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Abstract

Automated visual inspection has the potential to improve
the efficiency and accuracy of inspection tasks across var-
ious industries. Deep learning models have been at the
forefront of many automated visual inspection technolo-
gies. In this work, we focus on a specific instance of a
visual inspection problem: the defect detection and clas-
sification problem. Training a deep learning model from
scratch to detect defects is challenging due to the scarcity
of labeled images with defects. Moreover, it is progressively
more challenging to adapt a deep learning model across
different domains using limited labeled data. We propose
a cross-domain meta-learning framework, XDNet, to solve
the defect classification problem using a few labeled sam-
ples. XDNet is inspired by recent advancements in pre-
trained backbone models as general feature extractors and
meta-learning frameworks, which adapt across different do-
mains using non-parametric classifiers under limited com-
putational resources. We demonstrate the efficacy of XD-
Net using a benchmark anomaly detection dataset which we
re-formulate as a defect detection and classification prob-
lem. Experimental results suggest that XDNet performs sig-
nificantly better (=~ 17%) than the existing state-of-the-art
and baseline models. Additionally, we perform an ablation
study to identify the important components that contribute
to the improved performance of the proposed framework.
Finally, we conduct a data domain-specific analysis to un-
derstand the potential strengths and drawbacks of XDNet
on different types of defects.

1. Introduction

Visual inspection methods are increasingly being ap-
plied in many downstream applications across various in-
dustries [ |-6]. One important downstream visual inspection
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task is defect detection and classification, where the task is
to identify defects from visual data. Automated defect de-
tection and classification is especially appealing in manu-
facturing and maintenance settings where manual inspec-
tion is often time-consuming, labor-intensive, and error-
prone. Hence, automated solutions are crucial to maintain-
ing product quality and efficiently identifying potential is-
sues. The visual defect detection problem is also commonly
formulated as an anomaly detection problem if the assump-
tion is that most of the inspections are free of defects and the
task is to identify when a defect is present. One of the most
prevalent methods for automated defect or anomaly detec-
tion is to leverage deep learning-based methods. The com-
bination of advancement in deep learning methods, such
as better model architectures and training paradigms, the
availability of pre-trained models, and increasingly cheaper
computational resources, has all played a major role in the
widespread adoption of deep learning-based methods for
automated visual inspection.

Nevertheless, training a deep-learning model that
achieves acceptable performance is data-intensive. This is-
sue is further exacerbated in industrial settings, where data
is often sparse and expensive to obtain, especially if the
problem extends beyond just anomaly detection to classify-
ing types of defects. Another major bottleneck of deploying
deep learning-based models for defect detection and classi-
fication is that traditional deep-learning approaches do not
often generalize across domains, i.e., a new set of data needs
to be collected to train a model from scratch for every new
application domain. For example, a model trained to detect
cracks in glass will not be very useful for detecting similar
defects in electrical components. This study demonstrates
that traditional model adaptation techniques, such as trans-
fer learning, are sub-optimal for such situations. Collect-
ing a new dataset and training a new model is also often
time-consuming and computationally expensive. Thus, this
further inhibits the adoption of deep learning-based defect
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detection and classification methods.

In this work, we propose a cross-domain meta-learning
framework that utilizes techniques in meta-learning, unsu-
pervised learning, and feature representation to circumvent
the challenges of sparse data and high-compute resource re-
quirements needed to train new deep learning models for
defect detection and classification across multiple domains.
To demonstrate the efficacy of our proposed method, we use
the MVTec dataset [7] as benchmark data and compare it
with transfer learning and meta-learning approaches. While
the MVTec dataset is commonly used in an anomaly de-
tection setting, we have re-purposed the dataset for a n-
way k-shot cross-domain meta-learning approach in this
work. We selected the MVTec dataset for our experimen-
tation due to the fact that it consists of data from multiple
domains, thus enabling us to validate cross-domain gener-
alization efficacy. Additionally, each domain of data in the
datasets also consists of data with multiple classes of de-
fects in an industrial setting that is commonly used as a
benchmark in industrial visual inspection tasks. Further-
more, the task of defect classification in this dataset is also
especially challenging as many of the defects occur at the
pixel scale, with most of the features in the images being
largely similar. In contrast, meta-learning approaches are
typically evaluated on benchmarks with images from nat-
ural domains. Hence, re-purposing the MVTec data also
serves to evaluate the effectiveness of meta-learning on de-
fect classification in an industrial setting. As such, the con-
tributions of this work are: (1) We propose a n-way, k-
shot cross-domain meta-learning framework, XDNet, that
leverages squeeze-excitation modules and anti-aliasing fil-
ters, contrastive learning and efficient non-parametric clas-
sifiers for visual inspection. (2) We repurposed an anomaly
detection benchmark dataset as a cross-domain industrial
defect classification dataset and compare XDNet with com-
mon methods for defect detection and classification!. (3)
We show XDNet performs better and is more compute effi-
cient than common transfer learning methods and more ro-
bust than a popular meta-learning method. (4) We analyze
the main components of XDNet that contribute to the over-
all performance and present a data domain specific study to
understand the robustness of XDNet for specific defects.

