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Abstract

The open road poses many challenges to autonomous
perception, including poor visibility from extreme weather
conditions. Models trained on good-weather datasets fre-
quently fail at detection in these out-of-distribution set-
tings. To aid adversarial robustness in perception, we intro-
duce WEDGE (WEather images by DALL-E GEneration):
a synthetic dataset generated with a vision-language gen-
erative model via prompting. WEDGE consists of 3360
images in 16 extreme weather conditions manually anno-
tated with 16513 bounding boxes, supporting research in
the tasks of weather classification and 2D object detection.
We have analyzed WEDGE from research standpoints, veri-
fying its effectiveness for extreme-weather autonomous per-
ception. We establish baseline performance for classifica-
tion and detection with 53.87% test accuracy and 45.41
mAP. Most importantly, WEDGE can be used to fine-tune
state-of-the-art detectors, improving SOTA performance on
real-world weather benchmarks (such as DAWN) by 4.48
AP for well-generated classes like trucks. WEDGE has
been collected under OpenAI’s terms 1 of use and is re-
leased for public use under the CC BY-NC-SA 4.0 license.
The repository for this work and dataset is available at
https://infernolia.github.io/WEDGE.

1. Introduction

Self-driving cars need to safely operate across diverse
weather conditions, generating a demand for extreme-
weather perception data. This data is mostly captured
through fleet operations which are dependent on several fac-
tors like sensor calibration, vehicle availability, road condi-

1https://openai.com/policies/terms-of-use

Figure 1. WEDGE synthetic images are generated from vision-
language models using prompts of the form “{Objects} on
{scenes} when {weather condition}”. Crucially, weather condi-
tions vary across {snowing, raining, dusty, foggy,
sunny, lightning, cloudy, hurricane, night,
summer, spring, winter, fall, tornado, day,
windy}, as shown from the top-left to the bottom-right. By
fine-tuning detectors on such images manually annotated with
bounding boxes, we improve SOTA performance on real-world
weather datasets [16] by 4.48 AP for well-generated classes like
trucks.

tion and equipment costs. Because of the low-frequency of
naturally-encountered adverse weather, manual data collec-
tion can be expensive. Moreover, such collection can also
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be unsafe for extreme weather conditions that reduce vis-
ibility or impair vehicle control, such as dust, snow, and
fog. Because of such difficulty in data collection, many ap-
proaches treat weather conditions (such as rain droplets) as
artifacts that can be removed through denoising [9, 21, 43].

One attractive alternative is the use of synthetic data built
from rendering engines [29, 36], but such approaches may
still not transfer to changing weather conditions or the re-
alism of real-world, due to the so-called sim2real do-
main gap and underlying rendering assumptions. The re-
cent development of realistic synthetic images with gener-
ative vision-language models (VLMs) suggests another ap-
proach: VLM prompting. We demonstrate that one can use
VLMs to build adverse weather datasets for autonomous
perception, improving performance on real-world datasets
(such as DAWN [16]) for well-generated classes. Our main
contributions include:

1. Data. First and foremost, we create WEDGE, a 3360
image synthetic dataset of autonomous driving scenes
spanning 16 adverse weather conditions. We compare
WEDGE to existing datasets, demonstrating that it in-
cludes more varied imagery.

2. Release. To allow for public release under the CC BY-
NC-SA 4.0 license, we follow guidelines outlined by
the VLM’s terms of use, manual verifying the quality
and appropriateness of the generated images.

3. Annotation. We provide ground truth annotations for
all images for two tasks: weather classification and
(2D) object detection, with, 16513 bounding box an-
notations.

4. Benchmark. We establish object detection and classi-
fication benchmarks, facilitating future work.

5. Sim2real. We provide initial evidence that suggests
WEDGE can be used for sim2real learning; fine-tuning
SOTA object detectors on WEDGE improves perfor-
mance on real-world truck detection by 4.48 AP. We
also examine object classes for which fine-tuning on
WEDGE hurts performance.

The paper is organized as follows. Section 2 reviews
prior datasets. Section 3 outlines the methodology used to
construct and validate WEDGE. Section 4 presents experi-
mental results for weather classification and sim2real object
detection.

