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Abstract

Polyp segmentation is a crucial step towards computer-
aided diagnosis of colorectal cancer. However, most of
the polyp segmentation methods require pixel-wise anno-
tated datasets. Annotated datasets are tedious and time-
consuming to produce, especially for physicians who must
dedicate their time to their patients. To this end, we propose
a novel weakly- and semi-supervised learning polyp seg-
mentation framework that can be trained using only weakly
annotated images along with unlabeled images making it
very cost-efficient to use. More specifically our contribu-
tions are: 1) a novel weakly annotated polyp dataset, 2) a
novel sparse foreground loss that suppresses false positives
and improves weakly-supervised training, 3) a deformable
transformer encoder neck for feature enhancement by fusing
information across levels and flexible spatial locations.

Extensive experimental results demonstrate the merits of
our ideas on five challenging datasets outperforming some
state-of-the-art fully supervised models. Also, our frame-
work can be utilized to fine-tune models trained on natural
image segmentation datasets drastically improving their per-
formance for polyp segmentation and impressively demon-
strating superior performance to fully supervised fine-tuning.
Code can be found in https://github.com/ic—
gialangian/WS-DefSegNet.

1. Introduction

Automated medical image segmentation has attracted
interest in recent years due to its potential to significantly
reduce the workload of physicians by being used as a sup-
porting tool for a physician’s diagnosis. Due to the rapid
development of deep learning [14], the current state-of-the-
art medical image segmentation methods utilize deep learn-
ing techniques and polyp segmentation has been no excep-
tion [11,12,37].

However, one of the bottlenecks of deep learning tech-
niques is their reliance on large, well-annotated datasets. An-
notating datasets for polyp segmentation is particularly time-
consuming since pixel-wise annotations must be provided

Figure 1. Visualization of weak annotations. (a) RGB image of
the training data. (b) Original ground truth. (c) Foreground and
background. (d) Our weak annotations. (¢) RGB image of the
testing data. (f) Corresponding ground truth. (g) Predicted map of
fully supervised training manner. (h) Predicted map of our methods.

which requires significant manual labour. While in standard
image segmentation anyone can annotate a dataset, in polyp
images, annotations must be provided by expert physicians
that are trained to detect lesions in these images. This is
a significant limitation for automated polyp segmentation
since physicians do not have time to dedicate to annotating
images.

To address this issue and save physicians’ valuable time
we propose a novel framework for polyp segmentation. Our
framework can be trained using only weakly annotated im-
ages and unlabeled images. These weak annotations include
only information regarding where the foreground and back-
ground pixels are located.

Specifically, we leverage our framework on polyp seg-
mentation, which aims at detecting and segmenting polyps
for the early diagnosis of colorectal cancer. Current re-
search [11,12,37] still relies on complete polyp annotations
to achieve accurate detection performance. Under this cir-
cumstance, we relabel the training dataset with weak annota-
tions by simply drawing sketches. Only around 1.9% of the
total pixels of all images in the whole dataset are labeled. The
annotations simply need to indicate the foreground (polyp
region) and the background (non-polyp region), making this
annotation strategy very efficient for physicians to use with-
out sacrificing a lot of time. Our weak annotations can be
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seen in Figure 1(c) and (d) annotating the polyp region and
the non-polyp region with two simple lines in direct contrast
to the original ground truth segmentation maps that require
pixel-wise careful annotation.

Our proposed framework consists of a two-stage training
regime. In the first stage, a model is trained using a weakly-
supervised training paradigm while in the second stage we
train the model using a semi-supervised learning paradigm.
Also, as part of our framework, we propose a novel architec-
tural component that is used for feature enhancement.

During the weakly-supervised training stage, we propose
a novel weakly-supervised loss function that addresses a key
limitation of weakly-supervised training techniques, that of
numerous false positives [40,42]. Since weak annotations
contain only a fraction of the polyp region, training models
by partial cross-entropy loss [32] could cause a large number
of false positives as shown in Figure 2(c). A previous work
[42] attempted to address the problem of false positives
using an auxiliary edge detection network supervising the
model to align image edges with the predicted segmentation
map boundaries. However, this method complicates the
training process and relies on auxiliary networks. To address
this problem in a simple way, we propose a novel sparse
foreground loss function that suppresses false positives and
refines the rough predicted segmentation maps (Figure 2(d)).

