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Abstract

This paper is about effectively utilizing synthetic data for
training deep neural networks for industrial parts classifi-
cation, in particular, by taking into account the domain gap
against real-world images. To this end, we introduce a syn-
thetic dataset that may serve as a preliminary testbed for the
Sim-to-Real challenge; it contains 17 objects of six indus-
trial use cases, including isolated and assembled parts. A
few subsets of objects exhibit large similarities in shape and
albedo for reflecting challenging cases of industrial parts.
All the sample images come with and without random back-
grounds and post-processing for evaluating the importance
of domain randomization. We call it Synthetic Industrial
Parts dataset (SIP-17). We study the usefulness of SIP-17
through benchmarking the performance of five state-of-the-
art deep network models, supervised and self-supervised,
trained only on the synthetic data while testing them on
real data. By analyzing the results, we deduce some in-
sights on the feasibility and challenges of using synthetic
data for industrial parts classification and for further de-
veloping larger-scale synthetic datasets. Our dataset † and
code ‡ are publicly available.

1. Introduction
Efficient and reliable automatic parts classification is

critical for various industrial operations and handling pro-
cesses, such as sorted storing, part feeding, and quality in-
spection. With the increasing variability of products and re-
quired flexibility of processes and material flow, the impor-
tance of it has further escalated [15]. Deep learning-based
classification algorithms, with their robustness, can be a
possible solution for industrial parts classification. How-
ever, training these algorithms generally requires a large
amount of annotated data, which can be time-consuming

*Corresponding author
†Dataset: https : / /www.kaggle .com/datasets /mandymm/synthetic -

industrial-parts-dataset-sip-17
‡Code: https://github.com/BilalTalha/SIP-17

and label-expensive to obtain in many real-world industry
scenarios.

Synthetic data may present a viable solution to overcome
this challenge. In the manufacturing industry, Computer-
Aided Design (CAD) models are commonly used to cre-
ate detailed virtual representations of physical objects for
planning and simulating the manufacturing process [30].
Accordingly, synthetic data generated from CAD models
can be useful to tackle the challenge of limited real-world
data [4, 6, 33]. However, a major issue in it is the domain
gap between CAD data and real data, as they are derived
from different distributions.

Numerous deep learning studies have focused on ad-
dressing the challenge of domain shift from simulated to
real images, and a majority of them evaluate their models on
the benchmark Sim-to-Real dataset, such as the Visual Do-
main Adaptation Dataset (VisDa) [20]. However, since the
current benchmark datasets often consist of general objects
such as animals, furniture, and street view, they may not ad-
equately model the characteristics of industrial parts [18].
In particular, the industrial environment often involves parts
with subcategories differences or alignment variations that
may not typically be captured by those datasets. As a result,
the methods that perform well on the existing Sim-to-Real
datasets may not generalize effectively to industrial scenar-
ios.

Therefore, in this study, we introduce a Synthetic Indus-
trial Parts dataset (SIP-17) which contains 17 objects rep-
resenting six industrial use cases of parts sorting and qual-
ity inspection. The dataset comprises both isolated and as-
sembled parts, some of which exhibit significant similari-
ties or albedo, reflecting the challenges encountered in real-
world industrial parts classification scenarios. As such, this
dataset may serve as a preliminary testbed for Sim-to-Real
industrial parts classification research. Testing new models
on this dataset may also provide insights into the robustness
of the model in solving various Sim-to-Real industrial parts
classification use cases.

The dataset focuses on the Sim-to-Real challenge, where
only synthetic data is used for the training and validation
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(source) domains, while real images are used for the test
(target) domain. Specifically, the dataset includes 66K la-
beled synthetic images for training and validation, and 566
unlabeled real images for testing. Unlike previous Sim-
to-Real object identification datasets that are often bench-
marked with domain adaptation models requiring real data
for training [20, 35], we train our dataset only on synthetic
data to enhance its practical value for industrial applica-
tions. By doing so, the manufacturers may bypass the need
for manual data collection and annotation, and potentially
develop parts classification models for quality inspection or
parts sorting stations before the physical production of the
parts.

Regarding the aforementioned domain gap, domain ran-
domization can be a possible technique for addressing it.
Tobin et al. [29] introduced the concept of domain random-
ization which involves randomizing various aspects of the
training data, such as camera positions, lighting conditions,
object positions, and textures, to simulate a wide range of
possible scenarios. The goal is to narrow the Sim-to-Real
gap by generating synthetic data with sufficient variation
allowing the model to perceive real-world data just as an-
other variation [29]. In this study, we generated the SIP-17
dataset following the domain randomization technique. To
assess the impact of domain randomization, we generated
the synthetic data with random backgrounds and random
post-processing (Syn R) and without them (Syn O).

