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Abstract

Numerous studies have been conducted on detecting
cracks in images of roads, surfaces of concrete and other
materials, and so on. Accurate annotation of cracks is cru-
cial for supervised learning, but identifying cracks in im-
ages, particularly thin cracks, can be challenging, making
accurate annotation difficult. However, little is known about
how annotation errors in training data affect the accuracy
of detectors trained on them. This study attempts to address
this gap by synthesizing annotation errors and analyzing
their effects, which, to the authors’ knowledge, has not been
done before in the literature. This is made possible by em-
ploying an annotation method that labels cracks as curves
with a single-pixel width alongside appropriate training
and evaluation methods. We synthesized various types of
annotation errors, including under and over-annotation er-
rors caused by crack-like image structures and polyline ap-
proximation of crack curves, to reduce annotation costs.
The experimental results reveal several important findings,
such as that under-annotation is more harmful than over-
annotation and that polyline approximation has a modest
impact on detection accuracy.

1. Introduction
Detecting cracks emerging on the surface of an object

from its images is an important problem of computer vi-
sion, as it has a wide range of applications. The standard
approach employed in recent studies [22,46,50,51] is to for-
mulate it as a semantic segmentation problem and train deep
neural networks (DNNs) using a specific dataset created for
the problem; this approach is reported to produce satisfac-
tory results. Cracks can emerge on the surface of different
materials, such as metal, wood, concrete, etc. As their im-
age textures are diverse, it is necessary to create training
data for each target, which is usually done manually.

However, Annotating cracks is a task that can be prone
to errors. Even for human annotators, accurately identifying
thin cracks is not always straightforward. Depending on the
image acquisition quality, such as image resolution, sharp-

ness, motion blur, illumination condition, etc., annotators
often fail to correctly identify cracks, leading to annotation
errors. When these errors are present in the crack annota-
tions, they can serve as noisy labels for machine learning
models including DNNs. Nevertheless, researchers have
not paid much attention to how such annotation errors af-
fect crack detection performance.

In this paper, we investigate the impact of annotation
errors on crack detection by synthesizing these errors and
training DNN models using the data with the synthesized
errors. Subsequently, we test the models on test data with
error-free annotations. Currently, crack detection is formu-
lated as a binary segmentation task where the training data
is labeled with pixel-wise annotations of crack and non-
crack regions. However, modeling and synthesizing anno-
tation errors that occur in practice using this method can
be challenging. To address this, we use an alternative an-
notation method where only the center lines of cracks are
labeled, making it easier to model annotation errors. De-
spite the change in annotation method, existing DNN mod-
els developed for the segmentation formulation can still be
used when appropriate training and evaluation methods are
employed.

To analyze the behavior of the model in detail, we syn-
thesize three types of errors: feature-independent errors,
feature-dependent errors, and errors resulting from approx-
imating crack curves with polylines. Feature-dependent er-
rors are modeled using image blur to simulate the effect of
images captured from distant positions. Through experi-
ments, we investigate the impact of these errors and their
combinations on the accuracy of crack detection. Our find-
ings offer best practices for annotating cracks to achieve
more accurate detection. Notably, while our primary focus
was on identifying cracks on concrete surfaces of bridges,
the discussions and analyses presented in this paper can be
applied to cracks emerging on other objects and materials.
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2. Related Work

2.1. Crack Detection

The detection of cracks in images of roads, concrete sur-
faces, and other materials has been the subject of extensive
research. Early studies relied on image processing tech-
niques [18, 27], which required strong assumptions regard-
ing the appearance of cracks, thereby limiting detection ac-
curacy. Subsequent studies focused on developing learning-
based methods [29, 35], which improved accuracy. How-
ever, these methods still fall short of the accuracy needed
for practical applications.

