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Abstract

Printed circuit boards (PCBs) are essential components
of electronic devices, and ensuring their quality is crucial in
their production. However, the vast variety of components
and PCBs manufactured by different companies makes it
challenging to adapt to production lines with speed de-
mands. To address this challenge, we present a multi-view
object detection framework that offers a fast and precise so-
lution. We introduce a novel multi-view dataset with semi-
automatic ground-truth data, which results in significant la-
beling resource savings. Labeling PCB boards for object
detection is a challenging task due to the high density of
components and the small size of the objects, which makes
it difficult to identify and label them accurately. By training
an object detector model with multi-view data, we achieve
improved performance over single-view images. To further
enhance the accuracy, we develop a multi-view inference
method that aggregates results from different viewpoints.
Our experiments demonstrate a 15% improvement in mAP
for detecting components that range in size from 0.5 to 27.0
mm.

1. Introduction

Every electronic device, including personal computers,
televisions, or advanced industrial, transportation equip-
ment, has a printed circuit board (PCB). The PCB is ulti-
mately responsible for the functionality of the whole sys-
tem, so ensuring PCB quality in a timely and precise man-
ner is essential. In industrial environments, human-operated
and manual PCB analysis are inefficient, expensive, and
suffer from a high error rate and subjective accuracy. This
makes the automatic inspection of PCBs essential, which is
accomplished primarily through visual analysis.

Generally, PCB inspection can be carried out by using
different imaging modalities, i.e. gray-scale/RGB images
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[15,24], depth maps [5, 10], or infrared images [6, | 1]. Al-
though RGB data is challenging due to the variety of illumi-
nations, reflections, and colors of components among simi-
lar types, the images under visible light present rich data for
PCB analysis. Nevertheless, PCB design sets vary tremen-
dously based on their functionality, manufacturer, and com-
ponent variations and hence, more complexity exists in PCB
images compared to images in other common computer vi-
sion scenarios.

Referencing a PCB is a shallow approach for PCB in-
spection, in which the test image of the PCB must strictly
match the reference image of the same PCB. Alternatively,
in earlier works, indirect abstract information was derived
from PCB images, such as the number of objects [22], the
number of connected holes in the PCB [21], or solder joint
locations [16]. On the basis of classical image process-
ing techniques, [3] used the normalized cross correlation
template-matching and proposed a method for constraining
the genetic algorithm search space to reduce computational
calculations. Authors in [23] used color distribution pat-
terns for recognizing the components. Similarly, in [12], au-
thors proposed a color distribution-based segmentation for
resistors and integrated circuits (IC). Yet, all these referen-
tial techniques lead to PCB-specific solutions.

Typically, PCB inspection based on component place-
ment is the most reliable approach that can be exploited in
various PCB-related applications, including: 1) PCB fabri-
cation and assembly in PCB manufacturers, 2) Optimization
of PCB component placement, 3) Checking for malicious
inputs to the PCBs for security issues, 4) PCB recycling:
Recovering the reusable components and precious materials
and separating the toxic substances, and 5) Quality control
in PCB manufacturers or in electronics producers (before
PCBs are assembled into electronic devices), e.g. locating
the missing or misaligned components.

After computer vision witnessed its renaissance via deep
learning, different approaches emerged for automated PCB
inspection. A two-stage approach was proposed in [14]
that firstly extracted regions and then applied a classifica-
tion using a convolutional neural network (CNN). [13] in-
tegrated a geometric attention-guided mask branch into an
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object detector for IC detection. In [15], the capability of
classification on the component images of six classes was
explored. In [9], a multiple-stage approach is proposed in
which a class-agnostic region proposal network is followed
by a low-shot similarity prediction classifier and a graph-
based neural network to refine features, which showed poor
performance for small components. In these deep learning-
based solutions providing suitable and adequate images still
remains an open issue. Obtaining high-quality ground-truth
annotations is another level of challenge for deep learning-
based PCB analysis.

In this work, we address both image modality and image
analysis for PCB inspection and propose an approach that
processes the whole image in an end-to-end framework, tar-
geted to detect and identify the components of a PCB with
high accuracy. Evidently, the creation of a dataset for deep
learning-based PCB object detection is highly expensive
and time-consuming. Therefore, we develop a framework
for hardware-augmented multi-view training data genera-
tion that includes semi-automatic labeling, making the an-
notation process much smoother with consistent labels. Us-
ing this multi-view dataset, we gain a significant improve-
ment in the model performance. Moreover, a multi-view
inference module is formulated to accumulate the results
from different viewpoints and reach a consensus for more
accurate and reliable performance. Our framework can ef-
fectively inspect the PCBs with component dimensions as
small as 0.5 mm. In addition, the approach is applicable
to inspection of different PCB samples in open-ended and
outsourced PCB collections and does not rely on a specific
type or a reference sample. An overview of our model is
shown in Fig. 1.

