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Abstract

In this paper, we propose a novel method for assigned
MURA generation using a diffusion model. MURA is a well-
known problem in the display industry, which is difficult to
be inspected because it is characterized by low contrast,
blurry contours, blocky uneven brightness, and irregular
shape patterns, and most defects have no rules to follow.
Especially, for data-driven deep learning, the shortage of
MURA samples collecting from the pipeline of manufactory
is the first challenging problem, because the MURA sample
happens with a low probability and in various ways. To re-
lieve the problem, our proposed approach employs a diffu-
sion model that generates MURA defect images using a few
samples, which allows us to assign the position and class of
MURA in the image. Specifically, our method leverages the
diffusion process to estimate the visibility of MURA, which
is then used to enhance the flexibility of the MURA detec-
tion process. We evaluate the performance of our method
through MURA inspection. The results demonstrate the
effectiveness of our proposed approach in addressing the
MURA detection problem.

1. Introduction
Mura is a visual defects phenomenon happened on the

Liquid crystal displays (LCD) such as uneven brightness,
color variations, or visible defects like spots, lines, or blobs,
which may cause unpleasant feelings in applications where
visual quality is critical such as in high-end televisions,
smartphones, and other electronic devices. Some of the
spot examples are shown in Figure1. In the display industry,
Mura inspection is an important step in ensuring the quality
of display panels. The detection and classification of mura
defects can help prevent defective displays from reaching
consumers and can also help manufacturers identify and ad-
dress production issues. However. it is a very challenging

(a) black spot (b) white spot

(c) particle spot (d) sealgap spot

Figure 1. Some examples of spot MURAs are marked by red cir-
cles or arrows. White spot and black spot are fulfilled circle re-
gions in different color patterns. The white spot is fulfilled with
white, while the black spot is fulfilled with black. Particle spots
have a bright/black dot in the center of the black/white mura. Seal-
gap is a type of MURA located on the border of the product. So it
is a half-spot.

task for MURA inspection [28], which is attributed to the
properties of MURA: (1) low contrast and uneven bright-
ness [10]; (2) no fixed size and regular shape; (3) resulted
from multiple pipelines and diversity products. Addition-
ally, the shortage and imbalance of defect data from facto-
ries increase the difficulty of the task. Fortunately, with the
progress of computer vision technology, Mura inspection
based on deep learning is becoming increasingly promising
in industry research.

Mura inspection is typically performed using special-
ized equipment such as automated optical inspection sys-
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tems, which use cameras and image processing technol-
ogy to detect and analyze defects. Image processing-based
MURA inspection generally can be divided into two cate-
gories [28]: pixel-wise and feature-level. The former can
represent the complete information of the LCD panel im-
age, and the recognition accuracy is high but the speed is
slow resulting from massive data. The latter are just some
features of the image data, such as contrast, area, position,
edge, shape, and gray uniformity. These features cannot
completely represent the image information, and the recog-
nition accuracy will decrease. Recent work are focusing on
a). extracting distinguishable information features from the
original defect image, such as YoloV5 [19]; and b). gener-
ate defect data, such as Generative Networks [11,14,32,41].

In order to build a robust feature model, Collecting and
annotating a large amount of labeled data is inevitable for
deep learning especially. This is because deep learning
models are designed to learn from data by extracting pat-
terns and relationships by optimization. To optimize effec-
tively, it needs to be trained on a diverse set of examples
that cover the range of situations. But collecting data from a
factory and annotating data professionally is challenging for
several reasons. Firstly, the data is spread across different
systems, machines, or devices that are not interconnected,
making it difficult to gather all the necessary data in one
place. Secondly, the data may not be in a usable format for
machine learning algorithms. Data may need to be cleaned,
transformed, or normalized before it can be used to train
a model. Thirdly, It has a very low probability of a MURA
defect occurring in the manufacturing industry as it depends
on various factors such as the type of material being man-
ufactured, the manufacturing process, and the quality con-
trol measures in place. Fourthly, there may be privacy and
security concerns around collecting and using data from a
factory. It is important to ensure that any data collected is
done in a way that is compliant with relevant regulations and
does not compromise the safety or privacy of the company.
Lastly and most importantly, the data should be annotated
by professional inspectors who have been well-trained and
experienced in production quality assessment from different
domains.