2. Background
The relationship between training data and test perfor-

mance implies better generalization capabilities with better
datasets. However, this assessment of “better” datasets can
vary based on the respective task, expected performance,

Figure 2. Real dataset samples from DAWN: Weather conditions
in the DAWN dataset [16] from top left to right: dust, fog, rain-
storm, snowstorm.

distribution requirements and other factors. In the context of
autonomous driving tasks, we describe some recent datasets
and the general requirements for robust models. We can
see that as time progresses, larger datasets also expanded
to include more weather conditions for robustness. How-
ever, even the best datasets till date do not venture beyond
4 weather types popularly.

Although a number of adverse weather datasets are re-
ported in literature (Refer Table 1), they all pose limitations
in two aspects : 1. The data contains the images corre-
sponding to a very few (maximum four) adverse weather
scenarios. 2. The data size is small, and it is biased to-
wards a certain city or region and has an inter-class imbal-
ance. When the models trained on these datasets are de-
ployed for real-world computer vision tasks, their perfor-
mance drops significantly due to lack of heterogeneity and
variability. Hence, in this work, we report a new dataset
which is developed using the DALL-E framework and of-
fers balanced data generated for 16 weather scenarios and
multiple object classes. The data is balanced for the all the
weather events (210 images per weather class). The ob-
ject class balance can also be achieved by weighting and
re-sampling. Additionally, as the data is developed using
generative AI, it is ideally more robust in nature. Some re-
cent works have showcased favorable results using DALL-
E and diffusion models for applications including zero-shot
classification [18], detection [10] and face generation [3].
We provide a number of experimental results in support
of robustness and evaluate the usability of this dataset as
a benchmarking tool in autonomous perception.

3. Methodology

The dataset generation process, prompt formulation and
image evaluation techniques are discussed here. The paper
employs multiple analysis tools, frameworks, and models
[2, 5, 8, 23, 26] to deliver the performance evaluation.
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Work Contribution Features
Class
Evaluated
/Proposed

Cities Weather Condition (S)

KITTI
2012 [11]

3D detection, stereo,
optical flow, visual
odometry/SLAM

22 scenes, stereo data,
dense point clouds 3/3 1 Good weather only

CityScapes 2016 [7] 2D detection,
semantic labeling 25000 images 19/30 50 Good weather only

Foggy Cityscapes
Driving 2018 [32]

2D detection,
semantic labeling 20,550 images 19/30 50 Fog

Waymo Open
2020 [37]

2D, 3D detection
and tracking tasks 1150 scenes, LiDAR 4/4 3

Good weather
with night, rain

nuScenes 2020 [4] 3D detection, tracking 1000 scenes, Radar data 10/23 2
Weather conditions
(sun, rain and clouds)

DAWN
2020 [16] 2D detection 1000 scenes 6/6 -

Adverse weather:
fog, snow, rain and sand

Argoverse 2 2023 [41] 3d tracking,
motion forecasting

1000 scenes,
HD maps 26/30 6

Weather include
(sun, rain, snow)

WEDGE 2D Detection 3360 scenes 5/6
Unknown
(variable)

Adverse weather in
snowing, raining, dusty,
foggy, sunny, lightning,
cloudy, hurricane, night,
summer, spring, winter,
tornado, day, wind,fall

Table 1. Recent datasets in autonomous driving.

3.1. Ground-Truth Datasets

To test the weather durability of the zero-shot system, we
set out to target a range of unfavorable weather situations
that can degrade vision in any season. We need a bench-
mark poor-weather dataset from the actual world for a fair
comparison in order to confirm the reliability of this dataset.
The autonomous vehicle vision dataset: DAWN [16] with
its 1000 driving scenarios recorded in adverse weather con-
ditions was used for this test. Unfavorable weather condi-
tions that are known to significantly limit road visibility in-
clude fog, snow, rain, tornadoes, haze, and sandstorms (Re-
fer Fig 2). Bicycle, person (pedestrian), motorbike, truck,
bus, and vehicle (car) form the set of 6 multiscale classes
represented in the images.