Deep learning has significantly improved the perfor-
mance of crack detection, as it has for many other visual
recognition tasks. Several studies [7,8,20,32,39,41,48,51]
extract features from a patch and determine whether its
center pixel is crack or not. Some studies [33, 47] have
utilized transfer learning to classify pavement images into
cracks and sealed-cracks, while others [28] have proposed
a two-step approach that first segments the target area from
the input image and then detects cracks within that area.
Standard formulations of semantic segmentation, such as
fully convolutional networks, have been adopted in other
studies [4, 19]. Recent works following this approach in-
clude DeepCrack [22] and CrackFormer [21]. The accu-
racy of this approach largely depends on the availability
of good datasets with accurate annotations, such as Crack-
Tree260 [50], CrackLS315 [51], and Stone331 [16].

2.2. Dealing with Noisy Annotation

Training data for supervised learning of computer vision
tasks are usually created by human annotators. It is in-
evitable that the data contain erroneous annotation. Some
studies have focused on examining the impact of noisy
annotation on model performance on image classification.
One way to mitigate noisy annotation is by learning from
label noise, as explored by [9]. Theoretical studies [1,5,10]
have primarily assumed the presence of random classifica-
tion noise, where labels are subject to random errors. In
practice, a common approach is to identify potentially mis-
labeled examples [6] and then attempt to correct them. To
address noise annotation, several studies have dealt with
noisy annotations independently [23,37,43], employed loss
functions [11, 49], weighted training samples [24, 30], dis-
carded noisy samples [34], filtered out noisy samples [25],
and used co-teaching [12]. Other approaches include joint
optimization (i.e., inference) of network parameters, data
augmentation [26], and label correction [38]. Furthermore,
label noise has been studied from the perspective of analyz-
ing when deep neural networks generalize to unseen inputs
and when they memorize training samples [2, 45].

3. Methodology

3.1. Problem Formulation

3.1.1 Real-world Demands for Crack Detection

Previous studies formulate the problem of crack detection
as binary image segmentation. Then, a machine-learning
model performs binary classification on each image pixel,
i.e., whether each pixel is crack or not. To train the model, a
pixel-wise binary map with the same resolution as the input
image is provided. Most existing datasets of crack detection
provide such pixel-wise binary maps, created by pixel-wise
annotation.

However, while it is overlooked in the computer vision
community, real-world applications barely require predict-
ing crack regions in pixel-level accuracy. Reflecting the fact
that cracks have a linear structure (e.g., a curve or line seg-
ments) rather than a region, the first priority is being able to
predict the existence of cracks as curves, which may have
an at most few-pixel width. While it aligns with the formu-
lation as a segmentation task, the conventional region-based
annotation does not match the practical demands. It com-
plicates the annotation work, leading to an increase in cost
and errors. Hence, there is some gap between the practical
requirement and the standard problem formulation of crack
detection.

3.1.2 Curve-based Annotation

To address the gap mentioned earlier, we choose to anno-
tate cracks as independent curves. This decision is critical
to achieve the goal of this study, which is to analyze the im-
pact of erroneous annotation. Using curve-based annotation
allows us to create realistic annotation errors and analyze
their effects on crack detection.

Despite the differences in annotation methods, we treat
crack detection as a segmentation task, similar to existing
studies. To examine the impact of erroneous annotation on
detection performance, we use the current state-of-the-art
crack detection methods and standard semantic segmenta-
tion methods.

Although it may appear to conflict with the problem for-
mulation, curve-based annotation can provide excellent seg-
mentation supervision when appropriate training methods
are employed. For instance, we diffuse the ground-truth
crack labels to occupy specific areas of the image rather
than a single-pixel width. Additionally, we use appropri-
ate metrics for evaluation. This approach is similar to hu-
man pose estimation, where key points, such as human body
joints, are represented as single image points, and DNNs are
trained to predict their likelihood maps.
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3.1.3 Evaluation

Given the use of a new annotation method, standard pixel-
wise IoU metrics, as used in previous studies to evalu-
ate predicted crack "regions," are inadequate. The trained
DNNs output a two-dimensional map of crack likelihoods,
which, upon thresholding, yields a binary map consisting
of predicted crack regions rather than curves. In contrast,
the ground truth map represents cracks as one-pixel-width
curves representing their center.