2. Related Work

In this section, we provide a brief primer on relevant
literature. Since the MVTec dataset is a benchmark for
anomaly detection, most work developed have followed the
setting of anomaly detection, i.e., the model is typically
only provided data that has no defects during training, and
the model’s performance is measured by its capability to

"Modified dataset can be found at: https://github.com/
xylhal/XDNet-Dataset

detect anomalies during test time when presented with de-
fective data. Among the anomaly detection methods that
have been developed are generative methods [8, 9], unsu-
pervised and self-supervised methods [10-12] and trans-
fer learning methods [13, 14]. Contrary to the assump-
tion that no anomalous data is available, we assume that a
few samples of data with anomalies can typically be ob-
tained, but with a constraint on the amount of computa-
tional resources available to repeatedly train new models
for different domains. As such, we frame the problem as a
cross-domain meta-learning problem, where the objective
is to have a model that performs well across multiple do-
mains using only a few labeled examples. A rich amount
of work in literature has developed algorithms in the con-
text of meta-learning [!5]. The main objective of meta-
learning is to develop an algorithm that can adapt to a va-
riety of tasks. Meta-learning approaches can be broadly
categorized into optimization-based, metric-learning, and
model-based methods, with many approaches belonging to
one or more categories. Optimization-based methods oper-
ate by re-casting the meta-learning problem as an optimiza-
tion problem, which can be solved with traditional gradient-
based methods. Some examples include Model-Agnostic
Meta-Learning (MAML) [16] and Reptile [17]. In con-
trast, metric learning-based methods typically learn a met-
ric function for each new task and leverage non-parametric
techniques for predicting the labels of the test data. Popular
examples of metric learning-based methods are Prototypical
Networks [ 18], Matching Networks [19] and Relation Net-
works [20]. Finally, model-based methods aim to encode
the meta-learning process itself into a model for fast adap-
tation to new tasks and include algorithms such as Memory
Augmented Neural Networks [2 1] and Meta-Networks [22].
Note that while some of the methods described are task-
agnostic and can generalize to various tasks (e.g., classifi-
cation, regression, reinforcement learning), other methods
are more specifically designed for classification. Nonethe-
less, most of these methods have largely been developed in
the context of image classification for natural images. As
such, these methods have not been benchmarked against
industrial-type images with pixel-level defects in a cross-
domain setting. Other related areas of research can also be
applied for cross-domain defect detection & classification
using small or no amount of samples, such as domain adap-
tation methods [23] and zero-shot learning methods [24].
Nonetheless, each of these methods often comes with its re-
spective constraints. For example, supervised domain adap-
tation methods often require the domain of transfer to be
known a priori. Meanwhile, zero-shot learning methods
such as CLIP [25] may not generalize well and also require
the class labels of new tasks to be described concisely. In
defect classification for industrial applications, this require-
ment is especially restrictive as it is often challenging to
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accurately describe different types of defects.
3. Methods
3.1. Background and Formulation

