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Abstract

Data augmentation is a promising technique for un-
supervised anomaly detection in industrial applications,
where the availability of positive samples is often limited
due to factors such as commercial competition and sample
collection difficulties. In this paper, how to effectively se-
lect and apply data augmentation methods for unsupervised
anomaly detection is studied. The impact of various data
augmentation methods on different anomaly detection algo-
rithms is systematically investigated through experiments.
The experimental results show that the performance of dif-
ferent industrial image anomaly detection (termed as IAD)
algorithms is not significantly affected by the specific data
augmentation method employed and that combining multi-
ple data augmentation methods does not necessarily yield
further improvements in the accuracy of anomaly detection,
although it can achieve excellent results on specific meth-
ods. These findings provide useful guidance on selecting ap-
propriate data augmentation methods for different require-
ments in IAD.

1. Introduction
Industrial Image Anomaly Detection (IAD) is a chal-

lenging task that aims to identify defects or abnormalities in
industrial images. Unlike natural images, industrial images
have high similarity among normal samples, which makes
it easy to model their distribution. However, the number
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2Corresponding authors.

and variety of anomalies are very low and unpredictable,
which makes it hard to collect enough labeled data for su-
pervised learning. Therefore, IAD requires unsupervised
or weakly supervised methods that can learn from normal
samples only and detect anomalies based on their deviation
from the normal distribution.

There are two main types of anomaly detection, feature
embedding-based methods [2–4, 7, 8, 12, 15, 18–20, 26, 27,
30,31], and reconstruction-based methods [5,11,21,32–34].
Feature embedding-based methods use pre-trained models
to extract high-level features from industrial images. And
then clustering or density estimation techniques are applied
to measure the distance or probability of each image feature
from the normal cluster or distribution. Images with large
distances or low probability are considered to be anoma-
lies. Reconstruction-based methods use generative models,
such as variational autoencoders or generative adversarial
networks, to learn a mapping function from industrial im-
ages to a latent space and vice versa. Then they reconstruct
each image from its latent representation and compute the
reconstruction error between the original and reconstructed
images. Images with large reconstruction errors are consid-
ered to be anomalies.

Few-shot IAD is an emerging research topic [9,17,18,23]
that aims to detect defects in industrial images with only a
few normal samples. This scenario is common in real-world
industrial applications, where collecting a large number of
normal samples may be impractical or costly. For instance,
in the debugging phase of a production line, only a few
normal samples can be produced before the yield reaches a
satisfactory level. Moreover, some industrial domains may
face commercial competition or privacy issues that prevent
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them from sharing large amounts of training data.
Data augmentation methods have been used in unsuper-

vised few-shot anomaly detection [9, 18, 22, 23] to increase
the diversity and robustness of normal samples. However,
there is a lack of systematic and comprehensive analysis
of how different data augmentation methods affect the per-
formance of IAD algorithms. Previous works have used
various data augmentation methods with different settings,
but without providing in-depth and detailed explanations or
comparisons. For example, MAEDAY [22] only uses rota-
tion, while [23] aggressively uses multiple augmentations.
Only RegAD [9] is one of the few works that has stud-
ied the impact of data augmentation methods on few-shot
anomaly detection in more detail, using four data augmen-
tation methods on two IAD datasets. In this paper, we con-
duct a thorough and extensive study of the role of data aug-
mentation methods. We apply 6 separate data augments to
3 IAD datasets and test them on 11 IAD algorithms. For
the number of training images, we choose 1, 2, 4, and 8 re-
spectively. In total, we conduct thousands of experiments
and systematically summarize a large number of meaning-
ful conclusions. The results of our experiments show that
there is no single data augmentation method that can con-
sistently improve the performance of all unsupervised IAD
algorithms. However, we subdivide the 11 IAD methods
into multiple classes, and the analysis shows that data aug-
mentation methods tend to have similar effects on similar
IAD algorithms. In addition, we explore the effects of com-
bining different data augmentations to increase the diversity
and complexity of the training data, and the experimental
results show that the benefits of mixed data augmentation
depend heavily on the IAD method. For most methods, we
do not observe significant improvements from using multi-
ple data augmentations. However, in some cases, we find
that mixed data augmentation can boost accuracy remark-
ably. The main contribution of this work can be summarized
as follows:

• We examine 6 data augmentation methods, and 11
image anomaly detection methods on 3 benchmark
datasets, resulting in a total of 6,688 instances. In ad-
dition, we present a plug-and-play and modular imple-
mentation for data augmentation of few-shot IAD eval-
uation, which greatly benefits the future development
of few-shot IAD evaluation.

• Our research highlights that the optimal choice of
data augmentation method is dependent on the specific
methodology employed. Interestingly, we find that
comparable IAD algorithms generally respond simi-
larly to various data augmentation methods.