To address this gap, we use a morphological operation.
Here, we need to classify all pixels in the predicted map as
true positive (TP), true negative (TN), false positive (FP),
or false negative (FN). To identify TPs and FPs, we dilate
the ground-truth crack labels using a small disk. Predicted
crack pixels inside the dilated region are counted as TPs,
while pixels outside are counted as FPs.

This evaluation method prevents the penalization of pre-
dicted crack pixels that do not align precisely with the true
crack. It also absorbs slight positional errors of predicted
cracks; they are totally allowable in practice, as mentioned
earlier. The radius of the dilating disk should desirably be
the smallest that achieves these effects, to make it possi-
ble to distinguish two isolated cracks that are close to each
other. (We set the radius to three pixels in our experiments.)
We use the original one-pixel-width label when counting
TNs and FNs.

3.1.4 Dataset

We employ the ThinCrack2019 dataset [40], a dataset
providing curve-based annotation in our experiments; we
also create additional annotation for our experiments; see
Sec. 4.1.1 for more details.

Following existing studies [21, 51], we split the images
in the dataset into smaller patches (512×512 pixels). From
all the patches, we select those containing at least a single
pixel with crack label and use only the selected patches to
train and test DNN models. For brevity, we call them posi-
tive patches and all the remaining patches negative patches.
So, we discard all the negative patches in experiments, simi-
larly to previous studies [21,51]. This procedure is essential
to address the severe class imbalance in the dataset, as only
a small fraction of pixels are labeled as positive (i.e., crack),
while the rest are labeled negative. This step is necessary to
perform model evaluation computationally efficiently. Al-
though models are required to classify all pixels belonging
to negative patches as non-crack, we can accurately evalu-
ate their ability using only positive patches, which mostly
consist of non-crack pixels.

3.2. Types of Annotation Errors

There are several different causes for annotation errors.
To investigate their impacts on detection accuracy, we clas-

sify possible annotation errors into three types: feature-
independent, feature-dependent, and polyline annotation er-
rors. We experimentally synthesize these types of errors and
train DNN models on the training data with the synthetic er-
rors. By testing the trained models on error-free test data,
we experimentally examine the impact of these errors.

Feature-independent annotation error. This is the type of
annotation errors that emerge purely randomly and are inde-
pendent of image brightness. To simulate this type of errors,
for a given crack label map, we eliminate some part of la-
beled cracks or add crack labels in a purely random fashion,
where we do not use a paired image. Thus, such errors are
easy to synthesize but may not represent real-world annota-
tion errors accurately.

Feature-dependent annotation error. This is the type of
errors that are caused by some image structures. That is,
they will occur either when annotators fail to label a crack
as crack because it does not look like a crack (e.g., too thin),
or they erroneously label a non-crack image structure as
crack because it looks like a crack, e.g., scratches, stains,
etc. Such errors will represent most real-world errors more
accurately.

Polyline annotation error. This type of errors occur when
annotators do not provide the precise trace of a crack in im-
ages; for instance, they annotate cracks only roughly. We
simulate such errors by approximate the track of a crack
with a polyline, i.e., connected line segments.

Independently of the above categorization of errors,
there is another property of annotation errors, which is
under- and over-annotation. One is over-annotation if non-
crack pixels are labeled as crack and the other is under-
annotation if crack pixels are labeled as non-crack. Errors
of the first two types, i.e., feature-independent and depen-
dent, each contain over- and under-annotation.

3.3. Synthesizing Feature-independent Errors

To analyze and evaluate their effects, we synthetically
generate feature-independent annotation errors in a ‘patch-
wise’ manner, as follows. As explained above, we split im-
ages into patches, whose size is 512× 512 pixel size. Each
of them is named positive if it contains a crack pixel and
negative if it contains no crack pixel.