3.2. WEDGE Dataset Generation

The DALL-E [28] is a large-scale text-to-image genera-
tion model that is based on an autoregressive transformer
and has shown remarkable generalization capabilities in
tasks like zero-shot learning. DALL-E 2 [27] is a dual-stage
model that combines CLIP embeddings with probabilistic
diffusion-model based decoder for conditional generation to
generate the final realistic images. Diffusion models gen-
erate the images based on description (prompt) and sam-
ple using this condition. Due to the conditional genera-
tion, it presents the opportunity to generate variations in the
generated images based on the embeddings. OpenAI has
provided access to the DALL-E 2 model through OpenAI

API which was used for dataset generation in the following
steps:

1. Collected data using API calls to OpenAI API using
prompts which were randomly sampled from the fol-
lowing sets of keywords:

Scenes: highway, road, traffic jam, expressway
Classes: cars, trucks, bus, people crossing Weather:
snowing, raining, dusty, foggy, sunny, lightning,
cloudy, hurricane, night, summer, spring, winter, fall,
tornado, day, windy

2. Manually verified and cross-examined the images for
errors, mismatch and inconsistencies.

3. Grouped images into categories based on weather key-
words and thus generated 16 classes with 210 images
of each class.

4. Generated 2D bounding box annotations for all images
manually using RoboFlow annotation tool [8] and ver-
ified with human-in-the-loop evaluation.

5. Validated data using statistical and image analysis.

Specifically, we use prompts of the form “{Objects}
on {scenes} when {weather}”, where objects ∈
{cars, trucks, bus, people crossing},
scenes ∈ {highway, road, traffic jam,
expressway}, and weather ∈ {snowing, raining,
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dusty, foggy, sunny, lightning, cloudy,
hurricane, night, summer, spring,
winter, fall, tornado, day, windy}. This is
4*4= 16 unique prompts for each weather condition, which
we randomly queried 210 times to generate a final dataset
of 16*210 = 3360 images. For the internal diagnostic
analysis presented in Sec. 4, we randomly split WEDGE
into a 80/20 train/test split for classification.

3.3. Image Similarity

We evaluate the threshold differences in image similar-
ity between sampled real and generated images in their re-
spective class clusters, and bin them as shown in Figure
5. The feature similarity index (FSIM) uses low level fea-
tures to analyze images [44]. The Information theoretic-
based Statistic Similarity Measure combines the statistical
method and information theory, and it has a strong ability
to forecast the relationship between the image intensity val-
ues [1]. Peak Signal-to-Noise Ratio (PSNR), which directly
operates with image intensity, evaluates the ratio between
the maximum possible power of a signal and the power
of corrupting noise [13]. The Root Mean Squared Error
(RMSE) calculates the percentage change in each pixel be-
tween the operation and the baseline [33]. Spectral Angle
Mapper (SAM) calculates the angle between two spectra
and treats them as vectors in a space with a dimensional-
ity equal to the number of bands in order to estimate the
spectral similarity between them [42].Signal to Reconstruc-
tion Error Ratio (SRE) is a metric that compares the error to
the signal’s power [17]. The Structural Similar Index Mea-
sure (SSIM) is a tool that aims to capture an image’s loss of
structure [13].

4. Experiments
4.1. Image Analysis

The classic autonomous vehicle settings contain skewed
object distributions which we attempt to model with this
generated dataset as visible in Figure 3. In practice, this
balance can be restored by weighted prompting techniques
and resampling if required, but should be maintained to de-
liver valid results benchmarking generalization capabilities.

We observe that the inter-class object distribution is also
unbalanced (Figure 4), which is a desirable quantity for
multi-weather robustness. In the wild, autonomous driving
scenes will present unbalanced object distributions, which
are difficult to perceive with detectors trained on fairly bal-
anced data [25].

4.2. Image Similarity Analysis

We evaluate the real and generated datasets side by side
using these 6 metrics and as seen in the figure 5, we hy-
pothesize a sensible range of errors in this relative differ-

Figure 3. Sim2Real Distribution Gap: Object frequency distri-
bution in WEDGE and DAWN datasets.

Figure 4. Class Imbalance: Inter-class object distribution in
WEDGE dataset .

ence between real and generated datasets. The expected in-
verse similarity should ideally bounded by a small valued
real number which varies with the similarity metric.

5. Results
5.1. Classification Benchmark

As visible in Table 2, the MobileNet [14] Classifier
achieves top performance on the WEDGE Dataset with
53.87 test accuracy which is over 8-fold improvement on
random classification that hits 6.25% accuracy.