Formally, we define the cross-domain meta-learning
problem as follows: Let D define the set of datasets
{Dl, Do, D5 ... Dm}, with D;, ¢ = 1...m denoting
datasets from separate domains. Furthermore, in this work,
we focus on a specific instance of meta-learning for classi-
fication. Hence, let 77 denote a n-way, k-shot task with
data sampled from D, that consists of a support set and
a query set. The support set, S;, represents labeled data
(specifically with k£ data points from n classes), while the
query set Q;, represents unlabelled data from n classes
with an undetermined number of samples. In this work,
we also assume that |S;| < |Q;|, though the violation
of this assumption does not affect our proposed frame-
work. Hence, the objective of a cross-domain meta-learning
framework is to obtain a model M that is potentially trained
on Dryin = {D1, D2, D3 ... Dy} where k < m, and per-
forms well on (); when given S; to adapt on. Note that
in this setting, S; and Q; are tasks sampled from Dy =
{Di+1, Dig2, Diy3 - .. D } and Drygin NDregt =

3.2. Framework

In this section, we describe our proposed framework in
detail. Fig. 1 illustrates the overall concept of the frame-
work. Inspired by the efficacy of another meta-learning
algorithm MetaDelta [26], our framework consists of two
main components, an ensemble of pre-trained feature ex-
tractors, parameterized with deep neural networks that are
trained during the meta-training phase and a meta-learner
that adapts to tasks from new domains during inference or
deployment. In the setting of cross-domain meta-learning,
we hypothesize that the critical component of obtaining a
good model is to ensure that the features learned are gen-
eralizable across multiple domains without over-fitting to
a single domain. During the meta-training phase, we train
the feature extractor on Dy, using a combination of cross-
entropy loss and contrastive loss. In practice, we combine
the total number of classes in all the datasets in Dry,;, and
attach a multi-layer perceptron to the feature extractor to en-
able a classification loss to be obtained. As such, the feature
extractor’s overall loss is defined as :

L=X\ LCrossEntropy + A2 Lcontrastive (1

where \; and )5 denote the weighting factors of the cross-
entropy and contrastive loss respectively. Furthermore, we

use the triplet-margin loss as an instantiation of the con-
trastive loss. In terms of the neural network architecture,
we have empirically found that a ResNext101 architecture
with Squeeze Excitation Blocks [27] and anti-aliasing fil-
ters [28] works the best.

In the context of training a feature extractor that is ca-
pable of extracting generalizable features, we believe that
the contrastive loss, squeeze-excitation modules, and anti-
aliasing filters can all contribute to prevent the model from
learning features that over-fit to the data in Drp,. To
improve generalizability, we leverage an ensembling tech-
nique such that the extracted feature maps (embeddings) are
further regularized. To circumvent the computational cost
of training multiple deep neural networks, we use snapshot
ensembling [29] to save snapshots of the weights of the top-
m performing versions of the models on the validation set
during meta-training.

Next, we describe the components found in the meta-
testing phase (adaptation phase). The efficacy of a meta-
learning algorithm is validated in this phase, where the
model is presented with a small amount of labeled data
from the support set that is different from the domains of
the meta-training data and is scored based on its perfor-
mance on the query set. We pass the images from the sup-
port set through the ensemble of feature extractors to obtain
multiple embeddings and concatenate them together. These
concatenated embeddings are then passed to a parameter-
less soft k-means-based transductive decoder as used in
[30,31]. The decoder iteratively generates the prototypes
of the support set embeddings based on the class labels to
produce a distribution of Euclidean distance over the output
classes for a given query sample. To further generate more
separable prototypes and subsequently better assignment of
the query samples, we use the self-optimal transport (SOT)
feature transform [32] to augment the concatenated embed-
dings before applying the iterative soft k-means. Our hy-
pothesis here in using a parameter-less method for classifi-
cation is that the model will less likely over-fit to the support
set’s labeled embeddings as compared to a parameterized
model, and the SOT will further facilitate the assignment of
query samples to prototypes. While using a parameter-less
decoder and techniques such as SOT is not novel in itself,
we hypothesize that including such techniques in conjunc-
tion is critical in cross-domain meta-learning, especially for
defect classification applications where the classes in a task
often contain highly overlapping features.