• Our findings indicate that the effectiveness of combin-
ing multiple data augmentation methods substantially

depends on the specific IAD method employed. Addi-
tionally, we identify the IAD methods that are compat-
ible with mixed data augmentation.

2. Related Works
2.1. Unsupervised IAD

There are many kinds of anomaly detection methods, and
they can be divided into two main types, embedding-based
[2,3,18] and reconstruction-based [28,32]. The embedding-
based methods are further divided into four classes, i.e.,
Normalizing Flow [18], Teacher-Student [2], One-Class
Classification [24] and Memory Bank [3]. Next, they will
be presented in detail.

2.1.1 Normalizing Flow (NF)

Normalizing Flows is a generative model that can pro-
duce easy-to-handle distributions, where sampling and den-
sity assessment can be efficient and accurate [18]. CS-
Flow [19] used the feature block x to input the flow model
to fit the distribution z of the product of Gaussian distribu-
tion and Dirac distribution. The network is updated by the
likelihood probability method of this distribution, and the
evaluation index is made. FastFlow [31] is implemented by
two-dimensional normalized flow and used as a probabil-
ity distribution estimator, which effectively mapped image
features to easily processed base distributions and pays at-
tention to the relationship between local and global features.
However, the features of normal images in industrial manu-
facturing may not conform to the Gaussian distribution.

2.1.2 Teacher-Student

It is a kind of transfer learning. That is to say, the per-
formance of one model is transferred to another model. The
teacher network is a complex network with very good per-
formance and generalization ability. This network can be
used to guide the student network to learn so that a simpler
student model with less parameter computation can also
have similar performance to the teacher network, which is
also a way of model compression. STPM [26] is multiplied
by three different resolutions of the anomaly map to detect
the anomalies. RD4AD [6] proposed a reverse knowledge
distillation scheme. It took the teacher as encoder, and the
student as decoder, and added a one-class bottleneck em-
bedding module between them. But, These methods rely
too much on the teacher network, which may weaken the
generalization ability.

2.1.3 One-Class Classification (OCC)

Since we only need to distinguish between abnormal and
normal, we can turn the problem into OCC. CutPaste [14]

4346



Figure 1. The overall framework of data augmentation for few-shot IAD. In training phase, the normal image and its augmented images
are fed into IAD model for training. In inference phase, the test image are classified as anomalies if at least one patch is anomalous and the
pixel-level anomaly segmentation is generated by the prediction result of IAD model.

Shot Methods Vanilla Rotation Flip Scale Translate ColorJitter Perspective
CFA 0.934 0.933 0.93 0.905 0.902 0.937 0.927

CSFlow 0.678 0.763 0.737 0.679 0.72 0.735 0.615
CutPaste 0.762 0.893 0.869 0.611 0.808 0.831 0.861
DRAEM 0.665 0.648 0.707 0.574 0.672 0.687 0.759
FastFlow 0.5 0.868 0.74 0.797 0.782 0.787 0.754
FAVAE 0.713 0.712 0.776 0.662 0.583 0.605 0.716
PaDiM 0.781 0.879 0.878 0.853 0.8 0.811 0.849

PatchCore 0.906 0.927 0.914 0.92 0.913 0.91 0.904
RD4AD 0.844 0.913 0.918 0.879 0.908 0.887 0.886
SPADE - - - - - - -

1

STPM 0.876 0.89 0.915 0.912 0.888 0.92 0.908
CFA 0.928 0.936 0.932 0.916 0.919 0.925 0.928

CSFlow 0.8 0.878 0.76 0.884 0.853 0.833 0.724
CutPaste 0.718 0.855 0.89 0.883 0.582 0.782 0.604
DRAEM 0.619 0.752 0.772 0.724 0.532 0.749 0.779
FastFlow 0.644 0.887 0.811 0.844 0.88 0.829 0.751
FAVAE 0.796 0.798 0.842 0.636 0.66 0.65 0.589
PaDiM 0.875 0.903 0.907 0.878 0.886 0.881 0.878

PatchCore 0.911 0.913 0.91 0.909 0.916 0.895 0.92
RD4AD 0.885 0.919 0.91 0.911 0.916 0.914 0.919
SPADE - 0.882 0.887 0.872 0.872 0.831 0.884

2

STPM 0.907 0.92 0.926 0.924 0.923 0.934 0.923
CFA 0.924 0.925 0.926 0.885 0.917 0.92 0.909

CSFlow 0.742 0.814 0.745 0.89 0.756 0.78 0.665
CutPaste 0.778 0.896 0.891 0.775 0.81 0.753 0.608
DRAEM 0.684 0.857 0.667 0.714 0.632 0.7 0.753
FastFlow 0.8 0.815 0.764 0.824 0.826 0.772 0.749
FAVAE 0.85 0.714 0.72 0.712 0.711 0.513 0.748
PaDiM 0.904 0.914 0.923 0.911 0.918 0.907 0.912

