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Abstract

In recent years, deep neural network architectures and
learning algorithms have greatly improved the performance
of computer vision tasks. However, acquiring and anno-
tating large-scale datasets for training such models can be
expensive. In this work, we explore the potential of re-
ducing dataset sizes by leveraging redundancies in video
frames, specifically for instance segmentation. To accom-
plish this, we investigate two sampling strategies for ex-
tracting keyframes, uniform frame sampling with adjusted
stride (UFS) and adaptive frame sampling (AFS), which
employs visual (Optical flow, SSIM) or semantic (feature
representations) dissimilarities measured by learning free
methods. In addition, we show that a simple copy-paste
augmentation can bridge the big mAP gap caused by frame
reduction. We train and evaluate Mask R-CNN with the
BDD100K MOTS dataset and verify the potential of reduc-
ing training data by extracting keyframes in the video. With
only 20% of the data, we achieve similar performance to the
full dataset mAP; with only 33% of the data, we surpass it.
Lastly, based on our findings, we offer practical solutions
for developing effective sampling methods and data anno-
tation strategies for instance segmentation models. Supple-
mentary on https://github.com/jihun-yoon/
EVFR.

1. Introduction

Deep neural network architectures [15,27,28] and learn-
ing algorithms [20,33] have significantly improved the per-
formance of computer vision tasks by leveraging large-scale
datasets [10, 22]. However, the cost associated with acquir-
ing and annotating these datasets can be expensive. While
much effort has been devoted to developing data-efficient
methods for training neural networks, comparatively little
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research has focused on reducing dataset sizes by under-
standing the data itself.

One promising area of research is the exploration of se-
mantic redundancies, which aims to reduce image classifi-
cation datasets (e.g., CIFAR-10, CIFAR-100 [21], and Ima-
geNet [25]) by discarding semantically redundant data. [29]
concludes there is no redundancy for these datasets; how-
ever, [2] shows that 10% of the datasets can be reduced
to achieve a performance of full dataset through agglom-
erative clustering [2] on feature representations. Another
related area of study is video summarization, which aims
to summarize the video content by selecting its represen-
tative video frames (keyframes), or video fragments (key
fragments) [1, 19]. [19] also utilizes a clustering on feature
representations and picks frames close to the center of each
cluster. However, [4] shows that K-means clustering on fea-
ture representations directly can result in cluster degener-
acy, with one cluster dominating the others.

There are several studies on identifying or utilizing video
keyframes. [7] utilizes video keyframes to improve infer-
ence speed and accuracy in video detection. The study de-
fines a keyframe as a frame having small or fast-moving
objects, making tracking results propagation difficult. [35]
also utilizes keyframes for the same purpose with fea-
ture inconsistency between consecutive frames to define
keyframes.

In this study, we explore the potential benefits of reduc-
ing redundancies in video frames in training datasets for
instance segmentation. Our study does not aim to propose
a novel adaptive sampling method superior to uniform sam-
pling but to demonstrate the potential for reducing the cost
of large-scale datasets while maintaining high performance
and to provide insights on employing sampling methods
through systematic experiments.

We hypothesize that representative frames with less re-
dundancy can achieve comparable performance to dense
datasets, demonstrating the potential for reducing the cost
of data acquisition and annotation. To extract keyframes,
we explore two sampling strategies that leverage the tempo-
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Figure 1. Frame variance index (FVI) of an example video (name:00207869-902288d1) and two groups of consecutive frames are shown
in this figure. The upper graph shows normalized SSVD (FVI measured by structure similarity index measure), OFVD (FVI measured
by optical flow), and FSD (FVI measured by cosine similarity of ImageNet pre-trained ResNet50 features), which are used as sampling
weights for adaptive sampling. The values at each frame indicate a high or low visual or semantic variance compared to the next. (a) and
(b) show the absolute difference between consecutive grey scale frames. (a) shows a high variance, and (b) shows a low variance depending
on FVI.