3.3. Experimental setup

To establish the efficacy of our framework, we use the
MVTec benchmark data [7] as an instance of a defect clas-
sification problem. As the MVTec dataset is originally de-
signed as an anomaly segmentation task, we make several
modifications to pose it as a benchmark for cross-domain
defect detection and classification problem. The MVTec
consists of 15 unique datasets of textures and objects, with
each dataset having training data with only defect-free im-
ages and testing data with defect-free and (mostly multi-
class) defective images. We select 12 of the 15 datasets
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Figure 1. Illustration of the proposed XDNet for few-shot cross-domain meta-learning.
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Figure 2. Some example images of the MV Tec data sampled from Drey to generate tasks during meta-testing phase. The top row represents
images with no defects while the bottom five rows represents images with defects.

and discard the datasets with only gray-scale images as we
conduct our experiments using colored (RGB) images for
consistency across dataset domains. To utilize this dataset
as a cross-domain meta-learning benchmark, we randomly
split the list of datasets into Dryy, and Dreg. During the
meta-training phase, we concatenate the defect-free and de-
fective data together from all the datasets in Dy, and train
the model via the loss in Eq. 1. During the meta-testing
phase, for every dataset in Dreg, Wwe sample a fixed number
of randomly generated tasks, with the support set in each
task having two to five classes, n € [2, 5] and having one to
five labeled data points per class, i.e., k € [1,5]. Addition-

ally, for every task, we ensure that the query set also has the
same n-classes with the corresponding support set and five
unlabeled data points per class, |Qj| = 5, to evaluate the
accuracy of the framework.

To demonstrate the efficacy of XDNet, we compare
XDNet with several popular transfer learning and meta-
learning methods. As one of the main constraints in this
work is the computational cost, we select only algorithms
with comparable computational costs. To reduce the over-
all meta-training time, we initialize the feature extractors
with weights from models trained on ImageNet and only
update the weights of the final two layers of the feature ex-
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tractor during meta-training while keeping the rest of the
layers frozen.’

Training from scratch: As a preliminary baseline, this
method uses a single backbone feature extractor initialized
with weights trained on ImageNet and directly trains the
model on tasks sampled from Dreg. In this setting, only the
final two layers of the feature extractor and a task-specific
multi-layer perceptron layer are trained for each task using
a classification loss during the meta-testing phase, and there
is no meta-training phase.

Transfer Learning: This baseline is architecturally similar
to training from scratch, with the exception that the model
undergoes a meta-training phase on Dry,, first before be-
ing evaluated on the adaptation capability on Dr.. Hence,
in this setting, we study if pre-training the model on indus-
trial images from different domains is beneficial compared
to just using the initial weights from natural images.
Prototypical Networks: Protonet trained in an episodic
manner during the meta-training phase; i.e., the model is
trained sequentially on tasks randomly sampled from any
single domain in Dry,y,, in contrast to training on the com-
bination of all the datasets in Dry,j,. During meta-training,
the model generates prototypes of each class (by projecting
the support set into /-dimensional vectors and computing
class-specific mean vectors). The model is then trained to
maximize the probability of the query set being assigned to
the true class. Specifically, the model is trained to learn gen-
eralizable representations that map the support set to these
prototypes such that the distances between the query set and
the prototypes correspond well to the class membership of
the query set. During meta-testing, the class of a query sam-
ple is determined by aggregating the distances between the
query sample and the prototypes for each class and choos-
ing the class with the minimum distance.

XDNet: The proposed framework in this paper. In sum-
mary, our method consists of two backbone models acting
as feature extractors trained with the contrastive and su-
pervised loss on Dry,j,. During meta-testing, we use the
two models to extract feature vectors from the data sampled
from support and query set in Dreg, concatenate the feature
vectors, and post-process using self-optimal feature trans-
form. The transformed feature vectors of the support set are
used to form the prototypes, and the query set is classified
using the iterative soft k-means decoder.

4. Results
4.1. Method comparisons

We first present the results of the baselines and XDNet.
Fig. 3 illustrates the comparison of the performance across
14 different random folds of Dy, and Dreg. In each fold,

2 All the experiments were conducted on a workstation with a six-core
Intel CPU and an NVIDIA TITAN Xp GPU with 12 GB memory.