2. Methodology
2.1. Hardware setup

To collect images, we used the 3rd generation K|Lens
(80 mm focal length) mounted on a 61 MP full-frame cam-
era (hr455CXGE, SVS-VISTEK) (Fig. 2a). K|Lens [1,4,7]
via its special technology records multi-view images and
these images can be used in its software to compute dispar-
ity maps. Multi-view images are formed in a 3 x 3 grid
of images, named kaleidoscopic image. The technology in-
volves refracting light rays from the main lens onto an inter-
mediate image plane via a mirror system. The rays are then
projected onto the sensor in a way that they are split into
nine separate images. This is similar to simultaneous shoot-
ing by nine cameras placed at very short distances from each
other. However, compared to a multi-array camera setup,
calibration and rectification are well-developed and stable
in K|Lens. This setup is also highly compact for capturing
multi-view images, which is particularly useful for tiny and
close-range objects, i.e. macro photography.

For a larger magnification, a close-up lens with 5 diop-
tres (MARUMI) was attached to the lens. The PCBs were
illuminated in a bright field setup with a flat top light (DTL
1010 WTS, MBJ) with white LEDs. The light source was
further enhanced with a polarization filter to reduce reflec-
tions from pins. The working distance was set to around
100 mm.

2.2. K|Lens PCB dataset

Our goal is not to limit the dataset to a specific man-
ufacturer’s PCBs or a particular PCB. This attitude intro-
duces wide variance in PCBs in terms of design, component
types, color, efc. It may be possible to generate datasets syn-
thetically. However, this approach requires CAD models, is
PCB-specific, and cannot represent real-world data distribu-
tion. Moreover, the manual labeling effort for these images
remains a challenge.

In this context, we create a PCB dataset with the follow-
ing data types: 1) High-resolution RGB images, 2) High
precision depth maps to the accuracy of about 70 um, and
3) Multi-view RGB samples (nine images) obtained in each
image shooting. We leverage the merit of having all these
data types in one shot to analyze PCBs using deep learning.

Five PCBs with different functionalities are used for im-
age collection. The lateral dimensions of the PCB compo-
nents vary from 0.5 x 1.0 to 27.0 x 27.0 mm?2. In each shot,
a region of about 38 x 56 mm? from the PCBs is recorded
in a scanning manner with an approximate overlap of 15 to
25 mm. Overall, a total of 262 kaleidoscopic images (3 x 3
grid multi-view) are captured (sample shown in Fig. 2b).

To extract the individual images, the software provided
by the K|Lens system mirrors, rectifies, and crops the view-
points (Fig. 2¢). Note that the individual images record the
scene from slightly different perspectives, from which the
center viewpoint presents the least distortion and is referred
to as single-view hereon. We also record the disparity maps,
which show the displacements of image content in a pair
of rectified images, namely the displacements between the
center-view image and every other viewpoint. A sample
disparity map from the center viewpoint (#5) to viewpoint
#6 is shown in Fig. 3.

Hence, the recorded kaleidoscopic image set yields the
data samples as 262 single images, 2358 multi-view images,
and 3144 disparity maps (Tab. 1). The disparity data for the
corner images (#1, #3, #7, #9) include the displacements
in two directions, i.e. in z- and y-axis, with respect to the
center viewpoint.

2.2.1 Semi-automatic labeling

Our setup takes advantage of the multi-view data recording
to capture 9x more data per image shot. This allows us to
increase the available images with no extra cost or effort. In
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Figure 1. Block diagram of the proposed component localization and identification using multi-view data. I; denotes the input images
from different viewpoints and I5 indicates the center viewpoint image. B; is the set of predicted results (bounding boxes) from the i-th
image. An object detector is applied on each viewpoint independently following a warping function on the results using disparity maps.
After aligning the results from the center viewpoint, the ensemble of predictions are aggregated together.

Figure 2. (a) Our hardware setup for PCB analysis; (b) Sample kaleidoscopic image (3 x 3 grid multi-view images); (c) Processed multi-
view kaleidoscopic image after mirroring and rectifying the individual images and cutting out the distorted regions. Note that the individual
images are piled up for the sake of comparison to the original kaleidoscopic image.