We then create under-annotation errors by choosing
patches randomly from the positive patches and removing
all the crack labels from each of them; see Fig. 1(c). As
a result, these patches contain cracks and are nevertheless
treated negative patches. We create over-annotation errors
by choosing pairs of patches randomly from the positive
patches and copy-paste the crack labels in the first patch
to the second one; see Fig. 1(d). We keep the original crack
labels in both patches in each pair.
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(a) (b)

(c) (d)

Figure 1. Examples of input patches and feature-independent an-
notation errors. (a) Input patch. (b) Ground-truth annotation. (c)
Under-annotation error. (d) Over-annotation error.

3.4. Synthesizing Feature-dependent Errors

We define feature-dependent errors as annotation errors
that occur when either crack-like image structures are in-
correctly labeled as cracks (false positive), or actual cracks
are not identified as such (false negative). In this study,
we specifically focus on errors that arise from cracks with
widths too narrow to be discernible to the human eye. To
synthesize such errors, we intentionally blur the images,
using a combination of down-sampling and up-sampling
with identical factors. We choose this method as it offers
a simple yet effective simulation of image acquisition from
a greater distance than that of the original input image. Fur-
ther details are provided below.

Let I1× and y1× be an image patch and its correct label
map, respectively; see Fig. 2(a). We down-sample I1× by
the factor of 4 and then up-sample the down-sampled image
by the same factor using Lanczos interpolation. We denote
the resulting image by I4×, which has the same resolution
as I1×; see Fig. 2(b). Due to the series of down- and up-
sampling operation, I4× has blurry appearance compared
with I1×. We carefully annotate the crack pixels of I4×,
yielding its label map y4×. There is often fluctuation in
crack widths; thicker cracks survive the down-/up-sampling
operation, whereas thinner cracks do not. The down/up-
sampling make some parts of cracks seen in I1× disappear
in I4×. We apply similar down- and up-sampling operation
but by the factor of 8 to I1×, obtaining more blurry image
I8×, for which we carefully annotate its crack pixels to ob-
tain y8×

Finally, we choose I4× as an input and use y4× as its
correct crack annotation. We use y1× as over-annotation
and y8× as under-annotation.

(a) (b) (c)

Figure 2. Example of generated feature-dependent annotation er-
rors. (a) Original patch I1× and its manual annotation y1×. (b)
Blurred patch I4× by applying down-sampling and up-sampling
to I1× in turn, with the same factor of 4, along with its manual
annotation y4×. (c) Further blurred patch I8× with the down-/up-
sampling factor of 8 and its manual annotation y8×. We use I4×
as an input and y1×, y4×, and y8× as under-, correct, and over-
annotations for it, respectively.

3.5. Polyline Annotation

A polyline is defined as a collection of straight lines that
connect a series of ordered points. Using polylines to an-
notate cracks can reduce the cost of annotation compared
to precisely tracing their centers. Assuming that accurate
crack labels are provided, we generate polyline annotations
by approximating the original labels with polylines. To
achieve this, we use the Douglas-Peucker algorithm [14],
which has a threshold that allows us to adjust the level of ap-
proximation. This threshold controls the degree of “rough-
ness” of the polyline annotation. Examples of approximated
polylines are shown in Fig. 3. The compression rates are the
ratio of polyline points to the number of pixels in the origi-
nal crack labels.

4. Experiments

4.1. Experimental Configuration

4.1.1 Dataset

The goal is to investigate the effects of imperfect annota-
tion on crack detection using synthetic erroneous annota-
tion of several types described above. Then, we first need
data with a sufficiently accurate annotation of cracks. We
use the ThinCrack2019 dataset [40], which contains 352
images of concrete surfaces of various bridges captured
by hand-held cameras. Their sizes are in the range from
4, 000 × 3, 000 to 5, 000 × 4, 000 pixels, and each image
is annotated by a semi-automatic method with careful man-
ual supervision, which produces accurate crack labels. A
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(a) (b) (c)

(d) (e) (f)

Figure 3. Examples of polyline approximation with different pa-
rameters. (a) Original patch. (b) Ground-truth annotation. (c)
Polyline approximation with compress rate = 25%. (d) 5%. (d)
3%. (e) 1%. Best viewed on a PC monitor.

unique feature of this dataset is that cracks are annotated
with curves with one-pixel width that trace the center of
cracks, which matches the purpose of this study.