PatchCore 0.921 0.919 0.919 0.924 0.919 0.907 0.904
RD4AD 0.91 0.922 0.927 0.925 0.908 0.911 0.925
SPADE - 0.871 0.87 0.873 0.871 0.84 0.869

4

STPM 0.924 0.907 0.927 0.923 0.923 0.932 0.914
CFA 0.932 0.937 0.924 0.886 0.925 0.923 0.923

CSFlow 0.892 0.884 0.895 0.924 0.932 0.943 0.877
CutPaste 0.876 0.883 0.904 0.835 0.864 0.705 0.755
DRAEM 0.788 0.859 0.816 0.812 0.761 0.749 0.71
FastFlow 0.895 0.882 0.869 0.885 0.86 0.789 0.896
FAVAE 0.701 0.819 0.813 0.644 0.606 0.688 0.756
PaDiM 0.927 0.936 0.936 0.926 0.939 0.924 0.931

PatchCore 0.917 0.924 0.923 0.907 0.912 0.904 0.92
RD4AD 0.921 0.935 0.93 0.932 0.924 0.924 0.931
SPADE 0.893 0.896 0.9 0.893 0.895 0.867 0.899

8

STPM 0.94 0.897 0.934 0.923 0.912 0.928 0.919

Table 1(a). Image-level AUC-ROC on BTAD. The red one is the
best augmentation for the IAD method, and the blue is the second
best one.

Shot Methods Vanilla Rotation Flip Scale Translate ColorJitter Perspective
CFA 0.811 0.829 0.811 0.788 0.802 0.814 0.806

CSFlow 0.708 0.727 0.708 0.742 0.75 0.7 0.713
CutPaste 0.65 0.701 0.702 0.68 0.679 0.652 0.703
DRAEM 0.683 0.718 0.715 0.714 0.69 0.687 0.741
FastFlow 0.527 0.618 0.613 0.694 0.682 0.578 0.6
FAVAE 0.651 0.56 0.591 0.6 0.581 0.588 0.626
PaDiM 0.684 0.697 0.683 0.669 0.683 0.681 0.674

PatchCore 0.788 0.805 0.792 0.788 0.8 0.797 0.789
RD4AD 0.77 0.805 0.802 0.799 0.823 0.816 0.784
SPADE - - - - - - -

1

STPM 0.799 0.841 0.814 0.823 0.843 0.831 0.84
CFA 0.839 0.86 0.853 0.795 0.825 0.833 0.843

CSFlow 0.745 0.781 0.773 0.783 0.768 0.754 0.778
CutPaste 0.697 0.709 0.748 0.659 0.659 0.611 0.726
DRAEM 0.78 0.765 0.774 0.751 0.771 0.773 0.784
FastFlow 0.555 0.743 0.674 0.753 0.731 0.628 0.617
FAVAE 0.667 0.648 0.659 0.595 0.62 0.642 0.631
PaDiM 0.708 0.734 0.731 0.694 0.716 0.71 0.714

PatchCore 0.795 0.831 0.805 0.796 0.806 0.793 0.802
RD4AD 0.798 0.832 0.816 0.835 0.817 0.835 0.82
SPADE - 0.737 0.731 0.71 0.734 0.733 0.744

2

STPM 0.84 0.839 0.85 0.848 0.851 0.849 0.838
CFA 0.879 0.891 0.861 0.818 0.86 0.895 0.883

CSFlow 0.785 0.841 0.815 0.825 0.81 0.806 0.738
CutPaste 0.728 0.771 0.714 0.519 0.674 0.621 0.671
DRAEM 0.82 0.798 0.802 0.819 0.824 0.823 0.826
FastFlow 0.693 0.741 0.745 0.79 0.782 0.723 0.734
FAVAE 0.655 0.626 0.669 0.605 0.639 0.67 0.623
PaDiM 0.722 0.734 0.723 0.689 0.72 0.727 0.716

PatchCore 0.844 0.872 0.826 0.844 0.848 0.852 0.847
RD4AD 0.838 0.897 0.871 0.866 0.876 0.872 0.861
SPADE - 0.764 0.739 0.749 0.758 0.757 0.759

4

STPM 0.864 0.869 0.865 0.876 0.875 0.868 0.885
CFA 0.923 0.913 0.888 0.875 0.92 0.919 0.924

CSFlow 0.856 0.9 0.863 0.9 0.893 0.892 0.861
CutPaste 0.705 0.808 0.857 0.473 0.694 0.607 0.673
DRAEM 0.872 0.892 0.905 0.892 0.9 0.904 0.919
FastFlow 0.828 0.809 0.793 0.843 0.826 0.809 0.81
FAVAE 0.701 0.651 0.67 0.619 0.611 0.68 0.668
PaDiM 0.776 0.81 0.739 0.734 0.761 0.779 0.771