5.2. Object Detection Benchmark

The main task of this study is examining for WEDGE’s
usefulness in robust object detection in multi-weather ad-
versarial environments. Due to the varied presentations of
results across previous works, we first establish a standard
benchmark on DAWN dataset and attain dramatically bet-
ter performance with 22.97 T-4 AP increase (on test set)
and 17.07 T-4 AP increase (on complete set) (Table 3) than
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Figure 5. Image similarity thresholds of modified real (Synth-
DAWN) and synthetic autonomous driving datasets with real
images as evaluated using 6 metrics (ISSM, PSNR, RMSE,
SAM, SRE, SSIM from top to bottom) indicate overlapping
similarity distributions. The Sim2Real gap as evaluated by these
metrics is comparable to Filter2Real gap of applying simple fil-
ters (like blurring, sharp edges without distorting the structural
similarities). On the y-axis is the frequency of binned similar-
ity(error) and x-axis is the bins of similarity. Orange color rep-
resents similarity between a sampled image from DAWN and
WEDGE (Sim2Real). Blue color is similarity shift Filter2Real
from common filtering modifications between a sampled image
from DAWN and a modified sampled image from DAWN which
is called Synth-DAWN.

Model Train Acc. Test Acc.
VGG16 [35] 95.80 44.35
VGG19 [35] 98.59 44.64
Xception [6] 98.33 46.73
ResNet50 [12] 35.04 22.47
ConvNeXtSmall [20] 58.97 18.15
InceptionV3 [38] 99.85 50.30
MobileNet [14] 99.33 53.87
MobileNetv2 [14] 99.67 46.43
DenseNet [15] 99.89 49.55
EfficientNetV2S [39] 35.01 18.75

Table 2. Weather Classification: Classifying the weather con-
dition of a WEDGE image, when constructing a 80/20 train/test
split. We see that models can predict weather conditions with rea-
sonable accuracy.

the previous state-of-the-art ensemble works. While ex-
amining this performance, it is important to acknowledge
that all previous works (Table 3) have evaluated on differ-
ent DAWN test sets. For fair evaluation, we also publish
our DAWN split (inclusive of all 4 weather conditions) and
also evaluate on complete DAWN dataset. This is also a
domain adaptation robustness benchmark contribution, as
the models must shift between good-weather and adverse
domains at test and training times respectively. We can
see in Table 3, the FasterRCNN (ResNet 50) model fine-
tuned on WEDGE achieves top detection performance for
trucks, outperforming all previous benchmarks by 4.44 AP
on truck object class for test set and 4.48 AP on trucks on
complete set. The fine-tuned MobileNet (large) model is
able to detect both cars and trucks better with 2.61 AP and
5.17 AP on test set (1.96 AP and 9.17 AP on complete set)
respectively. We do not supervise the model with any im-
ages from DAWN in this training process. By fine-tuning
on WEDGE (without access to DAWN data), we are able
to attain multi-weather robustness in truck detection. How-
ever, one may question this robustness and attribute it to
the large pre-training dataset used before fine-tuning. To
verify the efficacy of WEDGE, we remove our fine-tuning
module and demonstrate the performance of models. These
models when trained without WEDGE (only good-weather
data) are worse at detecting trucks. The most important in-
sight from this work thus, is the effectiveness in utilizing
WEDGE as a fine-tuning set and its importance for selective
object detection. We observe that fine-tuning on WEDGE
is insufficient for other classes due to inherent properties
or annotation limitations. We manually examine how the
synthetic objects in these class are significantly worse than
real images which cause the detector to fine-tune on incor-
rect representations, thus hampering performance. Addi-
tionally we showcase the best object detection models in
classical supervised settings attaining 45.41 mAP on the
WEDGE Dataset with highest AP 57.48 on car class at-
tained by Faster-RCNN (ResNet50).

6. Discussion

6.1. Qualitative Analysis

As shown in Fig. 1, we conduct qualitative analysis
on generated samples and summarize our qualitative ob-
servations. Snow closely resemble winter scenes which
contain noisy elements like snowfall and thus poor visi-
bility. Rain resembles the view of a rainy traffic-filled
road from the perspective of a sensor placed behind wind-
shield. Dust contains occluded objects which are anno-
tated for robust vision in adversity. Fog resembles dense
foggy conditions which impair visibility of pedestrians and
objects. Sun images have well-illuminated objects in va-
riety of backgrounds. Lightning images look realis-
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Real Data (DAWN Dataset) Synthetic Data (WEDGE Dataset)Model car person bus truck T-4 AP mc bicycle mAP car person bus truck van mAP
Benchmark
Multi-weather city [24] - - - - 21.20 - - - - - - - - -
RoHL [31] - - - - - - - 28.80 - - - - - -
Transfer Learning [22] 7.00 8.00 7.00 - 5.50 - 0.00 - - - - - - -
Data Augmentation [22] 6.00 4.00 3.00 0.00 26.25 - 92.00 - - - - - - -
Weather-
Night GAN [21] 48.00 0.00 0.00 0.00 12.00 - - - - - - - - -