As explained above, we split each image into 512×512
pixel patches, yielding positive patches containing at least a
single pixel annotated as crack and negative patches with-
out crack pixel annotation. We have 2,341 and 479 positive
patches for training and testing, respectively.

We generate noisy annotation using the methods ex-
plained in Sec. 3.3 and Sec. 3.4. For each type of an-
notation errors, we synthesize errors with different error
rates R̃ ∈ {10%, 20%, · · · , 50%} in a patch-wise fashion.
Specifically, we randomly choose positive patches from the
training set with a probability R̃ and apply each error-
synthesis method to them, replacing the original patches
with the new ones. We then use the updated training set
to train DNN models. To obtain feature-dependent anno-
tation errors, we apply the smoothing by the combination
of down- and up-sampling with the factor of four and eight
pixels.

We then evaluate the detection accuracy of a DNN by
training it with the updated training sets with a different
type and level of annotation errors. For each experiment,
we iterate the procedure from the updating the training set
to training a model for three times, reporting the average
accuracy.

4.1.2 Evaluated Methods

To examine if different DNNs are affected differently by
annotation errors, we tested four models for crack detection.
Two are models for semantic segmentation and the other
two are the state-of-the-art methods for crack detection.

UNet [31] is a classical encoder-decoder CNN and is
employed as a baseline models in our experiments. We use
a variant of the standard UNet model [31] with 1/4 channels
in each convolutional layer and a BN layer after every con-
volutional layer, before activation. We confirmed through
preliminary experiments that this light-weight UNet works
even better than the original one despite its computational
efficiency.

HRNet-W18-C [42] is a lightweight version of HR-
NetV2 [36, 44] designed for semantic segmentation. These
are transformer-based networks proven to attain a good
trade-off between segmentation accuracy and computa-
tional cost.

DeepCrack [22] is a method developed for crack detec-
tion that uses a fully convolutional network (FCN). Aiming
at learning multi-scale and multi-level features, direct su-
pervision is applied to each stage in the hierarchy at train-
ing time. To improve detection accuracy, it applies guided
filtering [13] and conditional random fields (CRFs) [17] to
the network’s output.

CrackFormer [21] is a network designed for crack de-
tection and has a transformer-based encoder–decoder struc-
ture. The design is similar to SegNet [3], which proposes
a self-attention block and scaling-attention block for fine-
grained crack detection.

4.1.3 Training and Evaluation

We employ the same training procedure for all the methods
(i.e., DNNs) to equalize possible impacts of differences in
the procedure1. The crack labels are given as binary images
with the same sizes as input images. Cracks have the shape
of curves with one-pixel width in the maps. We apply Gaus-
sian blur with the sigma = 3 pixels to the map to spatially
smooth the labels. We use the mean squared error (MSE)
loss for all experiments, i.e., the average of the squared dif-
ference between the ground-truth value and its prediction,
both in the range [0, 1], at pixels, as we confirmed this works
better than a cross-entropy loss in our preliminary experi-
ments. We apply data augmentation of random 360-degree
rotation and random flipping to the training patches. Specif-
ically, we train each model for 80 epochs using the Adam
optimizer [15]; We set the initial learning rate to 10−3, and
drop it to 10−4 after 30 epochs, then further drop it to 10−5

after 50 epochs. Due to the limitation of memory size, mini-
batch size is set to 16 for UNet, 8 for CrackFormer, and 4
for HRNet and DeepCrack, respectively.