ral nature of video frames. The first method, uniform frame
sampling with adjusted stride (UFS), skips frames at a fixed
interval. The second method, adaptive frame sampling
(AFS), defines keyframes based on a frame variance index
(FVI). We investigate two indexes defined by visual and
semantic dissimilarity between consecutive frames. Our
goal is to reduce the cost of generating training datasets;
AFS utilizes simple learning-free keyframe extraction tech-
niques, assuming no prior datasets. In addition, based on the
keyframes, we demonstrate that a simple copy-paste data
augmentation on the keyframes can bridge the big mAP gap
caused by frame reduction.

Among the many available multiple object tracking seg-
mentation (MOTS) and instance segmentation datasets, we
choose the BDD100K MOTS 2020 dataset due to its large-
scale, multiple classes, and objects per frame and long
frame sequences with high FPS, which is best suited for our
analysis although it still has some limitations. We employ
the Mask R-CNN instance segmentation model and evaluate
its mean average precision (mAP) on each down-sampled

dataset.
Experiments reveal interesting findings that the perfor-

mances of each sampling method vary across the size of
the sampled dataset and show different performances on
bounding box and mask prediction. As a result, we achieve
similar performance to the full dataset mAP with only 20%
of the data, and with only 33% of the data, we surpass it.
Lastly, based on these findings, we offer practical solutions
for developing effective sampling methods and efficient
data annotation strategies for instance segmentation models.

The contributions of our work are summarized as follows:

• We show the potential of reducing the training dataset
and its generation cost by using video keyframes.

• We show that higher frame rates do not always result
in higher mean average precision (mAP) in instance
segmentation tasks.

• We show that the performances of each sampling
method vary across the size of the sampled dataset
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and show different effectiveness on bounding box and
mask prediction.

• We show that a simple copy-paste augmentation on the
keyframes can bridge the big mAP gap caused by re-
ducing frames.

• Lastly, we offer pratical solutions for developing ef-
fective sampling methods and efficient data annotation
strategies for instance segmentation models.

2. Related works

2.1. Semantic redundancies and keyframe extrac-
tion

Semantic redundancy in image classification refers to the
phenomenon where different images may contain similar
semantic information or concepts, even if the visual features
of the images are not identical. [2] conducted representative
research to identify redundancy in image classification, ar-
guing that 10% of images in the ImageNet dataset are se-
mantically redundant. The proposed method uses agglom-
erative clustering [18] on images with cosine dissimilarities
of feature representations obtained from pre-trained mod-
els. A similar approach has been applied to video summa-
rization for keyframe extraction, K-means clustering [26] is
applied on features extracted from frames, and keyframes
are defined as centroids of each cluster. However, setting
an appropriate K for a video can be challenging, and [4]
show that K-means clustering after feature representation
learning can result in cluster degeneracy, with one cluster
dominating the others.

None of the previous research utilizes the keyframes to
reduce training datasets. [7] proposes an adaptive selection
scheme for keyframe extraction based on the observation
that temporal propagation tends to be inferior to single-
frame image-based detection when the objects are small
and moving quickly. [35] also utilizes an adaptive keyframe
selection method to improve speed and accuracy in video
object detection and defines a keyframe using feature in-
consistency between consecutive frames. However, two of
the research have a limitation on the proper setting of the
threshold to define keyframes, which can be tricky to be op-
timized.

2.2. Optical flow estimation

Horn and Schunck’s sparse optical flow [16] is one of
the earliest methods for estimating optical flow, which uses
a global energy minimization approach under the assump-
tion of a smooth flow field. However, this method is lim-
ited by its sensitivity to noise and occlusions, leading to the
development of dense optical flow methods such as Gun-
nar Farneback’s method [11]. Farneback’s method is based

on the Lucas-Kanade algorithm, which tracks image gra-
dients between two consecutive frames and introduces a
polynomial flow field expansion to handle large motions
and discontinuities. Deep learning-based methods, such as
FlowNet [8], have shown great promise in optical flow esti-
mation due to their ability to learn complex non-linear map-
pings, but still have limitations such as high computational
cost and dependence on large amounts of training data. Re-
cent works, such as LiteFlowNet [17], address these limi-
tations using a lightweight architecture based on depthwise
separable convolutions to reduce computational cost, and an
unsupervised learning approach based on photometric loss
to learn from unlabelled data.