Single-view Multi-view (9x) Disparity maps modified.
262 2358 3144

Viewpoint #5 Disparity map from viewpoint #5 to viewpoint #6
. 4]
Table 1. K]|Lens PCB dataset collected from five PCBs using
multi-view imaging.
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our PCB analysis framework, we define a total of 11 classes

that need to be annotated on 2358 images. Obviously, with =
an increasing number of images and classes, and consid- I
ering the difficulty of recognizing PCB components, anno-

tation becomes increasingly complex and time-consuming. 0 H
Thus, we develop a semi-automatic labeling technique for 0
object detection to produce high-quality labeled data and

efficiently save time and resources, as follows:

- Active labeling for single-view (center-view) images: 1) =
A subset of center-view images (40%) are manually anno- Figure 3. Label Generalization: The disparity map from center
tated from scratch. 2) An object detector model is trained viewpoint #5 to viewpoint #6 is generated by the system software.
on these images. 3) The trained network is used for predict- Each bounding box in the viewpoint #5 is translated by the dispar-

ity map value in the center of the box. The translated labels align

ing the initial labels for the remaining center-view images.
well with viewpoint #6.

4) The initial labels on center-view images are checked and
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- Depth-based label generalization for multi-view im-
ages: With the help of disparity maps of the center view-
point to the other viewpoints, each annotated bounding box
in the center-view is translated in the proper direction along
x- and/or y-axis. The value of the translation for each box
is derived from the center of the bounding box in the dispar-
ity map. Therefore, in each kaleidoscopic image, the labels
of the center-view are generalized to the other eight view-
points using the corresponding disparity map. This means
that for each image, we obtain the annotations of eight other
images in a fully automatic manner. Namely, we define By,
as the set of bounding boxes in viewpoint image [,, with
v € {1,2,...,9} as the viewpoint index:

By, = {bl bk, . blv}. (1)

Here, n is the number of annotations (bounding boxes).
The i-th bounding box in image I, is formulated as bf“ =
L, L, I, , I, 3l I, , I, I, I,
(v, @;",y;",w;”, h;”), where (x;v,y;") and (w;", h;")
indicate the center coordinates and the width/height of the
bounding box, and c{” denotes the ground-truth class cate-
gory. We define a Forward Warping function from center-
view to viewpoint v, i.e. Is — I,,, in order to compute the

disparity-displaced bounding boxes:

I I, 1 I5—1, I I,
FWp, g, = {077,077, .07} (Q)

Is—1, Is I I Is oI
b2 7 = (%, x> —m,y;® — n,w;®, hy®), 3)

Rt !

m :max((),dﬁ—ﬂv(xilsvyils))? )

n =maz(0,d},_,;, (z2,yl%)).
Here, m and n indicate the amount of displacement in z
and y directions, computed from the corresponding dispar-
ity map from center-view image to viewpoint v, i.e. dﬁ oI,
and d}; _1,- This process is summarized in Fig. 3. It is
important to note that the disparity maps, which link im-
age contents from different perspectives, could make this
approach feasible. Finally, the generated labels are checked
to see if any components near the image borders are missed
or need modification in case they are invisible in the center
image. In this framework, by manually labeling only 105
images, we get the labels of 2253 other images automati-
cally.

After analyzing the experimented boards, 11 classes are
defined for their components: C (Capacitor), D (Diode), IC
(Integrated circuit), L (Inductor), R (Resistor), XTAL (Crys-
tals oscillator), LED (Light-emitting diode), Q (Transistor),
AL_C (Aluminum capacitor), RY (Relay), and FI (Filter).
An example of each component is shown in Fig. 4. Some
classes, such as transistors, diodes, and inductors, could
vary in appearance, shape, and text. Since aluminum ca-
pacitors are completely different from ceramic capacitors,

RY

Figure 4. Samples of 11 component types for localization and clas-
sification. The following abbreviations are used for these classes:
C (Capacitor), D (Diode), IC (Integrated circuit), L (Inductor),
R (Resistor), XTAL (Crystals oscillator), LED (Light-emitting
diode), Q (Transistor), AL_C (Aluminum capacitor), RY (Relay),
and FI (Filter).
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Figure 5. Number of instances in defined classes for single-view
and multi-view images. A logarithmic scale is used in the y-axis.

an explicit class is assigned for them to enhance the net-
work’s learning capabilities.