To evalute the methods’ performance, we utilize the
method described in Sec. 3.1.3. Initially, we applied a

1This means the procedure partially differs from that employed in the
original paper of each method, leading to possibly worse performance than
reported in the paper. However, it is not so important here since our pri-
mary objective is to measure the impact of annotation errors on each indi-
vidual method.

4418



0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Epoch

F
1-
sc
or
e

(a) Under-annotation

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Epoch

F
1-
sc
o
re

0

10

20

30

40

50

(b) Over-annotation

Figure 4. Crack detection accuracy vs. training epochs for
feature-independent annotation errors. UNet is trained on data
containing feature-independent under-/over-annotation errors with
different rates R̃ = 0, . . . , 50[%] and evaluated on error-free test
data.

threshold of 0.5 to the predicted map generated by each
method, which contained pixel-wise probabilities of cracks.
This converts it into a binary map. To calculate true posi-
tives (TPs) and false positives (FPs) of the predicted cracks,
we dilated the ground truth crack labels using a small disk.
We set the radius of dilation to three pixels, taking into
account the minimum distance between two independent
cracks. The primary metric used was the F1-score.

4.2. Effects of Feature-independent Errors

We first evaluate how feature-independent annotation er-
rors affect detection accuracy. After training the UNet
model on the training data with synthetic errors, we eval-
uate its performance on error-free images from the test set.

Figure 4 shows the results, i.e., how F1-score changes
with training epochs for different levels of errors ranging
from R̃ = 0% (error-free) to 50%. It is observed that the

Table 1. F1-scores on error-free test images of different DNN
models trained with training data having different levels of anno-
tation errors.

Error
level

Clean Under-annotation
0 10 20 30 40

HRNet 0.950 0.937 0.921 0.894 0.859
CrackFormer 0.929 0.914 0.894 0.861 0.817
DeepCrack 0.903 0.885 0.859 0.821 0.762

UNet 0.882 0.861 0.830 0.786 0.710
Error
level

Clean Over-annotation
0 10 20 30 40

HRNet 0.950 0.943 0.932 0.915 0.884
CrackFormer 0.929 0.921 0.907 0.885 0.846
DeepCrack 0.903 0.891 0.872 0.841 0.789

UNet 0.882 0.867 0.843 0.804 0.742

detection performance deteriorates with increasing levels of
errors, but the impact is modest and tolerable with low er-
ror levels. Comparing under- and over-annotation errors,
we can state that the impact is smaller for over-annotation;
the impact of 30% error for over-annotation (Fig. 4(b)) is
mostly the same as that of 20% error for under-annotation
(Fig. 4(a)).

We also report the F1-scores of compared models in Ta-
ble 1. Several observations can be made. Firstly, HR-
Net achieves relatively better performance than other mod-
els. Specifically, when training with errror-free labels, HR-
Net achieves 0.950, whereas CrackFormer, DeepCrack, and
UNet yield lower scores by 2.2%, 4.9%, and 7.2%, respec-
tively. Secondly, better models seem more robust to annota-
tion errors. For instance, 40% under-annotation errors result
in 9.6%, 12.1%, 15.6%, and 19.5% decreases of F1-score
for HRNet, CrackFromer, DeepCrack, and UNet, respec-
tively, compared to the error-free cases. Additionally, 40%
over-annotation errors result in 6.9%, 8.9%, 12.6%, and
15.8% decreases for HRNet, CrackFromer, DeepCrack, and
UNet, respectively, compared to the error-free cases. Fi-
nally, the aforementioned tendency that over-annotation has
smaller impact on detection accuracy than under-annotation
hold for these models as well.

4.3. Effects of Feature-dependent Errors

We then examine how feature-dependent annotation er-
rors affect detection accuracy. Similar to the above, we train
models usimg training data with synthetic errors and test
them on error-free test data.