2.3. Structure similarity index measure

The mean squared error (MSE) is a widely used image
quality metric that measures the average squared difference
between two images. However, the MSE does not consider
the structural similarity between the images, which can be
more important for visual perception. The structural simi-
larity index measure (SSIM) [31] was developed to address
this limitation as a more accurate image quality metric con-
sidering structural and pixel-wise differences between im-
ages. SSIM computes the similarity between two images
based on luminance, contrast, and structure and has been
shown to correlate better with human perception than MSE.
As a result, SSIM has become a popular metric for evalu-
ating the performance of image and video processing algo-
rithms. However, despite its advantages, SSIM has some
limitations, such as sensitivity to brightness and contrast
changes and the need for careful parameter tuning.

2.4. Instance segmentation

Instance segmentation is a computer vision task that aims
to detect and segment individual objects within an image.
Over the years, numerous methods have been proposed to
tackle this problem. Mask R-CNN [14] is a foundational
two-stage object detection framework that extends Faster R-
CNN [24] by adding a segmentation branch.

Cascade Mask R-CNN [3] extends Mask R-CNN by
adding a cascade of Region Proposal Networks (RPNs) to
improve object detection accuracy. It uses the output of
each RPN to refine object proposals before passing them to
the next RPN, resulting in a more accurate final set of pro-
posals. Cascade Mask R-CNN also adds a separate mask
branch for each cascade stage, allowing for more precise
segmentation of objects.

Hybrid Task Cascade Mask R-CNN [5] further improves
upon Cascade Mask R-CNN by adding a second task branch
for predicting semantic segmentation. This allows the
model to leverage both instance and semantic segmentation
to improve the accuracy of object detection and segmen-
tation. In this study, we employ Mask R-CNN, a foun-
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dational instance segmentation framework to understand
video frame redundancies in training data.

3. Method
Limitations of frame clustering on feature representa-

tions [4] and adaptive keyframe sampling with a threshold
parameter [4, 26], we employ simple uniform frame sam-
pling with adjusted stride and adaptive sampling with a
weighted sampling based on a frame variance index defined
by learning free visual and semantic dissimilarities.

3.1. Uniform sampling

The most commonly used approach for keyframe se-
lection is uniform sampling. In this study, we employ a
uniform frame sampling with adjusted stride (UFS). UFS
is applied to each video clip V , which is a set of frames
{f1, f2, ..., fT } with a length of T. With UFS, we select
frames starting from the first frame f1 and then skip frames
at a fixed interval of size s. This results in a set of frames,
denoted as V [:: s], which contains frames {f1, f1+s×k, ...},
where k ∈ {1, ...n} and 1 + s× n < T .

3.2. Adaptive sampling with a frame variance index

Although uniform sampling is simple and effective, it
disregards that not all frames are equally important or in-
fluential in capturing scene variations. Therefore, a non-
uniform frame selection strategy may be more desirable.
We propose an adaptive selection scheme based on a frame
variance index (FVI), which is calculated using the visual or
semantic dissimilarity between consecutive frames. High
FVI values indicate a frame is very dissimilar to the next
frame, while low FVI values indicate the opposite. We
calculate FVI for each frame with its next frame and for
the last frame with itself. FVI is a normalized (scaling to
unit length) weight representing frame redundancies and the
sum of all the index results in 1. The figure 1 shows how
FVIs with SSIM, optical flow and consine similarity of Im-
ageNet pre-trained ResNet50 features change across video
frames. To downsample a video clip V into n frames, we
randomly sample n frames using FVI as a weight for each
frame. This weighted sampling ensures that not greedy but
frames with lower variance are not overlooked. The sam-
pling algorithm is presented in Listing 1. From now on,
we introduce visual (Optical flow and SSIM) and semantic
(ImageNet pre-trained ResNet50 [15] representations) dis-
similarities for the FVI.