Ensemble Detectors [40] 52.56 52.34 21.73 13.71 35.08 35.51 23.29 32.75 - - - - - -
Evaluation on DAWN Test set
Trained on Good Weather Data (COCO [19])
FasterRCNN
MobileNet
Large 320 [14, 30]

39.08 22.71 37.13 10.78 27.42 8.33 0.00 19.70 34.10 36.26 39.35 16.05 0.00 25.15

FasterRCNN
MobileNet
Large [14, 30]

60.26 36.74 49.30 17.94 41.06 23.33 0.00 31.26 35.34 39.52 35.83 25.43 0.00 27.22

FasterRCNN ResNet 50 [30] 71.19 69.51 69.88 21.62 58.05 25.00 20.00 46.20 31.41 33.54 30.19 18.75 0.00 22.78
Fine-Tuning on WEDGE
FasterRCNN
MobileNet
Large 320 [14, 30]

41.69 19.02 16.79 15.95 23.36 0.00 0.00 15.57 40.40 43.01 49.88 31.41 10.19 34.98

FasterRCNN
MobileNet
Large [14, 30]

58.54 28.39 29.14 21.68 34.43 0.00 0.00 22.96 52.52 54.79 51.23 50.01 7.95 43.30

FasterRCNN ResNet 50 [30] 65.47 39.70 54.19 26.06 46.35 0.00 0.00 30.9 57.48 54.71 46.92 57.43 10.49 45.41
Evaluation on Complete DAWN Dataset
Trained on Good Weather Data (COCO [19])
FasterRCNN
MobileNet
Large 320 [14, 30]

37.56 34.93 20.90 12.91 26.57 23.15 18.95 24.73 - - - - - -

FasterRCNN
MobileNet
Large [14, 30]

60.64 55.96 32.78 23.66 43.26 38.55 28.75 40.05 - - - - - -

FasterRCNN ResNet 50 [30] 69.13 70.31 38.64 30.54 52.15 52.17 30.56 48.55 - - - - - -
Fine-Tuning on WEDGE
FasterRCNN
MobileNet
Large 320 [14, 30]

39.52 23.97 7.81 22.08 23.34 0.00 0.00 15.56 - - - - - -

FasterRCNN
MobileNet
Large [14, 30]

59.81 34.61 14.06 30.67 34.78 0.00 0.00 23.19 - - - - - -

FasterRCNN ResNet 50 [30] 68.09 54.29 27.48 35.02 46.22 0.00 0.00 30.81 - - - - - -

Table 3. Object Detection: Performance for Car, Person, Bus, Truck, Van, Motorcycle (mc) using the PASCAL VOC
mAP metric on real (DAWN) and synthetic (WEDGE) datasets (90-10% , 0-100% train (unused)-test split of DAWN and 80- 16-4% train-
val-test split for WEDGE for balanced comparison). First, we find that simply evaluating state-of-the-art (SOTA) object detectors (trained
on good weather data) already outperforms all published results on DAWN. This establishes our pre-trained detectors as strong baselines
for this task. Fine-tuning such models (specifically, ResNet50) on WEDGE further improves truck AP by 4.44 AP on test set (4.48 on
complete set). The fine-tuned MobileNet-Large is able to detect both cars and trucks better with 2.61 AP and 5.17 AP on test set and (1.96
AP and 9.17 AP on complete set) respectively. T-4 AP is the averaged AP over the key object classes (car,person,bus,truck). Previous work
1 [24] was evaluated on DAWN WD set and reports AP. Previous work 2 [31] was evaluated on corrupted test sets in DAWN and reports
mean AP over corruption types. Previous work 3, 4,5 [21, 22] was evaluated on 1000 images of DAWN and report AP and mAP. Previous
work 6 [40] was evaluated on 500 images of DAWN and reports AP and mAP.