Figure 5 shows the results. It is first observed that
under-annotation has a greater negative impact than over-
annotation. This is consistent with the feature-independent
case, but the difference is more pronounced. For instance,
if there are 20% under-annotation errors, their impact is
similar to that of 40% over-annotation errors. Table 2
shows the results of the four compared methods. Our
above observation holds true for the other three models as
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Figure 5. Crack detection accuracy vs. training epochs for
feature-dependent annotation erorrs. UNet is trained on data con-
taining feature-dependent under-/over-annotation errors with dif-
ferent rates R̃ = 0, . . . , 50[%] and evaluated on error-free test
data.

well. Specifically, when compared to error-free cases, 40%
under-annotation errors lead to a considerable reduction in
F1-scores for HRNet, CrackFormer, DeepCrack, and UNet,
with a reduction of 17.3%, 21.5%, 29.5%, and 36.2%, re-
spectively. In contrast, 40% over-annotation errors only re-
sult in a minor decrease of 3.9%, 5.1%, 7.3%, and 9.0%,
respectively.

When comparing models, the same observations as those
made for feature-independent errors can be made. Specifi-
cally, models that demonstrate higher accuracy with error-
free training data exhibit better robustness with the increase
in annotation errors. For instance, in our experimental set-
ting, HRNet trained with 40% over-annotation data outper-
forms DeepCrack trained with error-free data.

Table 2. F1-scores achieved by diverse DNN models trained with
various types of feature-dependent noisy labels under different er-
ror levels

.
Error
level

Clean Under-annotation
0 10 20 30 40

HRNet 0.950 0.935 0.889 0.848 0.785
CrackFormer 0.929 0.911 0.884 0.832 0.729
DeepCrack 0.903 0.879 0.843 0.764 0.637

UNet 0.882 0.854 0.811 0.713 0.563
Error
level

Clean Over-annotation
0 10 20 30 40

HRNet 0.950 0.948 0.943 0.931 0.914
CrackFormer 0.929 0.924 0.916 0.901 0.882
DeepCrack 0.903 0.897 0.886 0.864 0.837

UNet 0.882 0.875 0.862 0.836 0.803

4.4. Effects of Mix of Under- and Over-annotation

So far, we have only considered input images with ei-
ther under-annotation or over-annotation errors. However,
in practical scenarios, an image will have both types of
errors. Therefore, we investigate the impact of mixed er-
rors involving under- and over-annotation. We maintain a
fixed total error level R̃ of 30% or 40%, and vary the ra-
tio of under- and over-annotation errors, such as under/over
30/0, 20/10, 15/15, 10/20, and 0/30. We evaluate the
performance of our baseline UNet separately for feature-
dependent and feature-independent error types.

Tables 3 and 4 present the results of feature-dependent
and feature-independent errors, respectively, at total er-
ror levels of 30% and 40%. Several observations can be
drawn from these results. Firstly, in the case of feature-
independent errors, the ratio of under- and over-annotation
has no significant impact on detection accuracy, while the
total error level is the main factor. However, in the case
of feature-dependent errors, the ratio of under- and over-
annotation has a significant impact. Combining both types
of errors leads to better performance than using only one
type. For example, at a total error level of 30%, the ratio
10/20 achieves better performance (0.854) than 0/30 (0.836)
and significantly outperforms 30/0 (0.713). This finding
suggests that a combination of under- and over-annotation
errors is likely to improve accuracy, which is good news as it
is more common to encounter a mixture of the two types of
errors rather than just one type. Additionally, it is crucial for
annotators to ensure that under-annotation errors occur less
frequently than over-annotation errors, which aligns with
the aforementioned observation.

4.5. Effects of Polyline Annotation

We synthesized polyline annotations using the method
described in Sec. 3.5, and subsequently trained four DNN
models using the synthesized training data. Figure 6 shows
the F1-score of the UNet model trained on the polyline data
with different compression rates and then tested on error-
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Table 3. F1-scores of the UNet model trained with data having dif-
ferent ratios of under- and over-annotation errors, R̃u/R̃o, whose
total error level is 30%.