PatchCore 0.891 0.916 0.876 0.889 0.898 0.883 0.891
RD4AD 0.903 0.933 0.911 0.917 0.921 0.912 0.916
SPADE 0.781 0.794 0.77 0.783 0.791 0.788 0.787

8

STPM 0.865 0.896 0.87 0.91 0.914 0.912 0.904

Table 1(b). Image-level AUC-ROC on MVTec AD. The red one
is the best augmentation for the IAD method, and the blue is the
second best one.
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Shot Methods Vanilla Rotation Flip Scale Translate ColorJitter Perspective
CFA 0.721 0.76 0.779 0.75 0.729 0.752 0.744

CSFlow 0.494 0.454 0.491 0.515 0.528 0.473 0.566
CutPaste 0.651 0.719 0.732 0.601 0.627 0.677 0.606
DRAEM 0.522 0.505 0.523 0.525 0.522 0.512 0.507
FastFlow 0.5 0.507 0.533 0.559 0.566 0.56 0.488
FAVAE 0.512 0.479 0.508 0.535 0.502 0.57 0.502
PaDiM 0.518 0.677 0.676 0.598 0.615 0.604 0.616

PatchCore 0.664 0.581 0.682 0.67 0.648 0.635 0.67
RD4AD 0.791 0.77 0.834 0.722 0.749 0.716 0.746
SPADE - - - - - - -

1

STPM 0.561 0.589 0.585 0.706 0.642 0.773 0.662
CFA 0.729 0.755 0.793 0.744 0.745 0.759 0.748

CSFlow 0.513 0.469 0.515 0.524 0.548 0.514 0.547
CutPaste 0.58 0.51 0.757 0.657 0.696 0.651 0.66
DRAEM 0.517 0.528 0.53 0.503 0.499 0.499 0.555
FastFlow 0.613 0.52 0.529 0.58 0.545 0.638 0.543
FAVAE 0.51 0.528 0.51 0.512 0.505 0.569 0.518
PaDiM 0.63 0.706 0.709 0.63 0.658 0.665 0.646

PatchCore 0.632 0.644 0.649 0.671 0.679 0.67 0.624
RD4AD 0.574 0.768 0.845 0.761 0.765 0.752 0.764
SPADE - 0.687 0.695 0.698 0.696 0.717 0.678

2

STPM 0.62 0.658 0.645 0.749 0.743 0.756 0.715
CFA 0.804 0.783 0.804 0.717 0.779 0.803 0.767

CSFlow 0.504 0.43 0.508 0.552 0.522 0.496 0.559
CutPaste 0.609 0.768 0.738 0.641 0.449 0.639 0.795
DRAEM 0.537 0.588 0.554 0.553 0.546 0.522 0.62
FastFlow 0.504 0.584 0.763 0.499 0.658 0.621 0.553
FAVAE 0.536 0.547 0.557 0.565 0.525 0.559 0.521
PaDiM 0.718 0.755 0.751 0.708 0.73 0.744 0.713

PatchCore 0.676 0.649 0.694 0.698 0.677 0.668 0.68
RD4AD 0.815 0.8 0.828 0.78 0.808 0.805 0.794
SPADE - 0.686 0.689 0.695 0.696 0.706 0.652

4

STPM 0.691 0.697 0.647 0.751 0.748 0.765 0.745
CFA 0.821 0.803 0.826 0.756 0.78 0.822 0.832

CSFlow 0.678 0.695 0.721 0.72 0.758 0.749 0.675
CutPaste 0.747 0.787 0.734 0.545 0.594 0.552 0.492
DRAEM 0.637 0.715 0.698 0.559 0.635 0.664 0.726
FastFlow 0.544 0.587 0.75 0.512 0.579 0.665 0.565
FAVAE 0.566 0.556 0.547 0.499 0.527 0.557 0.541
PaDiM 0.766 0.779 0.782 0.735 0.759 0.779 0.752

PatchCore 0.711 0.666 0.693 0.662 0.729 0.69 0.71
RD4AD 0.825 0.806 0.824 0.798 0.819 0.797 0.809
SPADE 0.705 0.72 0.726 0.706 0.723 0.72 0.713

8

STPM 0.732 0.619 0.733 0.769 0.747 0.718 0.727

Table 1(c). Image-level AUC-ROC on MTD. The red one is the
best augmentation for the IAD method, and the blue is the second
best one.

proposed a high-performance image defect anomaly detec-
tion model that can detect anomaly patterns without relying
on abnormal data. The whole framework can be described
in two-stage. Firstly, the representation of normal images
is learned by a self-supervised learning method. Then, a
single classifier is constructed based on the learned image
representation. It mainly constructs negative samples by
cutting images and then pasting them to other locations.