3.3. Visual and Semantic dissimilarities

Optical flow. Optical flow is the pattern of apparent mo-
tion of objects and surfaces between two consecutive frames
caused by the movement of objects or cameras, represented
by a 2D vector. While recent advancements in convolu-

tional neural networks have led many researchers to intro-
duce neural networks for optical flow estimation, we em-
ploy conventional methods to avoid the need for large-scale
datasets.

1 import numpy as np
2 import glob
3

4 img_paths = sorted(glob.glob(f’video/clip/dir
/*.jpg’))

5 visual_semantic_dissimilarity = []
6

7 # Calculate visual or Semantic dissimilarity
8 for idx in range(len(img_paths)):
9 if idx < len(img_paths)-1:

10 vsd = VSD(img_paths[idx], img_paths[
idx+1])

11 else:
12 vsd = VSD(img_paths[idx], img_paths[

idx])
13 visual_semantic_dissimilarity.append(vsd)
14

15 # Normalize visual or Semantic dissimilarity
(scaling to unit length)

16 frame_variance_index = Normalize(
visual_semantic_dissimilarity)

17

18 sampled_data = np.random.choice(population=
img_paths, size=n, repalce=False, p=
frame_variance_index)

Listing 1. Python code for the adaptive sampling with a FVI

Among two types of conventional optical flow estima-
tion methods: sparse and dense optical flow, the latter is
more computationally expensive but more accurate. We
use Farneback’s dense optical flow estimation method [11]
since accuracy is more critical than running time in our
problem.

Optical flow estimation assumes that pixel intensities are
translated from one frame to the next frame,

I(x, t) = I(x+ u, t+ 1), (1)

where I(x, t) is the image intensity as a function of space
x = (x, y)T at time t, and u = (u1, u2)T is the 2D veloc-
ity. The goal is to find a vector u, which is an optical flow
vector. Under this assumption, Farneback’s method models
image intensities with a quadratic function. It solves func-
tions of two consecutive frames by estimating coefficients
from a weighted least-squares fit the signal values in the
neighborhood.

After obtaining optical flow vectors, we calculate the L2
norm of each optical flow vector as a measure of variance
at a pixel. We define the variance measure (visual dissim-
ilarity) between two consecutive frames, ft and ft+1, by
optical flow (we call this OFVD) as a mean of all the norms
in the scene as follow:

OFV D(ft, ft+1) =
1

N

N∑
i

||ui||2, (2)
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Figure 2. Sample distributions of full dataset (S1) and adaptive sampling (AFS) with visual dissimilarity measured by optical flow (OFVD)
for each sample ratio (referring to figure 3) of an example video (name:00207869-902288d1) are shown in this figure. We can see more
samples on the high FVI section and fewer on the low FVI section, referring to figure 1.

where N is the number of all pixels.

3.4. Structure similarity index measure

Structure similarity index measure(SSIM) is a method to
measure the similarity between two images under the as-
sumption that human visual perception is highly adapted
for extracting structural information from a scene. Let’s
consider non-negative two image signal vectors, x and y.
SSIM is defined as following equation,

SSIM(x,y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) , (3)

where µ is the mean intensity, σ is the standard deviation as
an estimate of the signal contrast, and C1 and C2 are con-
stants to avoid instability when µ2

x+µ2
y and σ2

x+σ2
y become

zero. A higher SSIM value means higher similarity between
two frames. We subtract SSIM value from 1 (which we call
SSVD) to make a higher value means a higher difference
like OFVD. A variance measure (visual dissimilarity) be-
tween two consecutive frames, ft and ft+1, by SSVD can
be defined as