Figure 5 summarizes the statistics of various components
after the labeling process in both single-view and multi-
view images. C and R classes present more instances; oth-
ers, with lower numbers, can be almost 9x greater in multi-
view images. In Fig. 6, a sample component (aluminum
capacitor) from different perspectives in multi-view images
is illustrated.

2.3. Multi-view training

In order to identify components on PCBs, we use the
object detection task, which involves 2D localization (de-
fined by bounding boxes) and classification. To this end, we
utilize the state-of-the-art model, YOLOvV5 [8], which has
compound-scaled variants by introducing different numbers
of layers and filters into its baseline architecture. We exploit
the nano version since with only 1.9 million parameters,
it suits a fast-operational industrial system. Also, two im-
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Figure 6. An annotated aluminum capacitor from different per-
spectives in multi-view data. Bounding boxes of the eight sur-
rounding viewpoints are obtained via the proposed depth-based
label generalization process.

age dimensions, 640 and 1024 are considered for analysis.
As part of YOLOVS, functions such as random HSV color
space, left-right flipping, translation, and scaling are applied
for online unique mosaic augmentation. When it comes
to image augmentation, smaller models, e.g. YOLOV5n,
yield better results with less augmentation because overfit-
ting can be avoided. However, with our hardware-assisted
MYV dataset, we can increase the number of samples safely
with new real-world images.

2.4. Multi-view inference

This part introduces a novel approach for multi-view
object detection, beyond training with multi-view data.
Specifically, this technique applies in the inference phase
and requires multi-view test data with a linkage between
viewpoints spaces. The disparity map allows us to estab-
lish this connection.

To this end, we apply the trained model to each view-
point image independently (center-view and other eight
viewpoints), obtaining a total of nine object detection out-
puts. Probability scores and classification correctness can
differ depending on the viewpoint. We leverage the ensem-
ble of information from each viewpoint to reach a consensus
from multi-view data, as follows:

* Label warping: When the model is applied to nine
multi-view images, it generates an ensemble of boxes
that need to be warped and aligned into a single view.
To achieve this, we warp all bounding boxes to the
center-view images. The disparity maps allow us to
align the bounding boxes with the center-view. This is
the reverse of the process explained for semi-automatic
labeling in Sec. 2.2.1. Instead of generalizing labels
from the center-view to other viewpoints using dis-

parity maps, we warp the predicted labels from other
viewpoints to the center-view. Thus, we can define a
Backward Warping function similar to (2) that applies
to each of the eight viewpoints surrounding the center-
view.

* Bounding boxes fusion: Following the warping, each
object is accompanied by several predictions, which
should be merged for the final prediction. A method
such as Non-Maximum Suppression (NMS) [18] can
accomplish this by keeping only the bounding box
with the highest Jaccard similarity score. Due to the
strict suppression of other boxes by NMS, it is not
suitable for our use-case, as we intend to systemati-
cally combine information from different predictions.
A more advanced version of NMS is Non-Maximum
Weighted (NMW) [19], which is based on a weighted
averaging of boxes to predict the average box, rather
than the highest. In [20], authors proposed a similar
strategy to fuse the ensemble boxes called Weighted
Boxes Fusion (WBF) and proved that WBF outper-
forms NMW by using the confidence scores of the
predicated bounding boxes to construct average boxes
and comparing against the average box that is updated
at each step of the comparison.

o Intermixing the center-view coordinates: Since the
center-view coordinates are well-encompassing for
components near the image border, we intermix them
with the results from bounding boxes fusion. Namely,
the class category and confidence score come from
bounding boxes fusion, and the spatial coordinates
from the center-viewpoint boxes. This way, we define
the intermixing function as follows:

B nk ), (5)

ARt T A}

bb bof Iy 1
IM(bl f7 blIs) - (Ci f’ xisa yisaw
where b?bf , b{"’ represent the i-th bounding box from
bounding boxes fusion and center-view image, respec-
tively.

3. Experimental results and discussion

For training and validation, we conduct a k-fold cross-
validation manner to robustly validate the performance
measures. More precisely, we performed a 10-fold random
split on the center-view (single-view) images, which we call
the single-view (SV) dataset. After splitting the samples,
the remaining viewpoints sets are added to the correspond-
ing set (either the training set or the test set) to build the
multi-view dataset (MV). As a result, we prevent viewpoint-
related bias by assuring that all the viewpoints of a kaleido-
scopic shot belong to either the training or the validation
set.
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Figure 7. Qualitative performance using SV (Left) and MV (Right) models. The top row and bottom row respectively display the detection
results and the activation maps. MV model exhibits more activation than the SV model, which leads to obtaining more accurate predictions.