To overcome these challenges, it is essential to have
a well-defined data generation strategy that takes into ac-
count the specific requirements of the factory and the ma-
chine learning algorithm being used. This strategy for data
generation should be used by existing machine learning al-
gorithms, consistent with real data, compatible crossing-
platform, automatically annotated data, and no privacy or
security concerns. Based on the above requirements, we
propose Assigned MURA Defect Generation Based on Dif-
fusion Model, which can help to improve the performance
of a deep learning model for detection, but it is important
to ensure that the generated data is representative of the real

data and does not introduce biases or artifacts that could
negatively impact the model’s performance.

Comparing the similarity and differences between defect
generation and inpainting tasks, we propose novel methods
for mura generation with controllable features including but
not limited to position, size, and visibility. Our contribution
includes 1) the exploration of defect generation using diff-
sion model, 2) defect dataset expansion through conditions,
and 3) texture reserving for better background compatibil-
ity.

The rest of the paper is organized as follows. Section 2
provides an overview of the related work in MURA genera-
tion and diffusion models. Section 3 describes the proposed
approach in detail, including the diffusion model based im-
age generation and feature Reservation. Section 4 presents
the experimental results and performance evaluation. Fi-
nally, Section 5 concludes the paper and discusses future
directions for research.

2. Related Work
Recently, for many image-to-image tasks [17], Genera-

tive Adversarial Networks (GANs) [11,32], the most popu-
lar research topics in the past few years, are capable of gen-
erating high fidelity outputs, broadly applicable, and sup-
port efficient sampling. Autoregressive Models [31, 46],
VAEs [23, 44], and Normalizing Flows [9, 21] have seen
success in specific applications. Nevertheless, GANs can
be challenging to train [1, 12], and often suffer from mode
collapse [27, 33].

In contrast, diffusion and score-based models [14,39,41]
have a stable training process and provide more diver-
sity [2, 4, 16, 22, 42, 45], resulting in several key advances
in modeling data from different domain. Diffusion mod-
els [5, 6, 24] on audio synthesis have achieved human eval-
uation scores on par with SoTA autoregressive models. On
the class-conditional ImageNet generation challenge, [8,15]
have outperformed strong GAN baselines in terms of FID
scores. Image super-resolution [35], unpaired image-to-
image translation [37], and image editing [26,38] also have
extensively researched on diffusion model.

Denoising Diffusion Probabilistic Models (DDPM) [14],
as a special kind of variational auto-encoders (VAEs) [23],
provides a high quality image synthesis method through
an iterative denoising process, where the forward diffusion
stage corresponds to the encoding process inside VAE [7],
while the reverse diffusion stage corresponds to the decod-
ing process. [34] proposed a framework for image-to-image
translation using diffusion models, which focus on multi-
ple tasks, colorization, inpainting, uncropping, and JPEG
restoration [7]. The aim of [47] is to improve current image-
to-image translation score-based diffusion models by utiliz-
ing data from a source domain with an equal significance,
which leads to generating images that preserve the domain
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agnostic features while translating characteristics specific to
the source domain to the target domain.

Despite these advantages, diffusion models are still in-
efficient when compared to GANs, requiring multiple net-
work evaluations during inference. Song et al. [40] pro-
posed Denoising Diffusion Implicit Models (DDIM), which
formulates an alternative non-Markovian noising process
that has the same forward marginals as DDPM, but allows
producing different reverse samplers by changing the vari-
ance of the reverse noise. By setting this noise to 0, they
provide a way to turn any model into a deterministic map-
ping from latents to images, and find that this provides an
alternative way to sample with fewer steps. We adopt this
sampling approach when using fewer than 100 sampling
steps, since Nichol and Dhariwal [30] found it to be ben-
eficial in this regime. Our proposed diffusion models build
on these recent advances, showing versatility on a suite of
image-to-image translation tasks.