SSV D(ft, ft+1) = 1− SSIM(ft, ft+1). (4)

3.5. Cosine similarity of feature representations

When given two frames f1 and f2, we extract their re-
spective latent representations x1 and x2 using a pre-trained
model. To measure their dissimilarity, we denote the dis-
similarity between x1 and x2 using the cosine angle be-
tween them as follows [2] (we call this FSD):

FSD (x1,x2) = 1− ⟨x1,x2⟩
∥x1∥ ∥x2∥

. (5)

While latent representations can be obtained from any
neural network, we use the ImageNet pre-trained ResNet50
model as it is the most representative initial feature extractor
and does not require additional training. Additionally, we
select the last average pooling layer among several choices
of the network’s layers as it can identify the largest redun-
dancy [2].

Figure 3. The number of samples of each dataset and sample ratio
are shown in this figure. The y-axis on the left indicates the num-
ber of samples, and the y-axis on the right indicates the sample
ratio(%). S1 is a full dataset consisting of 154 video clips, each
consisting of roughly 200 frames (a few have around 100 frames).

4. Experiments

4.1. BDD100K MOTS dataset

The BDD100K dataset [34] is a large-scale dataset de-
signed for autonomous driving applications, containing
100K diverse video clips and several datasets for differ-
ent tasks. However, the instance segmentation dataset
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(BDD100K IS)1, consisting of 10,000 video clips, only in-
cludes a few labeled frames every 10 seconds of each video
recorded for approximately 40 seconds, resulting in only
about four frames. Moreover, there is no information avail-
able to associate each series of frames to each video in the
file names. Because of this limitation, we use the Multiple
Object Tracking and Segmentation (MOTS) dataset, which
has more dense annotation (recorded at 30 FPS and labeled
at 5 FPS) and is larger in scale than other MOTS datasets,
as shown in Tab. 1. YouTube VOS [32] has more frames
than BDD100K MOTS, but the annotation per frame is only
1.64, almost a single object. As our goal is to detect and
segment as many objects as possible while considering diffi-
culty, BDD100K MOTS is the best choice (however, 5 FPS
is still not enough to see trade-offs between accuracy and
sampling). We use original train data for training and vali-
dation and validation data for testing. Training and valida-
tion data include 154 video clips resulting in about 30,745
frames, and test data include 32 video clips, resulting in
6,475 frames. The dataset consists of seven classes: pedes-
trian, rider, car, truck, bus, motorcycle, and bicycle.

Figure 4. Log values of each class count. The distributions shows
our adaptive sampling method does not distort the original class
distribution while selecting frames.

4.2. Down-sampled datasets

We utilize the full dataset to establish an ideal perfor-
mance reference. Then, we apply uniform sampling to the
dataset by adjusting the stride (UFS) to 2, 3, 4, 5, 7, and
10. Figure 3 illustrates the number of samples for each
down-sampled dataset. As indicated in figure 3, we fol-
low a naming convention for each sampling ratio to fa-
cilitate easy reference. Subsequently, we apply our adap-
tive sampling method (AFS) and random sampling (RFS)
to the full dataset, each with the same number of samples as
the uniformly down-sampled datasets. For AFS and RFS,
all frames can be selected once without replacement while

1To ensure the BDD100K instance segmentation dataset is different
from MOTS, we refer to it as BDD100K IS. However, it is not an official
name.

maintaining the class distribution. Figure 4 shows the loga-
rithmic values of each class count across the datasets, which
exhibit a consistent trend.

Dataset Frames Seq. Indentites Ann. Ann. /Fr.
KITTI MOTS [12] 8K 21 749 38K 4.78
MOTS Challenge [30] 2.9K 4 228 27K 9.40
DAVIS 2017 [23] 6.2K 90 197 - -
YouTube VOS [32] 120K 4.5K 7.8K 197K 1.64
BDD100K MOTS [34] 14K 70 6.3K 129K 9.20

Table 1. Comparisons with other MOTS and VOS datasets. The
table is referenced from [34].