Evaluation metrics include precision, recall, mAP@0.5,
and mAP@0.5:0.95 averaged over 10-fold cross-validation.
mAP [2] is most effective metric for evaluating object de-
tectors.

- Multi-view training: Table 2 compares single-view
(center-view) training with multi-view training (9x more
training data) on two image sizes to demonstrate the per-
formance of multi-view training. Single-view (SV) training
is analogous to regular imaging without multi-view technol-
ogy which we consider as the baseline model. By training
the model with 9x more data, it safely achieves higher val-
ues in all metrics. This can be attributed to the enriched
information of objects and to the background information,
which is highly beneficial for object detection. Namely, the
increased number of instances for each component class in
the MV dataset is crucial in training a detection model, as
it provides more varied and diverse examples of the com-
ponents, enabling the model to learn more discriminative
features for accurate detection. MV model also provides
more robust results when images are downscaled. That is,
the drop in accuracy of MV due to image size reduction is
less than the case in SV model, which is beneficial for faster

predictions or in limited-resources edge devices.

Figure 7 shows a sample result of SV and MV mod-
els and the activation maps of the predictions. In order to
gain a better understanding of the model’s feature represen-
tation, we used EigenCAM [17] for displaying activation
maps. Activation maps are a visualization technique used
in deep learning to identify the most discriminative regions
of an image that contribute to a network’s behavior and its
decision-making process. Based on the regions highlighted
in the activation maps generated from the SV and MV mod-
els, it appears that MV model exhibits more activation than
the SV model. This suggests that the model with higher
activation may be more sensitive to certain image features,
which leads to obtaining higher accuracy.

- Multi-view inference: For each center-view image, the
other viewpoints are known for applying the MVI method.
More specifically, in MVI, we assume multi-view test data
is available; a model is trained on multi-view data; the
model is tested on all nine images for a test sample; and fi-
nally, the results are fused. In Tab. 2, we observe that multi-
view inference achieve superior performance over SV and
MV. In particular, using the advanced WBF, we can gain
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Image Size Model Precisionf Recallt mAP@0.5T mAP@0.5:0.951

SV (Baseline) 89.80 7870 85.19 73.29
4163640y 9429 9146  94.86 85.87
MVI 9444 9335  96.59 89.01
SV (Baseline) 94.58 79.12 87.46 77.41
6721024 1y 9479 9223 96.02 88.81
MVI 9555 93.64  97.17 91.04

Table 2. Comparison of PCB component detection performance
using single-view (SV), multi-view (MV) and multi-view infer-
ence (MVI) approaches, based on the average metrics using 10-
fold cross-validation.

Class 416x640 672x1024

SV MV  MVI SV MV  MVI
C 86.32 91.28 92.05 91.57 95.73 95.52
D 72.28 80.87 83.71 81.87 8546 88.98
IC 91.53 9622 97.41 94.03 96.54 97.27
L 81.87 8424 87.54 82.00 86.25 89.48
R 8747 9272 9343 92.00 95.59 95.36

XTAL 31.79 81.53 89.61 27.82 7477 86.01
LED 33.23 81.82 8544 59.08 89.43 90.50
Q 81.59 87.54 91.15 8592 9025 92.86
ALC 8751 9088 9235 89.07 9235 93.70
RY 66.48 6899 75.65 60.67 7449 76.10
FI 86.22 8837 90.80 87.59 96.15 95.68

Table 3. Performance evaluation of PCB component detection on
each component individually in terms of mAP@0.5:0.95 using 10-
fold cross-validation on center-view test data.

further 3.14 accuracy in terms of mAP@0.5:0.95 compared
to the vanilla MV model for image size 416x640.

Table 3 presents the average results for each component
individually in terms of mAP@0.5:0.95. The table validates
the increase in performance by MV and M VI in all the com-
ponent types. Notably, the improvement is especially sig-
nificant for components that are difficult to detect. For ex-
ample for XTAL and LED components in 672 x 1024 image
size, mAP@0.5:0.95 increases from 27.82% to 86.01% and
from 59.08% to 90.50%, respectively.

4. Conclusion

We presented a multi-view framework for analyzing
PCB components. Our method works end-to-end, rather
than extracting component regions first and then classify-
ing them. The performance improves when multi-view im-
ages are used instead of single-view images. Furthermore,
ensemble results of multi-view data are aggregated in the in-
ference phase. We also developed a semi-automated label-
ing process to save the effort of manual labeling and ensure
consistency of annotations for the object detection task.
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