB6D [10] FFB6D [10] without hole filling [16]
Object ADD-S AUC ADD AUC ADD-S AUC ADD AUC ADD-S AUC ADD AUC ADD-S AUC ADD AUC

mac cheese 84.8607 59.4370 84.4954 62.3326 48.2619 18.9750 32.4646 14.2986
spam can 87.9855 38.8337 88.3336 51.7568 30.6463 8.7439 46.1623 15.3382
mustard 84.3483 57.6207 84.4658 59.2276 46.6096 28.5681 24.4950 16.8288

pink expo marker 89.9759 78.9417 92.3427 80.7950 47.1057 39.8565 35.8469 30.5378
cheerios box 71.3897 29.1047 69.1718 32.8976 35.4673 7.0891 41.6812 7.7160

black expo marker 79.2332 62.8041 80.9540 62.6692 6.6660 5.6904 0.7048 0.6436
tomato can 84.9898 38.6220 87.1845 45.5703 24.3613 13.8302 7.7058 2.8534
cheez-it box 86.2357 60.0661 85.4747 49.1522 29.6672 7.9421 31.9884 13.9151

clam can 93.2859 71.6521 95.5851 76.8125 24.1573 9.6682 24.0257 12.8887
pop-tarts box 79.8134 17.4611 82.3599 24.1388 45.9755 2.9503 21.9485 0.5714

Average 84.2118 51.4543 85.0368 54.5353 37.4527 14.3314 26.7023 11.5592

Table 2. AUC results of ADD-S and ADD on the DTTD dataset.

under given groundtruth segmentation of objects without
post refinement process. We also apply ImageNet [7] pre-
trained ResNet-18 [9] as the CNN encoder for both meth-
ods. For FFB6D, we follow the proposed SIFT-FPS algo-
rithm [10] to obtain 8 target 3D keypoints for each object
in DTTD. FFB6D also applies a hole filling algorithm [16]
as an expensive postprocessing step on depth data. In our
experiments, we train FFB6D with a batch size of 1 for 10
epochs for best checkpoint. We also choose to train FFB6D
without applying the hole filling algorithm with a batch size
of 1 for 7 epochs for best checkpoint. The performance
of FFB6D with and without applying hole filling algorithm
is then compared. Since object segmentation is trained to-
gether with FFB6D, we do not apply groundtruth mask like
we did on training DenseFusion. All methods are adjusted
to input image resolution of 1280 × 720. All experiments
are conducted with one GTX 1080-Ti GPU.

Baseline Evaluation on DTTD Dataset. Quantitative
results on the DTTD dataset are shown in Table 2. Dense-
Fusion achieves average score of 84.21 ADD-S AUC and
51.45 ADD AUC. DenseFusion with abc loss has better
performance over DenseFusion on most of the objects.
Some qualitative evaluation results are shown in Figure 5.
FFB6D achieves average score of 37.4527 ADD-S AUC
and 14.3314 ADD AUC. FFB6D without hole filling has
average scores of 26.7023 ADD-S AUC and 11.5592 ADD
AUC. Given that we do not apply groundtruth mask to train
both methods in FFB6D, we can observe some failure cases
in FFB6D’s segmentation network as shown in Figure 6.
We suspect that FFB6D may have performed incorrect key-
point matching due to the complex background in scenes.
Also, we observe that dark lighting conditions can make the
FFB6D segmentation network harder to learn the detection
of objects in a longer range.

Effect of abc loss on DenseFusion. As shown in Table
2, DenseFusion with abc loss trained on DTTD dataset out-
performs DenseFusion without abc loss by 3.0% of ADD
improvements. From an optimization standpoint, the dif-
ference in abc loss and RT regression loss is the difference
in L1-norm and L2-norm. Numerically, L2-norm squares

Figure 5. Visual comparison of DenseFusion. The left and right
columns show results of without and with abc loss, respectively.

value of difference in distance, while L1-norm only takes
the absolute value of such. L2-norm is more outlier-prone
since it increases the cost of outliers exponentially whereas
the L1 norm considers them linearly. Thus, adding L1
regularization loss during training improves model robust-
ness towards outlier, which is especially important for the
ADD performance in 6-DoF pose estimation task on non-
symmetric objects. Therefore, adding an L1 regularization
loss helps jump out of the local minima, especially in non-
symmetric objects cases.