2.1.4 Memory Bank

This is a simple and effective method. In the training
phase, the feature extraction of the normal image is stored
in the memory bank. In the test phase, the distance between
the feature of the test sample and the nearest neighbor fea-
ture is calculated to achieve anomaly detection. CFA [13]
proposed a new method to obtain discriminative features
through metric learning. PaDiM [4] proposed an anomaly
detection and localization framework based on distributed

modeling in the one-class learning environment. In order to
improve the effectiveness of features, SPADE [3] extracted
multi-resolution features in pyramid architecture. Patch-
Core [17] extended the work of a series of unsupervised
anomaly detection algorithms such as SPADE, and PaDiM.
It mainly solved the problem of the slow testing speed of
SPADE and did some exploration in the feature extraction
part.

2.1.5 Reconstruction-Based Method

This method is mainly to reconstruct the abnormal im-
age into a normal image and compared it with the origi-
nal abnormal image to find the abnormal part. The method
proposed by DRAEM [32] provided an arbitrary number of
abnormal samples and a pixel-perfect abnormal segmenta-
tion map, which could be used to train the proposed method
without real abnormal samples. This method learned the
joint representation of abnormal images and their non-
abnormal reconstruction and learned the decision bounds
of normal and abnormal samples. This method could di-
rectly locate anomalies without additional complex post-
processing of network output and can be trained using sim-
ple and general anomaly simulations. Unlike DRAEM,
FAVAE [5] did not rely on external data sets to gener-
ate anomalies to further enhance the generalization of the
model.

2.2. Few-Shot IAD

Few-shot anomaly detection (FSAD) emerged not long
ago. The number of samples is small, and the amount of
data is not much. For how to use the data to get a better
effect, RegAD [9] proposed a comparison-based solution,
which is very different from the popular methods based on
reconstruction or single classification. And [18] also used
16 images to train its model. Its experimental results on the
challenging and newly proposed MVTec AD datasets and
Magnetic Tile Defects datasets showed that their method
outperforms the existing methods. However, no one has
systematically explored the field of Few-Shot IAD.

2.3. Data Augmentation

Data augmentation plays a great role in few-shot train-
ing. It can help the model to learn more features from data
to get a better effect. According to [29], image augmenta-
tion methods based on image erasure usually delete one or
more sub-regions in the image to replace the pixel values
of these sub-regions with constant or random values. And
image mixed data augmentation is mainly done by mix-
ing multiple images or sub-regions of the image into one.
But, these data augmentation methods cannot be used for
anomaly detection of industrial products.
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3. Benchmark Setup
Figure 1 illustrates our data augmentation process for

training the anomaly detection model. We apply different
data augmentation to one image to generate multiple aug-
mented images. These images are used to train the model to
learn the normal appearance and features of the data. Then,
we can feed a new image to the trained model and obtain
two outputs: a confidence score that indicates how likely the
image is anomalous, and a mask that highlights the anoma-
lous regions in the image.

3.1. Dataset

We use a number of datasets to investigate the effects
of different methods and models on few-shot, including
MVtec AD [1], MTD [10] and BTAD [16].

MVTec AD [1] contains five textures and ten objects in
different fields. It has 4096 normal images and 1258 ab-
normal images with resolutions varying from 700 × 700 to
1024 × 1024.

MTD [10] has 952 normal images and 392 abnormal im-
ages. It contains 6 types of anomalies and simulates authen-
ticity.

BTAD [16] contains 2250 normal images and 580 ab-
normal images. It is a real-world dataset used for anomaly
detection, and it has three industrial products with surface
flaws.

3.2. Baseline Methods

We conduct experiments on a total of eleven methods,
which are divided into two categories: feature-embedding-
based and reconstruction-based methods. As mentioned
earlier, feature-embedding-based methods are further di-
vided into four classes. CSFlow [19] and FastFlow [31]
are methods based on normalizing flow, and CFA [13],
SPADE [3], PaDiM [4], and PatchCore [17] all use the fea-
tures of good samples saved by memory bank. In addition,
both RD4AD [6] and STPM [26] use the teacher-student
structure of knowledge distillation. And CutPaste [14] is a
method of one-class classification. In reconstruction-based
methods, we selected FAVAE [5] and DRAEM [32] for our
experiments. For comparison purposes, these methods are
used as baselines to test the effectiveness of our proposed
few-shot IAD.