3. Methodologies
Our work is based on [34]. The model we are using is

U-Net architecture from guided diffusion, and the attention
mechanism is applied in low-resolution features as valilla
DDPM. In this section, we illustrate step by step how we
apply a diffusion process to MURA generation.

3.1. Image Generation with DDPM

Recall that in DDPM process, the forward process is de-
noted as:

q(xt|xt−1) = N (xt;
√
βtxt−1, (1− βt)ϵ) (1)

which is parametererized by β = β1...βt series that evolve
over time according to a fixed or learned schedule and ϵ ∼
N (0, 1). And xt, originating from x0, the original input,
represents the sampled value at time step t. Suppose for
each time step, we set αt that equals 1− βt, and

ᾱt =

t∏
i=1

αi (2)

then because of the Gaussian process, for any time step t,
xt can be calculated in a closed form:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (3)

For the backward pass, we can try to minimize the loss
for either means, noisy values, or the score functions be-
tween the sampled value xt ∼ q(xt|xt−1) and the predicted
value x̂t ∼ p(xt|xt+1). Taking predicting the noise for ex-
ample, for each backward step, we use the model to predict
ϵ from xt, followed by the calculation of x0 and xt−1 re-
spectively:

Figure 2. Images with mura defects generated using DDPM.

Figure 3. Conditional image, masked with random value, which is
the original implementation. The defect region is extracted from
original patch image. The boundary of the mask is sometimes
obvious.

ϵ0 = model predict(xt, t) (4)

x0 =
xt −

√
1− ᾱtϵ0√
ᾱt

(5)

xt−1 =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt +

1− ᾱt−1

1− ᾱt
βt

(6)

We conducted experiments that by training the cropped
regions from defective images, the diffusion models can
learn to generate useful samples (as is shown in Figure2).
The Table1 shows the performance improvements by intro-
ducing generated samples while using a small number of
real defect samples.

However, mura images and defects are variable in size,
and the cropped region cannot be placed into the original
region because of the mass changes brought by the random-
ness of the probabilistic model. This usually makes it im-
possible to train the model in a more flexible way for those
images with high resolutions for manufacturing products.
Also, the locations of the generated defects are unknown to
us, which still requires additional labeling work. We need to
measure information including defect locations, sizes, and
visibility for the products.

4397



3.2. DDIMs

DDIMs (denoising diffusion implicit models) has same
training procedure as DDPMs but greatly reduces the sam-
pling time by introducing a non-Markovian process [40].
By controlling τ (which decides the sampling interval
across time steps), and η, we get σ (which interpolates be-
tween the deterministic DDIM and the stochastic DDPM)

σt = η ·

√
1− ᾱτt−1

1− ᾱτt

·
√
1− ᾱτt

ᾱτt−1

(7)

Then by predicting the noise and the initial input:

ϵ0 = ϵ(t)(xt) (8)

x̂0 =
xt −

√
1− ᾱtϵ0√
ᾱt

(9)

The sampling procedure can be expressed as:

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1 − σ2

t · ϵ0︸ ︷︷ ︸
directionpointing to xt

+ σtϵt︸︷︷︸
random noise

(10)
We found that setting a long sampling interval cannot pro-
vide high quality results. To make the balance between time
and image quality, when time T is close to zero, we use
DDPM instead of DDIM.

3.3. Defect Generation based on Conditional Diffu-
sion

Inspired by the inpainting approaches [34], we apply
masks and the diffusion process on the defect regions only.
During the forward pass, only the masked region is changed
by adding gaussian noise step by step. And in the back-
ward pass, all pixels from xt are fed into the network to
predict the noise, but the calculation of loss only involves
the masked regions.