Dres: consists of datasets from four different domains, while
the rest of the datasets are included in Dry,;,. These 14 folds
have been generated to ensure that there are no more than
two overlapping datasets in Dr.s; between all the folds. Ad-
ditionally, we have also reported the average normalized ac-
curacy in the vertical axis of Fig. 3. The normalized accu-
racy is commonly used to measure performance in n-way,
k-shot tasks [33] and accounts for the fact that the tasks gen-
erated during meta-testing time may have varying values of
n and k. Formally, the normalized accuracy is defined as:

AcCChormalized = AC(iCl‘d_bb—AC:jcCCrC (2)
where Accgass 1S the average accuracy per class of a spe-
cific task and Acc,. is the accuracy of a uniform random
classifier that depends on the number of classes (n-way)
present in a specific task. As such, a normalized accuracy
of 0 denotes a model that is on par with a random classifier,
while a normalized accuracy > 0 represents a performance
that is better than a random classifier. In our experiments,
during meta-testing, we have set the number of n-way, k-
shot tasks generated for each domain in Dy to be 50, re-
sulting in a total of 200 tasks per fold.

From Fig. 3, we can observe that XDNet consistently
outperforms all the other baselines across all random folds.
Averaged across all folds, our method performs the best,
followed by Protonet, transfer learning, and finally, train-
ing from scratch. Although Protonet performs the second
best on average, we can also observe that this is not the case
across all folds, specifically in Folds 4, 10, and 13, where
it performs worse than the other two baselines. Thus, we
conclude that, while on average, Protonet may be a better
solution than training from scratch or transfer learning, it is
also highly sensitive to the domain of data it is adapting to.
Considering that the same backbone is used between Pro-
tonet and our framework, we hypothesize that this could be
attributed to Protonet being trained in an episodic mode and
only using features extracted from a single feature extractor.

Comparing transfer learning versus training from
scratch, we observe that transfer learning is also consis-
tently better than or as good as the strategy of learning from
scratch, with the exception of Fold 7. Recall that in our
implementation, both transfer learning and learning from
scratch models are initialized with model weights trained
on ImageNet and would already have learned robust image
features. This observation highlights that there are potential
benefits to meta-training a model on datasets that may be-
long to the same larger overarching domain of data (objects
with defects from various domains in this case), despite the
downstream tasks being from different domains (such as de-
fects in cables, capsules, transistors, etc.).

Finally, we tabulate the average amount of time required
per task for the different methods to adapt and classify the
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Figure 3. Comparison of our proposed framework with the other three baseline methods across 14 random folds of Dres. Our proposed
method consistently outperforms the rest of the baselines across all folds.

Method Average Time/Task (s)
Training from scratch 12.57
Transfer learning 12.52
Protonet 2.58
XDNet 2.97

Table 1. Time per task of each method during meta-testing phase,
averaged over 200 tasks. While XDNet is slightly slower than
Protonet, the performance gain is significantly and consistently
stronger, as shown in Fig. 3.

defects when presented with support and query sets from
new domains. As observed in Table 1, training from scratch
and transfer learning requires an order of magnitude higher
amount of time, since both methods essentially have to train
one or more parameterized layers. In contrast, Protonet and
XDNet are significantly faster due to the classification be-
ing computed by a parameter-less approach. While XDNet
is slightly slower than Protonet, we believe it is worth trad-
ing off a small amount of computational efficiency for the
additional robustness and accuracy performance of XDNet.

4.2. Ablation study

Next, we perform an ablation study on the proposed
method to isolate and identify the components that con-
tribute to the performance of the framework most signifi-
cantly. Specifically, we repeat the experiments across all
folds of data by removing the following components:

1. Squeeze-excitation architecture and anti-aliasing
filters: This experiment forces the backbone feature
extractors to default to the basic ResNet101 architec-
ture without the squeeze-excitation modules and anti-
aliasing filters.

2. Self-optimal feature transform: This ablation re-
moves the SOT feature transform during the meta-
testing phase and forwards the raw embeddings ex-
tracted by the ensemble of backbone feature extrac-
tors directly to the soft k-means-based transductive de-
coder to generate the prototypes and classify the query
set.

3. Ensemble of feature extractors: This experiment re-
moves the snapshot ensembling technique during the
meta-training phase. As a result, only one feature ex-
tractor is used during the meta-testing phase to extract
the features from the input.