3.3. Our Data Augmentation

It is challenging to select a suitable data augmentation
method for unsupervised IAD. Since the training samples
are all normal, we cannot use data augmentation to intro-
duce anomalies or make the samples more similar to the
abnormal ones. Therefore, some common data augmenta-
tion methods such as adding noise, mix-up [35], etc. are not
applicable. In this paper, we experiment with six data aug-

mentation methods that can potentially enhance the perfor-
mance of unsupervised IAD. They are rotation, flip, scale,
translate, color jitter, and perspective.

Rotation. Rotate the image evenly within [0, 360) de-
grees. For example, to augment an image to 4 images, we
would rotate it by 0, 90, 180, and 240 degrees.

Filp. For an image, the transformation is performed in
the order of keeping the original image, flipping horizon-
tally, flipping vertically, and flipping both horizontally and
vertically. If we need to generate more pictures, we set the
probability of horizontal and vertical flips to 0.5, respec-
tively.

Scale. The side length of the original image is reduced,
and the value is uniformly set at (0.5, 1] times the side
length of the original image. Enlarging the image may
cause the object to be detected beyond the screen, which
will cause adverse effects. So only scale the image down a
little bit.

Translate. Translate the content of the image horizon-
tally and vertically by [0, 0.5) times the side length of the
image. The distance is uniformly set.

Color Jitter. Adjust the brightness and contrast of the
image. Except for the original image, the adjustment range
is uniformly set at [0.5, 1.5) times, and the original image
is always kept at the first image for the use of subsequent
mixed data augmentation.

Perspective. It simulates the perspective change of hu-
man eyes looking at pictures. The change range is uniform
in [0, 0.5).

In this paper, for each augmentation, we augment one
training image to four. In other words, in addition to keep-
ing the unmodified image, there are three corresponding
training images augmented with this image.

4. Experimental Results and Analysis
In this section, we aim to conduct a comprehensive and

systematic analysis of the impact of data augmentation on
few-shot IAD. We explore several research questions, such
as: How does data augmentation affect the performance of
different types of IAD algorithms? Can data augmenta-
tion methods that achieve better results individually also en-
hance the accuracy when combined? Do all data augmenta-
tion methods exhibit consistent effects across different set-
tings and scenarios? To answer these questions, we use the
6 data augments described in Section 3.3, the 3 datasets in-
troduced in Section 3.1, and the 11 IAD algorithms men-
tioned in Section 3.2, and thousands of experiments have
been conducted.

Key Takeaways (i) There is no universal winner among
data augmentation methods for all IAD methods. (ii) We
summarize the best single data augmentation for each cate-
gory of IAD methods in Table 3. (iii) As for Memory Bank-
based methods, we observe that the mixed data augmenta-
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tion significantly outperforms the single data augmentation
for image-level metrics.

Figure 2. An image from the MvTec AD training set, as well as
rotated and flipped images. If you look at the whole image, the
data-augmented images are not consistent with the test set. How-
ever, if we only look at the patches one by one, the patches after
data augmentation can still correspond to the normal toothbrush.

4.1. Single Data Augmentation

As shown in Table 1(a), 1(b), 1(c), a large amount of data
is obtained through the experiments. The best and second-
best data augmentation for this IAD algorithm in this dataset
is marked in red and blue, respectively.

Ideally, we would expect to see a column of the table
dominated by either blue or red cells, indicating that the cor-
responding augmentation method consistently outperforms
others. However, this is not the case in our results. Instead,
we observe that different augmentation methods have vary-
ing effects on different IAD methods. This suggests that
there is no single augmentation method that can be univer-
sally optimal for all IAD methods. One possible reason for
this phenomenon is that different IAD methods have dis-
tinct technical designs and mechanisms, which may inter-
act differently with different types of data transformations.
Therefore, we further divide the IAD methods into several
categories based on their main characteristics and investi-
gate whether similar methods share similar preferences or
sensitivities to certain augmentation methods.

As we discussed in Section 3.2, we classify the 11 IAD
methods that we evaluate in our experiments into five cate-
gories: Normalizing Flow, Memory Bank, Student-Teacher,
One-Class, and Reconstruction. These categories are based
on the main techniques or principles that each method em-
ploys, as shown in Table 2. For each IAD method and each
data augmentation method, we calculate their average im-
provement of image-level AUC-ROC over all datasets and
all shot numbers compared to the baseline of no data aug-
mentation. We observe that within each category of IAD
methods, there is some degree of consistency in how data

augmentation affects their performance. For example, for
Normalizing Flow methods, all data augmentation methods
except Perspective can improve their results significantly.
For Memory Bank methods, although the overall improve-
ment is modest, Rotation and Flip can consistently boost all
four methods in this category. For Student-Teacher meth-
ods, all six data augmentation methods have positive effects,
especially Flip and Color Jitter. However, for One-Class
methods, the impacts of different data augmentation meth-
ods vary widely across different models and datasets. Rota-
tion and Flip seem to work well for most models in this cate-
gory, but other data augmentation methods may have detri-
mental effects. The only exception is the Reconstruction-
based category, where FAVAE [5] suffers from a decrease in
accuracy with any data augmentation method applied while
DRAEM [32] benefits from Perspective and Rotation.