tic but typically contain a higher proportion of sky pixels.
Cloudy resembles true cloudy scenarios with reduced illu-
mination and gray overcasts. Hurricane consists of im-
ages that appear un-realistic, likely to due to the fact that
this extreme weather condition is relatively rare. Night
images have poor illumination and make detection diffi-
cult as expected. Often distant vehicles are just shown by
blurred lights which we have included in annotations to en-
sure that vehicles can even detect distant mobile objects un-

der low illumination. Summer are generally well-lit im-
ages.Spring images appear difficult to differenciate from
day and sun, which is favorable as spring is a transitional
season. Winter contains elements like snow, blizzards,
hail which heavily obstruct vision and provide good ad-
versaries to the detection task. Backgrounds are mostly
white and snow–covered which makes the detection task
simpler. This does not represent winter in warmer coun-
tries, which must be treated by mixing classes. Fall im-
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ages are skewed to geographic regions that are usually asso-
ciated with the aesthetic fall backgrounds including bright
trees, fallen leaves which are mostly present in the northern
regions of countries. Tornado contains a good number
of unrealistic images as well, but manages to capture the
essence of this natural disaster through poor-illumination,
windy conditions and distant tornado funnels. In the unreal-
istic cases, tornadoes appear in extremely unlikely scenarios
like exactly on top of the car, as visualized in cartoons and
games. Day images are well-lit and show sunny scenarios,
also including some overcast skies. Windy images are ei-
ther realistic or extremely skewed towards disaster-like sce-
narios including uprooting winds, destroyed vehicles and
fading objects.

As visible in Fig. 6 we highlight some possible causes of
poor performance. Region-centric correlations (eg. cherry
blossoms associated with spring), are a recurring theme in
the generated images inspite of providing generic prompts.
Generative anomalies like extra terrestrial creatures cross-
ing the road occur when the terrain described in prompt
(dust) matches similar out-of-distribution examples (Mar-
tian imagery). Training objects sometimes combine to form
interesting but unrealistic characters in this synthetic in
spite of given realistic prompts. We also identify entities
with missing parts (humans without heads). While this fea-
ture can help improve robustness to occlusion, it is still a
defect in generated images. Often typical scenes which cor-
respond to the prompt are generated in sketch, animated
or miscellaneous styles. Objects which are closer to the
viewer (camera)’s supposed location are more accurately
generated. As seen in the figure and other examples, the
distant objects are often lacking quality and fundamental
differentiating characteristics which are necessary for de-
tectors. Although we cannot accurately pinpoint the time
frame of generated images, we observe special cases of peo-
ple wearing masks in locations (predicted locations) where
masks were not worn prior to the pandemic. While this may
be attributed to different reasons, we can consider this fea-
ture as an important part of robustness in post-pandemic
systems. As the prompts shift to more out-of-distribution
settings, like tornadoes, we observe a dramatic shift in fa-
vor of unrealistic images. This may be due to the inabil-
ity to find hyper-realistic training images captured in these
adverse conditions, but are a potential limitation. Spatial
anomalies frequently distort the placement, positioning, ori-
entation and interaction between generated objects. In this
case, we observe shadows are generated inconsistently. As
generative models move closer towards real-world simula-
tion, focus on modeling relationships between entities on
the basis of physical, scientific and behavioral properties
can be explored. Beneficial anomalies like scenes generated
around accidents, mishaps like tire punctures, car crashes
and weather-related disasters like tornadoes uprooting the

roofs of buses appear often in the data. These accidents
are very realistic and not often captured by common au-
tonomous vehicle datasets. These scene-specific datasets
can be generated for detecting emergencies in surveillance
systems. Human generation ultimately presents the great-
est challenge in dataset utilization. The images of humans
in the dataset have second-largest frequency but are often
unrealistic (either to the out-of-distribution prompts or in-
tentional obscuring done for privacy concerns) which can
potentially affect fine-tuning as seen in the previous section.

Figure 6. Qualitative Analysis: Limitations of WEDGE ap-
pear in the form of region-centric spurious correlations, generative
anomalies,missing (incomplete generation) features,domain and
style transfer, distance (proximity to viewing angle) bias, multi-
time relevance, class (weather) bias, spatial and placement anoma-
lies,human generation inconsistencies from top-left to bottom-
right.