In addition, because of the weakly-supervised training,
inconsistent segmentation maps can be generated by two
identical models trained the same way (Figure 8(b) and (c)).
To exploit the prior knowledge of the predicted map, we
adopt a batch-wise weighted consistency loss to utilize two
predicted segmentation maps during semi-supervised train-
ing.

Lastly, to improve the accuracy performance even fur-
ther, we propose a Deformable Transformer Encoder Neck
(DTEN), which leverages a multi-scale deformable self-
attention encoder along with a novel progressive compen-
sation sequence for feature enhancement. This idea is mo-
tivated by [39], which models the topological structure of
patterns with graphs and fuses features at calculated posi-
tions into new features in the Contextual Pattern Propagation
(CPP) module. It is shown that the enhanced features benefit
weakly-supervision. Different from CPP, we take advantage
of deformable vision transformers for feature enhancement.
Such transformers learn the feature positions and weights
automatically, making the fusion operation more adaptable
to varying conditions like shapes.

The merit of each of our ideas can be visualized from
Figure 2 (c)-(f). Each idea consistently improves perfor-
mance. We name our novel framework Weakly- and Semi-
supervised Deformable Segmentation network, in short, WS-
DefSegNet. To summarize, the contributions of our work
are the following:

* We are the first, to the best of our knowledge, to propose

@l kel |
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Figure 2. Visual comparison of ablation study. (a) RGB image. (b)
Original ground truth (c) backbone. (d) +sparse foreground loss.
(e) +semi with weighted consistency loss. (f) +DTEN.

a weakly- and semi-supervised training framework for
efficient polyp segmentation.

* We propose a novel sparse foreground loss function
that alleviates the false positives associated with weakly
supervised training.

* We propose DTEN, a novel progressive multi-scale
architecture with a self-attention mechanism for fea-
ture enhancement that significantly improves the per-
formance of WS-DefSegNet.

* We created the first, to the best of our knowledge,
weakly annotated polyp segmentation dataset W-Polyp.
We are planning on making it publicly available as a
way to promote research in this direction.

2. Related Work

Medical Image Segmentation Medical image segmenta-
tion aims at identifying lesion areas which indicate potential
diseases in the human tissue. Deep learning methods have
achieved compelling performance due to a fully supervised
training paradigm. U-net [28] designs a U-shape architecture
built on fully convolutional networks to capture context fea-
tures and gradually segment biomedical images with precise
localization. Analogously, CE-net [15] proposes an encoder-
decoder structure with a dense atrous convolution block for
medical segmentation and [21] inherits the U-net frame-
work and proposes a non-local context-guided mechanism
to capture long-range pixel-wise dependencies in features
for tumor segmentation.

More specifically for polyp segmentation, Pranet [1 1]
proposes a recurrent reverse attention module to mine bound-
ary cues and a parallel partial decoder. Other approaches
[12,18,43] have also been proposed with the overwhelming
majority focusing on fully supervised training. In contrast,
our framework only uses weak annotations and outperforms
some of the aforementioned methods.

Weakly-supervised Segmentation To avoid tediously la-
beling pixel-wise annotations, image segmentation is en-
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couraged through the use of inexpensive labels, formulat-
ing the weakly-supervised training paradigm using image-
level labels and weak labels. Ahn [2] proposes an IRNet
to estimate rough areas of individual instances and detect
boundaries with image-level class labels. Chen [9] explicitly
explores object boundaries through coarse localization and
proposes a BENet to further excavate more object boundaries.
Zhang [42] leverages scribble annotations by relabeling an
existing salient object detection dataset and further adopting
an auxiliary edge detection task to explicitly provide edge
supervision on the final output. Yu [40] designs a local coher-
ence loss to improve boundary localization and a structure
consistency loss to further enhance the model’s generaliza-
tion ability. However, the aforementioned methods use aux-
iliary networks and focus on excavating edge information,
while in our work we propose an effective weakly-supervised
loss function for polyp segmentation.

Semi-supervised Learning Semi-supervised learning ad-
dresses the research question of exploiting unlabeled data
together with labeled data to improve the performance of a
model. A line of research attracting attention in recent years
is that of consistency regularization, where the main idea is
to enforce similar predictions between two cases, either two
different augmentations of the same image or the same image
but predictions made from two different networks [19,29,34].
Pseudo-labeling unlabeled data and using them in the train-
ing process is another promising direction, for example, [20]
uses the current network to assign pseudo-labels to the unla-
beled data while [16] uses label propagation to exploit the
underlying manifold structure of the data to assign pseudo-
labels. Other influential works such as MixMatch [5] and
ReMixMatch [4] incorporate many ideas together, such as
using data augmentation consistency, applying mixUp reg-
ularization [4 1] and distribution alignment [6]. For further
information regarding semi-supervised learning, we refer the
reader to [8].