4. Contrastive loss: This ablation removes the con-
trastive loss term during the meta-training phase of the
feature extractors and only trains the feature extractors
using the classification loss.

From Fig. 4, we observe that, on average, removing the
squeeze-excitation modules and anti-aliasing filters results
in the largest drop in performance, followed by ensembling,
contrastive loss, and the use of SOT. Nevertheless, we ob-
serve no consistent trends across the 14 random folds of
Drest- On the contrary, removing certain components some-
times resulted in an overall better performance. For exam-
ple, removing the contrastive loss significantly improved
the normalized accuracy for Folds 2, 6, and 7, while the
presence of the contrastive loss improved performance in
Folds 1, 10, and 12.

4.3. Domain-specific analysis

In this section, we present the dataset-specific normal-
ized accuracy for every fold of the data to analyze the ef-
fects of different domains of data on the generalizability of
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Figure 4. Ablation study to identify the main components that contribute to the performance of XDNet. The squeeze-excitation modules
and anti-aliasing filters have the most significant effect, followed ensembling, contrastive loss during meta-training and SOT.

Cable Capsule Carpet Hazelnut Leather Metal Nut Tile Transistor
Fold 1 0.58+0.06  0.284+0.08 0.61£0.07  0.5040.07 - - - -
Fold 2 0.47+0.07  0.2140.08 - 0.80+0.05  0.3740.10 - -
Fold 3 0.48+0.08  0.2240.06 - - - 0.76+0.06  0.3740.08
Fold 4 0.50+0.06 - 0.43+0.08 0.84+0.04 - 0.76+0.05 -
Fold 5 0.58+0.06 - 0.6240.08 - - 0.53£0.08 - 0.44+0.08
Fold 6 0.53+0.06 - - 0.36£0.05  0.84+0.04 - - 0.38+0.09
Fold 7 0.56+0.06 - - 0.33£0.05 - 0.46£0.07  0.78+0.06 -
Fold 8 - 0.20+0.08  0.6040.07 0.85+0.04 - - 0.45+0.08
Fold 9 - 0.20£0.08  0.42+0.07 - 0.45+£0.07  0.70£0.05 -
Fold 10 - 0.19+0.08 - 0.56+0.07  0.8640.04 - 0.89+0.04 -
Fold 11 - 0.24+0.08 - 0.39£0.07 - 0.41£0.07 - 0.45+0.09
Fold 12 - - 0.60+0.08  0.65+0.07 0.864+0.04  0.4940.08 - -
Fold 13 - - 0.53+0.07  0.331+0.06 - - 0.80+0.06  0.4940.08
Fold 14 - - - - 0.86+0.04 0.4940.09 0.804+0.07  0.5240.07
Average | 0.53£0.04 0.22£0.03  0.54£0.08 0.45+0.12 0.84+0.02 0.464+0.05 0.784+0.05 0.4440.05

Table 2. Averaged normalized accuracy and standard deviation for individual data domains within Drey for all folds.

Cable Capsule Carpet Hazelnut Leather Metal Nut Tile Transistor
Training from scratch | 0.284£0.00  0.13£0.01  0.284+0.02  0.29£0.01  0.48+£0.03  0.37£0.03  0.45+0.02  0.25+0.04
Transfer learning 0.28+0.03  0.13£0.02  0.30+£0.04 0.35+0.08 0.584+0.05 0.394+0.04 0.48+0.05 0.26+0.02
Protonet 0.40£0.05  0.24£0.03  0.2940.08 0.33+0.18  0.524+0.14  0.404+0.06  0.494+0.18  0.26+0.06
XDNet 0.53£0.04  0.22+0.03  0.544+0.08 0.454+0.12  0.844+0.02 0.4640.05 0.78+0.05 0.4440.05

Table 3. Comparison of domain specific average normalized accuracy between our proposed method and the other baselines.