4.2. Mixed Data Augmentation

We have shown that different data augmentation methods
have consistent effects on the performance of IAD meth-
ods within the same category. However, we also notice that
the optimal data augmentation method may vary depend-
ing on the specific model. For instance, for the Student-
Teacher category, Flip is the best data augmentation method
for RD4AD [6], but Color Jitter achieves the highest im-
provement for STPM [26]. This motivates us to investigate
whether combining two data augmentation methods can fur-
ther enhance the results compared to using only one. To
combine two data augmentation methods, we apply them
sequentially to an image. For example, we first rotate an im-
age by 90 degrees and then translate it by a certain amount.
In this way, we can generate more diverse and complex vari-
ations of the original image.

We choose different combinations of data augmentation
methods for different categories of IAD methods based on
their performance in the previous experiments. For Nor-
malizing Flow-based methods, we combine Translate and
Scale, which are both geometric transformations that can
preserve the shape and appearance of the objects in the im-
age. For Memory Bank-based and One-Class-based meth-
ods, we combine Rotation and Flip, which are both sim-
ple and effective data augmentation methods that can in-
troduce some degree of rotation invariance and symmetry
to the models. For Student-Teacher-based methods, we
combine Translate, Color Jitter, and Flip, which can gen-
erate more diverse and challenging variations of the im-
age by changing its position, color, and orientation. We do
not conduct experiments with mixed data augmentation for
Reconstruction-based methods because we have observed
that data augmentation does not improve their performance
and may even degrade it. This may be because data aug-
mentation interferes with the reconstruction objective of
these methods and makes it harder for them to learn mean-
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Classes Normalizing Flow Memory Bank Student-Teacher One-Class Reconstruction
Methods CSFlow FastFlow CFA SPADE PaDiM PatchCore RD4AD STPM CutPaste FAVAE DRAEM
Rotation 0.020 0.080 0.007 0.010 0.043 -0.001 0.036 0.000 0.067 -0.018 0.042

Flip 0.011 0.082 0.007 0.006 0.036 0.002 0.045 0.008 0.086 0.000 0.028
Scale 0.045 0.081 -0.034 0.001 0.001 0.002 0.021 0.041 -0.052 -0.056 0.001

Translate 0.037 0.093 -0.012 0.010 0.015 0.007 0.030 0.033 -0.030 -0.066 -0.012
Color Jitter 0.023 0.066 0.005 -0.001 0.017 -0.004 0.022 0.047 -0.035 -0.047 0.012
Perspective -0.006 0.038 -0.001 0.007 0.014 0.000 0.023 0.030 -0.029 -0.035 0.046

Table 2. The average improvement of image-level AUC-ROC of each data augmentation over each IAD method with respect to no data
augmentation.

Figure 3. Input all training data of one class of Mvtec AD data set, 4 randomly selected few-shot training images, and images after data
augmentation of these four into PatchCore. The distribution of embedding of each patch after dimensionality reduction is shown in the
figure.

Method Best Single Augmentation
CSFlow Scale

FastFlow Translate
CFA Rotation

SPADE Rotation
PaDiM Rotation

PatchCore Translate
RD4AD Flip
STMP Color Jitter

CutPaste Flip

Table 3. The best single data augmentation corresponding to vari-
ous IAD methods.

ingful features from the images.
We take the best single data augmentation correspond-

ing to various IAD methods as the baseline for mixed data
augmentation. As shown in Table 3, the best single data
augmentation corresponding to each method varies. Next,
we will investigate whether mixed data augmentation can
further improve accuracy.

Table 4 demonstrates the improvement of the mixed data
augmentation over the best single data augmentation in the
image-level AUC-ROC metric. One can see that mixed
data augmentation only has a more obvious improvement
on PatchCore [17], and even causes a decline in accuracy in
other methods.