Regarding polyp segmentation, Wu [37] employs two
collaborative segmentation networks for semi-supervised
polyp segmentation and two discriminators to minimize the
impact of the imbalance problem between labeled and un-
labeled data. However, in contrast to our work they use a
fully annotated subset of polyps while we only use weak
annotations.

Vision Transformers in Medical Image Segmentation
Vision transformers have been extensively applied to medical
image segmentation owing to their capability to incorporate
global features while maintaining high resolution. They can
be used to establish effective backbones to improve lesion
segmentation. [25] stacks four Patcher blocks with vision
transformer blocks as the core. [22] encodes input image
patches with multiple Swin transformer encoders [24] in

parallel with the traditional CNN-based backbone. Besides,
transformers are used for feature fusion out of the back-
bone. [38] combines multi-modality features with the assis-
tance of multiple transformer encoders and a single decoder
for MRI brain image segmentation. [36] fuses the patch-
and image-level features with three transformer encoders for
retinal vessel segmentation. [33] appends six transformer
encoder-decoders after the CNN backbone for lesion seg-
mentation. To achieve efficient and accurate segmentation,
we take the advantage of the multi-scale deformable trans-
former [44] and only use a single transformer encoder to
maximize inference speed.

3. Efficient Polyp Segmentation
3.1. W-Polyp Dataset

As stated in section 1, we create the first weakly anno-
tated dataset for polyp segmentation comprising of weakly
annotated and unlabeled images named W-Polyp. W-Polyp
is created by labeling the existing training data of [ 1] which
contains 1,450 images. We randomly selected and weakly
annotated 750 images with simple sketches, including lines,
scribbles and circles. Annotating an image in this way only
takes 2 seconds. Additionally, unlike other weakly annotated
datasets, the other 700 images are left unlabeled, maximizing
labeling efficiency and enlarging the sparsity of the whole
training data. Therefore, only around 1.9% of pixels are
labeled as foreground and background as shown in Figure 3.

0.00 0.02 0.04 0.06 0.08
Percentage of labeled pixels
Figure 3. The histogram of the number of images versus the per-
centage of labeled pixels.

3.2. Method
3.2.1 Overview of WS-DefSegNet

We propose the complete framework named WS-DefSegNet
for efficient polyp segmentation. Our framework consists
of two-training stages (Figure 4) and a network architecture
(Figure 5). The first training stage consists of a weakly-
supervised training regime leveraging weakly annotated im-
ages while the second stage consists of a semi-supervised
training regime leveraging both weakly annotated and un-
labeled images. Regarding our network architecture, we
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Figure 4. The training procedure of our WS-DefSegNet. We
first train the teacher network using a weakly-supervised paradigm
as explained in 3.2.3. We train the final student network using
a semi-supervised paradigm as explained in 3.2.4. GT denotes
the original ground truth map. Our WS-DefSegNet generates a
satisfying segmentation map compared to the GT'.

propose a novel module, DETN, that uses deformable trans-
formers for feature enhancement.

3.2.2 Problem Formulation

We define the set of all images in our W-Polyp dataset as
X. The subset of weakly-annotated images is defined as X
with their corresponding ground truth maps as Y; and the
subset of unlabeled data as X, where X; € X, X, € X
and X; N X,, = (. For every batch B, the labeled ground
truth including foreground and background information is
defined as B;, while Blf denotes only foreground annotations.
We denote our model My where 0 is the set of learnable
parameters. y; is the predicted segmentation map of the i-th
image z; € X, §; := My(z;). During the semi-supervised
training stage, we use a teacher and a student model. We
denote the teacher model as M and the student model as
M;.

3.2.3 Weakly-supervised Training

We define the partial cross-entropy loss utilized in [42] as
follows:

1
Lyl 90) = 151 > (wilogiji + (1—yi)log(1—4i)) (1)

Yy €By

where y; denotes the corresponding ground truth map with
weak sketch annotations. Note that for all of the loss func-

tions used in this work we average all per-pixel losses image-
wise but omit this information from the equations to simplify
our notation.