XDNet. The average normalized accuracy across all tasks
Drest for each dataset and each fold is shown in Table 2.
The first observation we make is that the normalized accu-
racy of XDNet for every domain remains largely consistent
across all folds of Dr despite having different n-way, k-
shot tasks being generated during meta-testing. We observe
that the model performs particularly well on domains such
as leather and tile while performing moderately better than
a random classifier in the cable, carpet, hazelnut, metal nut,
and transistor datasets. Most notably, the model performs
just marginally better than a random classifier in the cap-

sule dataset. Additionally, the top three domains in which
XDNet performed well (leather, tile, and carpet) are all from
textured domains, while the rest of the domains consist of
an object with a background (as seen in Fig. 2). We hy-
pothesize that domains with objects often consist of more
prominent features, thus making the task of classifying dif-
ferent defects more challenging.

In Table 3, we compare the domain-specific average nor-
malized accuracy of the proposed framework against the
other baselines that we implemented. Once again, we ob-
serve that XDNet consistently outperforms the rest of the
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baseline methods across all domains of data. Interestingly,
our hypothesis that defects in texture domains are less chal-
lenging to classify does not hold as strongly for the rest of
the methods. Specifically, the leather and tile datasets still
remain as the top two domains in which the other methods
perform the best. Nevertheless, the carpet dataset is not the
third-best domain for the rest of the baselines. This obser-
vation suggests that while the images in the carpet dataset
are textured, the defects are significantly more challenging
to identify as compared to defects in tile and leather. Re-
ferring to Fig. 2 once more, we can confirm that the defects
in the carpet are visually less obvious when compared to
defects in the other two texture datasets.

4.4. Effects of k and n on performance
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Figure 5. Effect of increasing n in the support set during the meta-
testing phase on the average normalized accuracy of XDNet.
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Figure 6. Effect of increasing k in the support set during the meta-
testing phase on the average normalized accuracy of XDNet.

Finally, we present analysis on the effects of n and &
on the average normalized accuracy of XDNet. Fig. 5 il-
lustrates the performance of XDNet on each domain aggre-
gated over all folds of Dy when 7 in the task increases. As
expected, almost all domains exhibit a monotonic decrease
in performance when the value of n in a task increases,
with the exception of the hazelnut and capsule datasets.

However, the overall trend still shows a decrease as n in-
creases for these domains. Another observation is that for
the leather and tile domains, the model’s performance is rel-
atively robust to an increasing value of n when compared to
other domains, where the model performance experiences a
relatively sharper decrease when n increases. In Fig. 6, we
show the effect of increasing the number of label examples
in the support set during the meta-testing phase (averaged
over all values of n) on the average normalized accuracy of
XDNet. While the model displayed a trend that shows per-
formance increases with the number of labeled examples,
the overall trend is less monotonic than expected. In other
words, in this regime of few-shot samples (k € [1, 5]), the
model is still sensitive to the number of labeled examples,
and increasing the size of the support set with 1 or 2 samples
does not necessarily improve overall performance. Further-
more, we also observe that for the capsule dataset, increas-
ing k from 2 to 4 results in a significant gain in normalized
accuracy, while the same phenomenon is not observed in
other domains. We hypothesize this is because when k is
small, the prototypes generated by the soft k-means-based
decoder are relatively noisy, especially when n is high. The
results from Fig. 5 and 6 suggest that when deploying the
framework to a new domain, it is imperative to consider that
each domain may have a unique number of required % in or-
der to observe a significant increase in performance. Future
work will also further investigate the effects of k in higher
regimes to determine if monotonic improvements can be ob-
served.

5. Conclusion

This work leverages advancements in unsupervised
learning, model architectures, training strategies, and fea-
ture processing methods to propose a cross-domain meta-
learning framework for defect detection and classification
tasks. We demonstrate the efficacy of our approach with
several baselines on MVTec dataset. This work reformu-
lates the defect detection problem of MVTec into a more
challenging multi-class classification problem to investi-
gate the n-way k-shot performance of XDNet. We show
that XDNet is more effective than other baselines in cross-
domain settings with few-shot examples. Despite perform-
ing better than other baselines, classification of the defects
in several domains remain challenging. Additionally, we
performed an ablation study and discover that while most
of the advanced techniques contribute to an increase in per-
formance, changes to the model’s architecture has the most
significant effect. Future directions include incorporating
more advanced backbone feature extractors specifically tai-
lored towards identifying pixel-level defects while reducing
the computational complexity of the method during meta-
testing.
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