Effect of hole filling algorithm on FFB6D. We notice
that the performance of FFB6D with or without hole fill-
ing is unstable in DTTD dataset. Since the purpose of
FFB6D employing depth hole-filling techniques is to deal
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Figure 6. Illustration of FFB6D results. The left and right
columns show the evaluation of FFB6D with and without the hole
filling algorithm applied, respectively. Both methods fail to effec-
tively segment objects in dark lighting conditions.

with stereo depth holes issues with some of data in YCB-
Video. However, the hole filling algorithm itself should
not affect the model’s performance if the depth data does
not suffer from above issues, such as in DTTD using Azure
Kinect camera. Besides, at a longer distance, the hole filling
algorithm might induce a larger interpolation error. Thus
we observe a different performance in different objects and
scenes.

Performance Comparison with YCB-Video Dataset.
With ground-truth segmentation mask provided, the perfor-
mance of DenseFusion on DTTD does not have a compara-
ble ADD-S AUC and ADD AUC performance against that
of DenseFusion on YCB-Video dataset, as shown in Table
3. We stipulate that DTTD poses the following additional
challenges to the 6-DoF pose estimation task 4.

• Firstly, compared to YCB-Video, objects captured in
DTTD include longer distances on average with wider
field of view. Therefore, it becomes challenging for
the model to learn the object’s low-level features, such
as geometrical and appearance information.

4Object correspondence details (left: DTTD objects; right: YCB-
Video objects): cheez-it box with 003 cracker box, tomato can with
005 tomato soup can, mustard with 006 mustard bottle, spam can with
010 potted meat can, black expo marker with 040 large marker

DTTD YCB-Video [29]
Object ADD-S AUC ADD AUC ADD-S AUC ADD AUC

spam can 87.9855 38.8337 90.3031 79.9354
mustard 84.3483 57.6207 97.0297 94.9152

black expo marker 79.2332 62.8041 97.2883 93.9526
tomato can 84.9898 38.6220 96.6725 87.7622
cheez-it box 86.2357 60.0661 93.1328 88.3662

Table 3. DenseFusion (per-pixel) performance on DTTD and
YCB-Video dataset. We select overlapping objects with similar
appearances in both datasets.

• Secondly, DTTD provides more lighting variations
than YCB-Video. The model also needs to bridge the
gap of tracking 3D objects under varying lighting con-
ditions, e.g., estimate black expo marker’s pose under
dark lighting conditions.

We believe the above performance differences make
DTTD a better and more up-to-date dataset to demonstrate
the technical gaps in digital-twin tracking and to challenge
the improvement of future digital-twin tracking solutions.

6. Conclusion

In this paper, we have introduced a novel 3D ob-
ject tracking RGB-D dataset, called Digital Twin Track-
ing Dataset (DTTD), to enable further research on extend-
ing potential solutions to longer-range object tracking prob-
lems. To provide better point cloud data with less 3D noise
and in longer ranges, DTTD adopts Microsoft Azure Kinect
camera as the ToF depth camera sensor. The DTTD open-
source code also provides a data collection pipeline that
aims to minimize the ground-truth labeling error by lever-
aging an OptiTrack system, an ARUCO marker, and manual
annotation. In total, DTTD contains 103 scenes of 10 com-
mon off-the-shelf textured objects, with each frame anno-
tated with a per-pixel semantic segmentation and ground-
truth object poses. Our experiments have evaluated dif-
ferent methods using DTTD and have demonstrated that
DTTD can help evaluate object tracking methods under
common digital-twin conditions and illustrate new chal-
lenges in longer-range and wider lighting conditions.

For future work, we plan to further update the DTTD
dataset with more objects, scenes, backgrounds, and even
newer RGB-D camera sensors that are relevant to AR ap-
plications.
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