With this approach, it’s possible to generate defects in
the regions we specified. However, the boundary can be vis-
ible (shown in Figure3) even in the training data when we
try other regions that are not trained with masks. This is be-
cause defect samples from the products are quite scarce and
defect areas are normally not large, which greatly reduces
the actual available number of training data. The genera-
tion task, in other words, can be divided into two sub-tasks:
background generation and defect generation. So in addi-
tion to the previous work, we add masks on a random re-
gion to try to let the model learn to reconstruct the back-
grounds and introduce additional information as conditions
to the input of the model, with mask regions filled with 1
representing defect area to generate and 0 representing the
background area to learn.

Although the generation ability is further improved with
conditional input and masks, different from other kinds of
products, an image of a display where mura defects may
exist is usually filled with random noises, which to some
extent follows Gaussian distribution. Since the gap between
high-density and low-density pixels of a pattern is not large,
the randomness of the noise makes it harder for the network
to learn the data distribution due to normal loss settings.
Thus, it is found that sometimes for complex background
patterns observable with human eyes, the diffusion model
may fail or need much more training time to generate an
undistinguishable defect region. However, with traditional
image processing approaches to detect many kinds of de-
fects, we usually apply Gaussian blur to the image first. So a
3x3 Gaussian kernel is carefully added to the original image
to make sure the defective features are not changed before
being fed into the model.

3.4. Feature Reservation

Different from inpainting tasks on normal images, de-
fects usually interrupt the continuity of the background pat-
terns. The process of learning to generate an area lacking
enough context information may be more unpredictable and
harder because of loss settings. We try to use Canny to-
gether with normalization techniques to keep the missing
features for the mask regions that are used to generate de-
fects. However, with this approach, additional dependen-
cies on existing defective data are required for testing and
massive defect generation stages because we have to simu-
late existing edge features. To relieve this, we use dropout
in the following step to keep much fewer features about the
defect regions to decouple the dependencies.

For training, edges and positions with high normaliza-
tion values are set to 1, being concatenated with the inputs.
At the same time, those values are also stored as images
for further defect generation. And during the testing stage,
similar settings are applied, with a conditional map con-
taining edge and position information within the mask re-
gion. However, to generate more defect images, we can
randomly select the stored feature images collected in the
training stage and paste them onto the masked regions as
conditional maps, as illustrated in Algorithm1.

4. Experimental Results

Our experiments include two parts. The first part, a mi-
cro test to ensure that an indistinguishable generated de-
fect can actually improve deep learning performance, uses
around 200 different samples to simply discover the gen-
eration ability of DDPM. And the second part, we test the
performance of the location-specified defect generation.
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(a) Original image (b) Generated image (c) Mask locations

(d) Conditional map (e) Differences between original image and
generated image

(f) Equalized differences for better compari-
son

(g) Real defect 1 (h) Fake defect 1 (i) Fake defect 2 (j) Fake defect 3

Figure 4. A set of images illustrating our methods and outcomes. In Figure (c), the white boxes on the mask image indicate the regions we
want to generate defects, and the black boxes indicate the regions we want to generate normal background. The sizes and locations of black
and white boxes are random. (d) Shows the condition map, which is loaded from the disk and saved during the training process, as input
to the diffusion model, after being dropped out at a random rate. (e) compares the differences between the original image and generated
image, and (f) provides another view by using histogram equalization to (e) to present all the different regions. (g) to (h) are the real and
generated defect regions.

4.1. Dataset

Our dataset contains four kinds of spot mura and a kind
of shapeless mura, splitted into training and testing datasets
respectively. Images from different products are cropped
to small patches (640x640) and then resized to a smaller
resolution (512x512) as input to the diffusion models.