4.3. Analysis

The main purpose of applying data augmentation to the
training data is to increase its diversity and make it more

Figure 4. Using PatchCore to perform mixed data augmentation
of 4-shot IAD in the Mvtec AD dataset can get good results in all
classes.

similar to the distribution of the test data. However, as we
can see from Figure 2, some data augmentation methods
may change the orientation or appearance of the objects in
the training images in ways that do not match the test im-
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Normalizing Flow Memory Bank S-T One-class
Shot Dataset CSFlow FastFlow CFA SPADE PaDiM PatchCore RD4AD STPM CutPaste

MVTec AD -0.029 0.029 0.006 - 0.004 0.004 -0.039 -0.012 0.049
MTD 0.1 -0.026 0.007 - -0.031 0.04 -0.075 -0.025 -0.0941
BTAD 0.001 0.009 -0.004 - 0 0.004 -0.227 -0.056 -0.003

MVTec AD -0.047 -0.005 -0.005 0.003 -0.007 0.009 -0.087 -0.045 -0.029
MTD 0.011 0.028 -0.001 -0.002 -0.007 0.001 -0.1 0.054 -0.0112
BTAD -0.026 -0.06 -0.003 0 0.001 0.007 -0.154 -0.035 -0.013

MVTec AD -0.123 -0.06 0.002 0.002 0 0.018 -0.104 -0.074 0.052
MTD 0.011 -0.101 0.001 0 0.004 0.023 -0.069 0.028 0.0124
BTAD -0.029 -0.103 -0.003 0.001 0.002 -0.008 -0.044 -0.073 -0.006

MVTec AD -0.21 -0.137 0.007 -0.002 -0.012 0.008 -0.245 -0.142 0.004
MTD -0.152 -0.08 0 -0.001 0.01 -0.004 -0.133 0.072 0.0478
BTAD -0.029 -0.15 -0.007 0.002 0 0.024 -0.361 -0.079 -0.036

Table 4. The improvement of the mixed data augmentation over the best single data augmentation of the image-level AUC-ROC metric.

ages. For example, after applying Rotation and Flip to a
toothbrush image in the training set, the toothbrush may ap-
pear upside down or sideways, which is unlikely to occur in
the test set. Therefore, for most IAD methods, using multi-
ple data augmentation methods together may not be benefi-
cial and may even harm their performance. However, there
are two exceptions: PaDiM [4] and PatchCore [17]. These
two methods do not rely on the global shape or structure of
the image but rather on its local patches, as shown in Figure
2. Even if the image is transformed by data augmentation,
each patch still retains some similarity to the normal im-
age patches. However, PaDiM performs Gaussian fitting for
patches at the same spatial location across different images
and expects them to have low variance. Data augmentation
introduces more diversity and noise to these patches and
thus degrades PaDiM’s performance. On the other hand,
PatchCore does not care about the spatial location or global
changes of the patches and only focuses on their local fea-
tures. Therefore, data augmentation has little negative im-
pact on PatchCore’s performance and may even improve it
further by generating more challenging variations of normal
images.

To gain more insight into how PatchCore [17] works and
to verify our previous claim, we conduct an experiment us-
ing the Mvtec AD dataset. We feed all the training images
of one class, four randomly selected few-shot training im-
ages, and their augmented versions into PatchCore and ex-
tract the embeddings of all the patches. We then use t-SNE
[25] to reduce the dimensionality of all the embeddings to
two and visualize them in Figure 3. We can observe that
the embeddings from the few-shot images are very sparse
and only cover a small region of the feature space spanned
by the full training data. However, after applying data aug-
mentation to these images, their embeddings become dense
and cover a larger region of the feature space. This sug-
gests that data augmentation can effectively generate more
diverse and realistic patches and thus improve the perfor-
mance of few-shot IAD with PatchCore.

Figure 4 shows some examples of PatchCore’s [17] per-
formance on different objects with mixed data augmenta-

tion using only 4-shot training images. We can see that
PatchCore can not only correctly classify the images as nor-
mal or abnormal but also precisely locate the abnormal re-
gions on the objects. This is because the patch embeddings
obtained from data augmentation are similar to those from
normal images and form a tight cluster in the feature space.
Therefore, PatchCore can easily distinguish them from the
abnormal patches that deviate from this cluster. As a re-
sult, PatchCore does not suffer from false positives, which
means that it does not mistakenly label normal regions as
abnormal.

5. Conclusions
In this paper, we conduct a comprehensive study on the

role of data augmentation in few-shot IAD. We evaluate 11
algorithms on 3 datasets using 6 types of data augmentation
methods and analyze their performance and characteristics.
The experimental results show that data augmentation has
different effects on different IAD algorithms depending on
their underlying principles and assumptions. However, for
algorithms that share similar technical approaches, such as
embedding-based methods, data augmentation plays a sim-
ilar role. Moreover, we also discover that while some data
augmentation methods may improve the performance of
a certain algorithm individually, combining them together
may not be beneficial and may even degrade the anomaly
detection accuracy. This is because some data augmenta-
tion methods may introduce unrealistic or inconsistent vari-
ations to the images that do not match the test images. How-
ever, PatchCore is an exception to this rule because it only
focuses on the local features of patches and ignores their
spatial location or global changes. Mixed data augmenta-
tion does not affect its accuracy but rather enhances it by
generating more diverse and challenging normal images.
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