Combination(R̃u/R̃o) 30/0 20/10 15/15 10/20 0/30
Independent 0.786 0.793 0.797 0.800 0.804
Dependent 0.713 0.786 0.842 0.854 0.836

Table 4. F1-scores of the UNet model trained with data having dif-
ferent ratios of under- and over-annotation errors, R̃u/R̃o, whose
total error level is 40%.

Combination(Ru/Ro) 40/0 30/10 20/20 10/30 0/40
Independent 0.710 0.721 0.728 0.734 0.742
Dependent 0.563 0.759 0.810 0.829 0.803
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(a) Polyline annotation (Douglas-Peucker).

Figure 6. Crack detection accuracy vs. training epochs for poly-
line annotation. UNet is trained on data annotated as polylines
with different compression rates, 1, . . . , 100[%], and evaluated on
error-free test data.

free test data. A compression rate is the ratio of polyline
points to the number of pixels in the original crack labels.
We varied the parameter in the Douglas-Peucker algorithm
to change the rate in the range from 1% to 100%. Table 5
reports the F1-scores of all four models.

It is observed from the results that the accuracy of the
models decreases proportionally to the compression rate;
their ranking remains unchanged regardless of the compres-
sion rate. It should be noted that even at a compression rate
of 25%, all the models show only a modest decrease in ac-
curacy. This indicates that annotating cracks with polylines
is an effective way to reduce annotation cost while main-
taining the accuracy of the models’ crack detection.

5. Summary and Conclusions
In this study, we have considered the accuracy of deep

learning methods for detecting cracks in images of vari-
ous objects/materials. The accuracy of supervised learning

Table 5. F1-scores achieved by the four methods trained on poly-
line annotation with different compression rates.

Comp. rate(%) HRNet CrackFormer DeepCrack UNet
100 0.950 0.929 0.903 0.882
75 0.944 0.925 0.898 0.878
50 0.938 0.919 0.892 0.875
25 0.931 0.912 0.884 0.868
10 0.920 0.903 0.877 0.860
5 0.908 0.895 0.868 0.849
3 0.897 0.883 0.854 0.831
1 0.883 0.872 0.826 0.792

methods largely depends on the quality of the training data.
However, annotating cracks accurately, especially thin ones,
can be challenging, leading to some degree of annotation er-
rors. The potential impact of these errors on training data is
not well understood.

To gain a better understanding, we synthesized annota-
tion errors and assessed the impact of these errors on the
accuracy of deep neural networks trained on the data. Crack
detection is currently formulated as a binary segmentation
task, with the training data labeled in pixel-wise labels of
crack/non-crack. However, modeling and synthesizing an-
notation errors that occur in practice using this annotation
method can be challenging. Therefore, we used an alterna-
tive annotation method where only the center lines of cracks
were labeled, making it easier to model annotation errors.

We assessed three types of errors that affect crack
detection accuracy: feature-independent errors, feature-
dependent errors, and errors resulting from approximating
crack curves with polylines. To model feature-dependent
errors, we simulated the effect of image blur, which can oc-
cur when images are captured from a distance. Our exper-
iments aimed to investigate how these errors, individually
and in combination, impact the accuracy of crack detection.

Our findings from the experiments can be summarized
as follows. Firstly, we found that under-annotation has a
more significant negative impact than over-annotation, re-
gardless of feature-dependent or feature-independent errors,
as well as differences in DNN models. This implies that
when annotating cracks, it is crucial for annotators to en-
sure that there are fewer under-annotation errors than over-
annotation errors. Secondly, a combination of under- and
over-annotation errors tend to improve accuracy. Specifi-
cally, for the same amount of error, the accuracy of the re-
sult is better when both types of errors are present rather
than just one. Thirdly, models that demonstrate higher ac-
curacy are also more robust to annotation errors. Finally, we
found that polyline annotation is an effective way to reduce
annotation costs while maintaining model detection accu-
racy.
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