In order to mitigate the issue of false positives as de-
scribed in section 1, we propose a novel loss function that
utilizes only the foreground pixels to supervise the model
defined as:

Lynv!) = g 3 (o + (1 =y Yiog(1 — )
yleB/

2
where y;;f indicates a ground truth map with only foreground
annotations. Then the total loss for weakly-supervised learn-
ing can be defined as:

Lweak(gia yzay;f) = Lp(ymyl) +a- Lf(:gzu ylf) (3)

where « is the weight of the sparse foreground loss. It is
worth noting that o should be set appropriately. This is
because small o makes the predicted segmentation map ¥;
contain many false positives, while large « forces the model
to focus on the extremely sparse foreground pixels, leading to
more false negatives. In this paper, it is set to 0.5, for further
information please refer to the supplementary material.

3.2.4 Semi-supervised Training

Following [34], we adopt a teacher-student learning
paradigm and train the teacher model as described in 3.2.3.
Using the teacher model, M/ we assign pseudo-labels for
every x; € X defined as:

Ji = Mj(x:) )
In order to utilize the prior knowledge of the teacher

model, M}, for training the student model, M}, we utilize a
consistency loss for semi-supervised learning:

Le(97,97) = ﬁZI@f — 9] 5)
i€B

where {7 refers to the predicted map of the student model
such that g7 := M (x;). For weakly labeled data, the
model mainly depends on weakly-supervised learning, and
the pseudo labels ¢! can be treated as a regularization term in
semi-supervised training. In other words, for every batch B,
if there are labeled data in B, namely X; € B, the training
loss is dominated by the Ly,.q. Otherwise, the training loss
only depends on the weighted consistency loss L.. The total
loss for semi-supervised training is defined as follows:

h

semi (QS Yi yf) = { Lweak(gfv Yis yf) + 61 ) Lc(@:, gf)
semi\dq ) 62Lc(yfvyf)
(6)
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Figure 5. The network architecture of our WS-DefSegNet. It utilizes the proposed Deformable Transformer Encoder Neck (DTEN) to

enhance raw features produced by the last stage of the Res2net [

additional branch in the dashed box only exists in the training stage.

Notably, the hyper-parameters 5, and [ in equation 6
are set to 0.1 and 0.5 respectively in this paper. For further
information regarding (31 and S5 please refer to the supple-
mentary material. Thus, the model is able to refine the final
predicted map by considering the prior knowledge of the
first rough predicted map. The overall training procedure is
illustrated in Figure 4.

3.2.5 Deformable Transformer Encoder Neck

We propose the deformable transformer encoder neck used
after the Res2net [13] and before the segmentation head. A
detailed description of our network architecture is illustrated
in Figure 5. Its purpose is to fuse features adaptively across
multiple levels at learned locations so that the classification
of each pixel considers the surrounding features with learnt
weight. In this case, the attention to features inside the polyp
can help the classification of pixels at ambiguous locations
such as edges.

Deformable Transformer Encoder Neck (DTEN) The
structure of DTEN is illustrated in Figure 6. Multi-scale
feature maps m; (I = 1,2, 3) with resolutions H; x W, are
passed to a convolutional layer to have the same number of
channels and then are normalized to have an equal contribu-
tion. Then the feature maps are flattened and concatenated
to form the input feature m . The input feature along with
the pre-generated reference points and the embedding statis-
tics [44] are passed to the deformable encoder. The encoder
outputs multi-scale enhanced feature maps o; with resolu-
tions the same as m,;. For simplicity and sufficient details,
only o3 which contains the finest features is utilized in the
subsequent stacked Feature Add (FA) blocks.

Deformable Encoder The deformable encoder [44] en-
riches the input mainly by the deformable attention mecha-

]. Enhanced features are passed to a vanilla segmentation head. The

nism, as shown in Figure 7. It sums the selected features at
learned sampling locations across multi-scales with learned
attention weights. The detailed architecture of the encoder
can be found in the supplementary material. The output of
the encoder is then reshaped into the original resolutions,
forming the enhanced multi-scale feature maps o; as shown
in Figure 6 for subsequent progressive feature compensation.
A detailed explanation of the deformable encoder is in A.

m1 m2 m3 Ref points
J:M—l Embedding
v v v
cG cG CcG
mf i
[] mi
Deformable l
encoder
i B Bl Conv
N PReLU
02 <
03
M Feature add

Feature add
Feature add
Feature add

[

CG Conv + GroupNorm

v
Deformable Transformer
Encoder Neck (DTEN)

Figure 6. The detailed structure of the Deformable Transformer
Encoder Neck (DTEN) as described in 3.2.5.