4.3. Experiments settings

To investigate the impact of frame redundancies on in-
stance segmentation model mAP, we conducted experi-
ments using the widely-used Mask R-CNN model [14] with
ImageNet pre-trained ResNet50 backbone [15] and feature
pyramid network (FPN) in MMDetection library [6]. We
used synchronous batch normalization with a batch size of
16 and the SGD optimizer.

To ensure fair comparison across datasets, we trained the
models for almost the same number of iterations, consid-
ering the size of each dataset. Specifically, if the model
learned M samples of the full dataset for N iterations, we
trained the model using M/2 samples of the dataset for 2N
iterations. This approach allowed us to compare the effect
of each data value on the model’s performance without the
confounding factor of learning more data points. However,
to avoid learning exactly the same data, we use the stan-
dard scale jittering [13] for basic data augmentation, which
is resizing and random cropping.

We trained models with the full dataset for 13 epochs,
and, as explained earlier, down-sampled datasets were
trained for almost the same number of iterations with the
full dataset. All models’ mAP started to converge around it-
erations of 9 epochs in the full dataset2. We conducted each
experiment with different random seeds thrice and averaged
the results since many experiments depend on randomness
(e.g., sampling, augmentation). We evaluated models by the
best performance during training, and employed the COCO
[22] mean average precision (mAP) for model evaluation
metrics, averaging mAP across different intersections over
union (IoU) from 0.5 to 0.95 by every 0.05.

4.4. Keyframes in training data

Firstly, we demonstrate the existence of keyframes in
training data by comparing uniform sampling (UFS) with
random sampling (RFS). As shown in the figure 5 and 6,
all UFS results surpass the RFS results. Randomly selected

2More experiment details on https://github.com/jihun-
yoon/EVFR
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frames may not be well distributed in time, and the selected
frames are not representative enough to cover whole video
frames. In addition, UFS S2 and S3 datasets achieve higher
mAP than the full dataset S1 for both BBox and Mask mAP.
This suggests that redundant frames in S1 may degrade the
mAP, increasing the generalization error. Although a higher
FPS generally leads to higher mAP, our results provide a
counterexample. Notably, the mAPs between UFS S4 and
UFS S5 are almost similar, while RFS S4 and RFS S5 have
more significant differences for BBox mAP. This indicates
that the additive frames from UFS S5 to UFS S4 may not
have more information to learn and do not lead to a perfor-
mance increase.

Figure 5. BBox AP @ [0.5:0.95] for Mask R-CNN between UFS
vs. RFS vs. AFS datasets

Figure 6. Mask AP @ [0.5:0.95] for Mask R-CNN between UFS
vs. RFS vs. AFS datasets

4.5. Comparisons between UFS, RFS, and AFS

Next, we adaptively sample keyframes (AFS) with the
frame variance index (FVI). We define the FVI as sim-
ple visual dissimilarity metrics based on optical flow vari-
ance (OFVD) and the structural similarity index measure
(SSVD), as well as semantic dissimilarity, measured by co-
sine similarity of ImageNet pre-trained ResNet50 (FSD).
Figure 5 and 6 also depict the interesting results obtained
for each sampling method.

The results show that AFS outperforms RFS in most
cases. This indicates that AFS successfully selects better
keyframes. Furthermore, in the S4 setting, AFS outper-
forms Uniform Frame Sampling (UFS) or performs simi-
larly. When we look at differences between FVI methods,
AFS with SSVD performs well overall, but AFS with FSD
only outperforms UFS Mask mean average precision (mAP)
in the S4 setting.