The first experiment uses around 200 different defect
patches for DDPM training. To test the generation abil-

ity, 15 of the patches are used for supervised training using
Yolov5 while another group has 47 more generated samples,
and additional 10 patches are used for performance testing.
The second experiment uses around 700 different patches
for training and 200 patches for testing.
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Algorithm 1 The generation of condition map

Require: images, position labels
1: Output: condition map
2: while Generation process not finished do
3: img ← GaussionBlur(img) (optional)
4: bmsk ← Get random background mask
5: fmask ← Get foreground mask
6: cond← img(1− fmsk ∪ bmsk) + fmsk
7: dropou rate = random(0.4, 0.9)
8: R ← non-zero regions of cond
9: for each r ∈ R do

10: c← Get Canny map from r
11: n← Perform normalization on r
12: n← Update n according to threshold settings
13: r̂ ← n ∪ c
14: condr∈R ← r̂
15: end for
16: condition map← dropout(cond, dropout rate)
17: end while

4.2. Experiment Settings

The first experiment, with no region specified, is based
on [25]. We adopt most of the original settings but increase
the resolution to 512x512. And the second experiment, with
the location specified, is based on [18]. Along with ad-
ditional augmentation approaches such as random rotation
and flipping, we modified the mask, and condition map gen-
eration scheme as illustrated in the last section.

4.3. Quality Matrix

Table1 shows the performance improvements brought by
the generated defect samples with DDPM when the training
dataset is very small, which indicates those fake defects can
be valid inputs for training supervised deep learning mod-
els.

Table 1. Performace comparison using YoloV5 on different data

Case Real data Generated data Real+generated data
Number of samples 15 47 62

Recall 0.27 0.45 0.55
Precision 0.21 0.31 1.0

Figure4 compares the real and generated mura defects,
which are indistinguishable with human eyes. For compar-
ing quality between different models, we perform quantita-
tive evaluations by the following metrics:

Inception Score (IS) [36], measures how well a model
captures the full ImageNet class distribution while still pro-
ducing individual samples. One drawback of this metric [3]
is that it does not reward covering the whole distribution or
capturing diversity within a class, and models which mem-

orize a small subset of the full dataset will still have high
IS.

Fréchet Inception Distance (FID) [13], was proposed
to better capture diversity than IS, which is more consis-
tent with human judgment than Inception Score. FID pro-
vides a symmetric measure of the distance between two im-
age distributions in the Inception-V3 latent space [43]. Re-
cently, sFID [29] was proposed to replace spatial features
with standard pooled features.

We use FID as our default metric for overall quality com-
parisons as it captures both diversity and fidelity and has
been adopted by generative modeling work [14, 20].

Table 2. Evaluation and comparisons on the generated data

Case FID score
Conditioned diffusion with Gaussian Blur 17.34

Feature aware diffusion 7.23

5. Conclusions and Future Work

5.1. Conclusions

In this paper, we presented a novel approach for assigned
MURA generation using a conditional diffusion model. The
proposed approach involves training a diffusion model on
the limited MURA dataset from the factory with profes-
sional annotation, which learns to generate realistic MURA
images. The generated MURA images not only contain
the assigned defect class but also the locations of MURA.
We evaluated the approach to the detection task using the
MURA dataset w/o generating MURA images. Experimen-
tal results show that it is able to improve MURA detection
accuracy.

5.2. Future work

Common defect detection methods based on unsuper-
vised learning learn to reconstruct the background, which
can work well when the backgrounds are simple. However,
because of the complex production environments, noises
and real defects can be hard to be distinguished. It should
be observed that many defects appearing on different prod-
ucts share the same features, which provides a possibility
for the network to reconstruct them.

However, learning to reconstruct defects involves learn-
ing to reconstruct backgrounds as well. Our experiments
show that with rough skeletons reserved for the unseen re-
gion, the network is well capable of reasoning for both the
backgrounds and defects.

Consequently, future research will mainly focus on de-
fect extraction, translation, and generation across a wider
variety of products, as is shown in Figure5.
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(a) Real extracted defect from other another
product (only defect patch shown for data
confidential)

(b) Real image (c) Generated sample with defect

Figure 5. Example of defect extraction and generation

Defect extraction By reconstructing the region of de-
fects, it’s possible to extract the defects with acceptable
noises( Figure5(a)).

Defect translation Translate defects from one product to
another product in any specified location (Figure5(c)).

Defect generation With the help of diffusion models, it’s
feasible to learn the distribution of defects separately and
reconstruct a wider range of defects.
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