Feature Add (FA) Block The purpose of the FA block is
to compensate the input feature map with enhanced features.
The structure of a FA block is shown in Figure 6. It takes the
enhanced feature map o and the original feature map m; as
inputs. The original feature map is embedded via a convolu-
tion layer and the PReLU. The enhanced map is interpolated
to the same resolution as the original feature map. Three FA
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Table 1. Ablation study with mDice and mIoU on five challenging datasets: ColorDB, ETIS, Kvasir, CVC-300 and ClinicDB. Upper part:
the network is trained through our weak annotations. {: denotes models trained using fully-supervised training through regular dense
annotations. The best results are in bold.

ColorDB ETIS Kvasir CVC-300 ClinicDB
Method mDice mloU mDice mloU mDice mloU mDice mloU mDice mloU
L, 0.327 0.263 0.218 0.168 0.555 0488 0.240 0.174 0479 0.448
Loyeak 0.539 0.503 0442 0415 0700 0.668 0.662 0.658 0.740 0.708
Luyear + Le 0.604 0.544 0501 0442 0730 0.677 0.729 0.678 0.771 0.718
Lyear + DTEN 0.609 0.538 0.541 0472 0.728 0.665 0.754 0.702 0.772  0.707
Lyear +DTEN+ L,  0.667 0.588 0.596 0.517 0.768 0.709 0.795 0.728 0.807 0.746
Backbonef 0.688 0.612 0.646 0.568 0.851 0.796 0.856 0.785 0.833 0.768
+DTENYt 0.723 0.640 0.664 0583 0862 0.805 0.861 0.805 0.854 0.791
Implementation Details Our model is implemented using
Deformable encoder Pytorch Toolbox [26] and trained on a GTX TITAN X GPU
mf Embedding with a mini-batch size of 4. We adopt a 0.0005 weight
ot @ Ref points decay for the Stochastic Gradient Descent (SGD) with a
oA ] momentum of 0.9. For fair comparisons, both training and
Dropout Input Query testing images are resized to 352 x 352, which is the same
j ey e Linvear as the previous polyp segmentation methods.
Softmax  Offsetf
value Wit Table 2. We substitute the edge loss in [42] with the proposed
LayerNorm S - sparse foreground loss and apply the same SOD training and testing
Linear ' peformable . . .
o | Attention (DA) settings as [42] on three SOD evaluation metrics, namely F-measure
* [1] (F), E-measure [ 10] (E) and mean absolute error (M).

Metric Edge Ly

Figure 7. The structure of a single encoder in deformable vision 9) F 0.862 0.854
transformers. The encoder enables the aggregation of useful fea- 4 E 0913 0.907
tures at learned locations with learnt significance across levels. 53 M 0.063  0.063
blocks are stacked to complement progressively the input .

P prog y e 1 4.2. Ablation Study

features with the enhanced features by element-wise addition

to output a more expressive feature map. We conduct extensive experiments to analyze the merits

of our proposed framework, WS-DefSegNet. Table 1 ablates
our framework and shows that each component, namely
Lyyeak, L, and DTEN, boosts the segmentation performance
compared to training only using L,, [32].

4. Experiments
4.1. Setup

Datasets and Evaluation Metrics We conduct experi-
ments on five widely used polyp datasets, namely CVC-

1 4.2.1 Sparse Foreground Loss
ColonDB [31], ETIS [30], Kvasir [17], CVC-T [35] and

CVC-ClinicDB [3]. Kvasir contains 1,000 polyp images and
CVC-ClinicDB contains 612 images from 31 colonoscopy
clips. The composited training images come from these two
datasets and the rest of them are used for testing. The other
three testing datasets are totally unseen with challenging sce-
narios. We follow [11,37] and employ two commonly used
metrics, namely mean Dice (mDice) and mean IoU (mloU),
to evaluate the model performance for polyp segmentation.