The results show that UFS is simple and very effective
overall. However, we assume if the full dataset has a higher
FPS, there is much possibility that AFS works better. Be-
cause the full dataset (S1) result shows that frames are more
redundant than S2. And UFS S2 or S3 sampling process
skips only one or two very redundant frames uniformly, ide-
ally. This is a limitation of the current dataset. We need
another dataset to verify this for the future research.

However, AFS fails when the number of samples is too
small. Since the number of full frames for each video clip
is approximately 200, the number of frames for each video
clip is approximately 20 in the S10 setting. Adaptive sam-
pling methods may fail to cover diverse frames across the
time axis. We designed adaptive sampling as a weighted
sampling (AFS) not to become greedy on higher weights,
but it is still insufficient to spread over the time axis (S10 re-
sults in the figure 2). Herefore, from a different viewpoint,
it is better to employ uniform sampling when the number of
samples is small.

Figure 7. BBox/Mask AP @ [0.5:0.95] for Mask R-CNN with a
simple copy paste data augmentation.

4.6. Bridging performance gap with simple copy-
paste

Lastly, we demonstrate that a simple copy-paste aug-
mentation [13] on keyframes can bridge the big mAP gap
caused by reducing frames. When video is not long enough
or dynamic, we expect the copy-paste data augmentation on
keyframes can make enough diversity as much as a dense
dataset or more. To verify this, we employ a simple copy
paste (SCP) data augmentation. The figure 7 shows that,
with just 20% of data (S5), we achieve similar performance
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Figure 8. Normalized standard deviations of OFVD for each video are shown in this figure. The scale of deviation means the dynamicity
of the video. A high value means high dynamicity. Videos are sorted in increasing order, and the video with the highest value is a video
(name:00207869-902288d1), which is shown in the figure 1. The video name reference for each deviation is on https://github.
com/jihun-yoon/EVFR.

as the full dataset mAP, and with only 33% of data (S3), we
surpass it.

Figure 9. Frame variance index (FVI) measured by OFVD of an
example video (name:0024b742-acbed4fb) is shown in the figure.
This video has the lowest deviation, located at the most left in the
figure 8. The plot is more static than the figure 1, which has the
highest deviation.

4.7. Discussion

Based on our findings, we suggest a data annotation
strategy to build the initial dataset. Firstly, start with a
small number of annotations uniformly. Secondly, quantify
the dynamicity of the video with the frame variance index
and choose different sampling methods by the dynamicity.
Lastly, we can leverage the performance highly with a sim-
ple copy-paste augmentation.

However, certain limitations need to be addressed in fu-
ture work. Firstly, We can see that each dataset has a dif-
ferent variance scale, and video clip with high deviation has
more dynamic frame changes in the figure 8. Since UFS
works well for static video, we can use different sampling

methods on the dynamicity of video.

Secondly, our current weighted random sampling
method cannot cover diverse frames across time when the
number of samples is too small. Incorporating this consider-
ation in the design of adaptive sampling could significantly
enhance performance.

Thirdly, we observed that semantic dissimilarity exhibits
a high potential for sampling frames useful for both Bound-
ing Box (BBox) and Mask prediction in figure 5 and 6. We
expect that more distinct feature representations can be de-
veloped for keyframe extraction with the help of strong self-
supervised methods [9]. This is another promising direction
for future research.

5. Conclusion

In this study, we investigated the impact of frame redun-
dancies on instance segmentation model accuracy using the
Mask R-CNN model. Through our experiments, we demon-
strated the existence of keyframes in training data and the
different effects of UFS and AFS for keyframe extraction
in the video. UFS experiments showed that higher FPS
does not always lead to higher performance. AFS outper-
forms RFS in most cases and UFS in the S4 setting but
fails when the number of samples is too small. Addition-
ally, we showed that a simple copy-paste augmentation on
keyframes could bridge the big mAP gap caused by reduc-
ing frames. Overall, our findings provide insights into the
impact of frame redundancies on model accuracy and offer
practical solutions for developing effective sampling meth-
ods and data annotation strategies for instance segmentation
models.
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