6.2. Benefits of generated datasets (WEDGE)

The feature and capability of embedding variability from
vast text corpora into image sets using prompting of gener-
ative models provides support for building robust models.
Due to the high variability in geography, population, sea-
sons, weather, illumination, perspective and backgrounds,
models are able to generalize to detect trucks on real roads.
We can simulate specific out-of-distribution scenarios like
road accidents to monitor safety through anomaly detection
or other tasks.

6.3. Potential limitations of generated datasets
(WEDGE):

Although the variability is assumed to be limited to the
prompt space, it is practically not constrained by the prompt
constraints. We observe the generation going beyond real-
istic scenes and stepping into style transfers, anomaly gen-
erations and overall extreme variability which is not always
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required. This generation will be based on the training data
of the large-scale generative model, which has been treated
with algorithmic changes by model creators, but can be im-
proved. Additional bias is propagated due to prompting
styles, language and keywords used. In general, we observe
that the generated images report some consistency prob-
lems with respect to physical properties and orientation,
spatial compatibility and interaction between the objects.
Poor generation can result in certain properties like leaking
lights, erroneous green patches and paint-like patches on
random images. The most important result is the frequency
of poorly generated objects directly impacts the resultant
performance on real-images which should be considered in
future work.

6.4. When does WEDGE work?

The image generation procedure and results of this study
speak in favor of its importance to the autonomous driv-
ing perception tasks. Prompting was focused on gen-
erating the most relevant autonomous vehicle-related im-
ages for 16 weather-classes and manually verified. Im-
age screening and curation was performed to ensure inter-
class-prompt consistency. The provided annotations and ex-
tensive bounding boxes (16513) for all classes have been
generated with human-in-the-loop. 16 unique weather-
seasonal variations captured for autonomous vehicles which
is unique to this dataset and essential for multi-weather ro-
bustness. Annotations for heavily occluded and obscure ob-
jects (headlights in fog) have been labelled to assist models
in learning representations from occluded objects. Inspite
of having out-of-distribution scenarios, the image similarity
thresholds are still within reasonable range from the sample
distribution shifts which speaks in favor of data adoption in
similar tasks needing sensor-based data. Models trained on
WEDGE for domain adaptive detection were able to cross
the benchmark on the DAWN dataset in under-represented
target classes like trucks. The difference between generated
people and trucks are their similarities to real-world objects
which differ dramatically between real and synthetic data,
thus offering a plausible explanation for the performance
difference.

7. Conclusion
In this work, we explore AI-generated datasets 2 for ro-

bust multi-weather perception. We perform a small-scale
analysis of its task-specific properties in the context of au-
tonomous vision and demonstrate the effectiveness of such

2All references to ”generated” in this text imply AI generated datasets
only. The authors generated this dataset in part with DALLE-2, OpenAI’s
large-scale image-generation model. Upon generating the dataset, the au-
thors reviewed the images and take responsibility for their content in accor-
dance with the terms laid out by OpenAI. The authors have created ”Input”
prompts on their own and obtained data ”Output” images only using the
official OpenAI API through a paid subscription service.

Figure 7. WEDGE as an adversarial example: We observe
significant shifts in attention maps [34] when data contains poor-
weather conditions. The object of interest was the vehicle in the
images which the attention maps are not following due to the
weather-based corruptions of fog and dust. This provides support
to why good-weather data are often insufficient while building ro-
bust perception models.

Figure 8. Sim2Real Inference: Comparison of (COCO) pre-
trained Resnet 50 Faster RCNN (left) with a variant fine-tuned
on WEDGE (right) on a test image from DAWN. We see that the
fine-tuned models tend to predict trucks better but suffer from false
positives, resulting in lower car APs.

generation. Under the constraints of selected data, we as-
sess the usefulness of these datasets from the perspective of
autonomous perception. We acknowledge that all findings
are constrained to this case study between the selected do-
main and target data only, and do not present findings for
perception or synthetic data in general. In this work, we ad-
ditionally present a state-of-the-art benchmark for DAWN
dataset using standard evaluation metrics (without any ac-
cess to target or adverse-weather training data) through ro-
bust performance evaluation. We hope to aid in the effort
towards meeting the need for autonomous vision datasets
by this demonstration. In future works, this data genera-
tion procedure paired with creative prompt engineering can
deliver superior performance in multi-weather domains.
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