As discussed in section 1, training a model using only the
partial loss L,, causes a lot of false positives. Our proposed
sparse foreground loss Ly addresses this problem as it is
shown in Figure 2. Compared to Figure 2(c), Figure 2(d)
shows more accurate segmentation maps, which are more
similar to the ground truth with fewer false positives. The
benefit of our sparse foreground loss is also reflected in the
overall performance as shown in Table 1, providing gains

4360



Table 3. Comparisons with different semi-supervised learning methods on five challenging datasets. Leqk refers to using the model after

the weakly-supervised training without any semi-supervised training.

ColorDB ETIS Kvasir CVC-300 ClinicDB
Method
mDice mloU mDice mloU mDice mloU mDice mloU mDice mloU
Loeak 0.539 0503 0442 0415 0700 0668 0.662 0.658 0.740 0.708
L. 0.553 0508 0477 0.431 0.713 0.665 0.704 0.678 0.740 0.693
Lyeak + Le(unweighted) 0559 0513 0483 0439 0.716 0.668 0.702 0.667 0.748 0.701
Luyear + Le(weighted) 0.604 0.544 0.501 0442 0730 0.677 0.729 0.678 0.771 0.718

(a) (b) () (d) (e) ®

Figure 8. Difference between predictions of the two identical back-
bones with the same training settings and different semi-supervised
methods. (a) Ground truth. (b) Predicted segmentation map of the
first model. (c) Predicted segmentation map of the second model.
(d) Only pseudo labels for semi-training. (¢) Lsem: Without 3 for
semi-training. (f) Ours.

of up to 42.2% and 48.4% in terms of mDice and mIOU
respectively on CVC-300.

Additionally, in contrast to the previous work [42], which
uses edge information and an auxiliary network to refine the
segmentation maps, we do not use any extra information
and networks. We simply use our sparse foreground loss to
obtain more accurate segmentation maps and aid the model
to localize objects.

In order to further demonstrate the effectiveness of our
method, we conduct experiments on S-DUTS dataset [42]
and substitute the edge loss in weakly Salient Object Detec-
tion (SOD) [42] with our sparse foreground loss as shown
in Table 2. The results indicate that the proposed method
can be exploited on other weakly-supervised tasks and can
achieve similar performance.

4.2.2 Batch-wise Weighted Consistency Loss

We include the batch-wise weighted consistency loss L.
in the baseline L., in Table 1 for the semi-supervised
training. The experimental results show that this method
can increase the segmentation accuracy on both mDice and
mloU across all testing datasets. It can also be observed in
Figure 2(e) that L. eliminates the false positive pixels next
to the polyp, and also improves the predicted segmentation
maps compared with Figure 2(d).

Interestingly, the superiority of the batch-wise weighted
consistency loss can be seen in Table 3. Apparently, with-
out the aid of weights 31 and B3, Lycqk contributes minor
improvement compared to only training on pseudo labels dur-

ing semi-supervised training. Using the batch-wise weighted
consistency loss addresses the inconsistent issue caused by
weak supervision (Figure 8(b) and (c)) by taking full advan-
tage of the two predicted maps for semi-supervised training.
When compared to using only pseudo-labels or using L e
without weights 81 and s, it can be seen from Figure 8(d),
(e) and (f) our proposed solution provides a more accurate
segmentation map with refined boundaries.

4.2.3 DTEN

To investigate whether the proposed DTEN benefits polyp
segmentation, we compare the results with and without
DTEN under different training regimes as shown in Table
1. Regarding the weakly- and semi-supervised training part,
DTEN provides significant performance increase under all
metrics and on all datasets when compared to using only
our proposed loss functions. In the fully supervised training
section, applying DTEN on top of the Res2net also enhances
the performance. These results indicate the effectiveness of
the proposed structure and demonstrate the importance of
enhancing features for accurate segmentation.

4.3. Comparison with the state-of-the-arts

To further validate our proposed framework, we compare
it with other state-of-the-art methods, namely, U-Net [28],
U-Net++ [43], ResUNet++ [ 18], SFA [12], PraNet [1 1] and
CAL [37] on five challenging polyp testing datasets. We
directly report the results provided by each work. It should
be noted that we are the only ones using weakly annotated
images. Our results show that we can compete and even
surpass methods that were trained in a fully supervised way
as seen in Table 4. Also, we obtain competitive results
compared to [37] which is the only other method that uses
semi-supervised training. However, in contrast to our frame-
work, [37] uses pixel-wise annotated images while we only
use weakly-annotated images. Also, our method uses less
than half of the averaged labeled pixels that [37] uses.

It is also worth noting that other state-of-the-art methods
[12,18,28,37,43] may suffer from overfitting issues because
they only obtain high performance on Kvasir and ClinicDB.
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Table 4. Evaluation results of different methods on five datasets.*uses semi-supevised training. Ours: denotes our method that is trained
using weakly- and semi-supervised training.

ColorDB ETIS Kvasir CVC-300 ClinicDB
Method Average

Labeled Pixels mDice mloU mDice mloU mDice mloU mDice mloU mDice mloU
U-Net(MICCATI’15) [28] 13.4% 0.512 0444 0398 0335 0818 0.746 0.710 0.627 0.823 0.755
U-Net++(TMI’19) [43] 13.4% 0.483 0.410 0401 0344 0.821 0.743 0.707 0.624 0.794 0.729
ResUNet++(ISM’19) [ 18] 13.4% - - - - 0.813  0.793 - - 0.796  0.796
SFAMICCATI’'19) [12] 13.4% 0469 0347 0297 0217 0723 0.611 0467 0.329 0.700 0.607
PraNet(MICCAI'20) [11] 13.4% 0.709 0.640 0.628 0.567 0.898 0.840 0.871 0.797 0.899  0.849
CALICCV21)* [37] 4.0% - - - - 0.810 0.716 - - 0.893  0.826
Ours 1.9% 0.667 0.588 0.596 0.517 0.768 0.709 0.795 0.728 0.807 0.746

Table 5. Fine-tuning results with mDice and mIoU on five challenging datasets for different state-of-the-art approaches. t: denotes models
trained using fully supervised training through regular dense annotations. The best results are in bold.

Method ColorDB ETIS Kvasir CVC-300 ClinicDB
etho

mDice mloU mDice mloU mDice mloU mDice mloU mDice mloU
Poolnet(pretrained) [23] 0.159  0.103 0.086 0.057 0455 0361 0.135 0.084 0.240 0.171
Poolnety 0.439 0403 0330 0327 0774 0743 0543 0.528 0.629 0.622
Ours(Lyeak) 0.576 0508 0426 0383 0.743 0682 0722 0.649 0.763 0.701
Ours(Lyear; + Le) 0.583 0.508 0.459 0415 0.776 0.708 0.755 0.676 0.782 0.721
A2dele(pretrained) [27] 0.219  0.153 0.225 0.161 0470 0352 0.359 0.271 0287 0.195
A2delef 0450 0461 0378 0406 0.706 0.713 0.666 0.718 0.588 0.633
Ours(Lyeak) 0.487 0500 0413 0440 0.610 0605 0660 0.702 0.579 0.601
Ours(Loyear; + Le) 0.509 0.511 0449 0457 0.662 0645 0.695 0.728 0.623 0.636

Compared to them, ours achieves satisfactory performance
on all five testing datasets. The results in Table 4 demonstrate
the superior generalization ability of our framework.

4.4. Transfer Learning on Other Networks

In order to investigate the transferability of our method,
we leverage our framework to adapt other networks that
were trained on different tasks. First of all, we use two
pre-trained SOD detectors, the RGB-trained Poolnet [23]
and the RGB-D trained A2dele [27], and show that we can
fine-tune them successfully using our novel loss functions
Lyeqr and L. as shown in Table 5. The baseline results
show how each method performs without any adaptation.
Impressively, simply fine-tuning both A2dele and Poolnet
using our proposed loss functions outperforms fine-tuning in
a fully supervised way. These results highlight the transfer
learning ability of our framework and its potential to be
used for different networks. Similarly to Table 1, it can be
seen that each of our proposed loss functions provides a
significant performance increase.

5. Conclusion

In this paper, we propose a novel framework WS-
DefSegNet for weakly- and semi-supervised polyp segmenta-
tion. We create a weakly annotated polyp dataset (W-Polyp)
by simply drawing sketches. This annotating method pro-
vides an efficient way for physicians to avoid manual labour.

We propose a sparse foreground loss that suppresses false
positives. Furthermore, we propose a batch-wise weighted
consistency loss to exploit two inconsistent segmentation
maps caused by weak supervision during semi-supervised
training. Also, we design a deformable transformer encoder
neck (DTEN) as a way to enhance features before the seg-
mentation head further improving performance.

Extensive experiments are conducted on five challenging
datasets to demonstrate that each proposed component im-
proves the segmentation accuracy and that our framework
can even surpass the performance of some state-of-the-art
methods trained in a fully supervised way.
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