We evaluated state-of-the-art classification models on
both Syn R and Syn O to establish benchmarks for our
dataset. We selected a range of classification models with
varying design principles, including Convolutional Neural
Networks (CNNs), a Vision Transformer (VIT) [7], and a
self-supervised learning network. The results demonstrated
varying levels of performance while training on data from
different use cases, providing insights into the feasibility
and challenges of utilizing synthetic data for industrial parts
classification. It may also indicate some direction for the
development of a larger-scale synthetic dataset in the future.

2. Related Work

2.1. Sim-to-Real Dataset

Numerous datasets have been developed for Sim-to-Real
tasks in the past. The Linemod [12] and Linemod-Occluded
[2] datasets, for example, are widely used in 6D pose esti-
mation in robotics. They include synthetic and real images
of 15 general objects with varying textures, shapes, cam-
era poses, lighting conditions, occlusions, and more. These
datasets serve as the benchmarks for Sim-to-Real object lo-
calization and pose estimation tasks.

For Sim-to-Real classification tasks, the Visual Do-
main Adaptation Classification Dataset (VisDa-C) [20] is
a benchmark dataset that comprises both synthetic and real

images of 12 objects. The synthetic images are generated
from 3D models rendered from various angles and lighting
conditions, while the real images are sourced from the Mi-
crosoft COCO dataset [16] and the YouTube Bounding Box
dataset [23].

For Sim-to-Real segmentation tasks, multiple datasets
have been introduced, particularly in the context of 2D and
3D multi-object tracking or autonomous guidance. These
datasets often comprise synthetic images that are rendered
from video games like GTA5 or different virtual urban envi-
ronments, as well as real-world data obtained from a mov-
ing vehicle in urban settings or GPS, including RGB im-
ages, stereo images, and lidar data. Some examples of
these datasets include the Domain Adaptation Segmentation
Dataset (VisDa-S) [20], the GTA5 dataset [25], the Virtual
KITTI [9], and KITTI [10] datasets.

While many Sim-to-Real datasets feature general objects
such as toys, animals, furniture, and street view, there are
few options available for studying industrial objects. One
of the datasets is the T-less dataset [13], which includes 30
industrial objects with uniform textures and colors, such as
bearings, U-brackets, metal boxes, and knives. Addition-
ally, the Dataset of Industrial Metal Objects [5] offers real-
world and synthetic multi-view RGB images of six objects,
including cylinders, blocks, and shafts, placed on three dif-
ferent types of carriers: pallets, bins, and cardboard. How-
ever, these datasets are both designed for pose estimation,
so they may not be well-suited for the challenge of cross-
domain classification, as their test objects are limited to uni-
form or fixed textures and colors.

2.2. Domain Randomization in Sim-to-Real

Sadeghi and Levine [26] showed that quadcopters could
be trained to fly indoors using only synthetic images, and
Peng et al. [19] demonstrated the possibility of training ob-
ject classifiers using 3D CAD models with random textures
and backgrounds. Building on these ideas, Tobin et al. [29]
proposed the concept of domain randomization to address
the reality gap by generating synthetic data with sufficient
variations to enable the network to view real-world data as
just another variation. Subsequent research [21, 31, 34] ap-
plied the domain randomization strategy to the GTA5 and
Virtual KITTI datasets, training CNN-based object detec-
tion or segmentation models such as Faster-RCNN only on
the synthetic data and achieving promising results while
evaluating real-world data.

For industrial parts identification, some works have uti-
lized physics-based rendering and domain randomization to
generate synthetic training data for various industrial parts,
as demonstrated in two studies [8, 14]. The synthetic data
is generated with randomized backgrounds, textures, post-
processing, and other factors. Ablation studies are per-
formed to analyze the impact of these factors on Sim-to-
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Real object detection tasks using object detection models
such as Yolov4 [1] and Faster R-CNN [24]. In these stud-
ies, Eversberg and Lambrecht [8] focus on identifying three
types of turbine blades, while Horváth et al. [14] generated
a dataset containing ten different objects, including bracket,
pipe clamp, and handle. However, it is worth noting that
the dataset only consists of isolated objects, which may not
reflect the alignment differences that are frequently encoun-
tered in industrial assembly quality inspection use cases. In
addition, the evaluation of the dataset using CNNs may not
include a Sim-to-Real classification benchmark utilizing ad-
vanced models such as VIT.

3. The SIP-17 Dataset
The SIP-17 dataset comprises 17 industrial objects that

are representative of six use cases. The first four use cases
consist of isolated parts that require classification. The last
two involve assembled parts, where the objects consist of
two or more parts that are assembled to each other, requiring
inspection to ensure whether the parts are correctly aligned.
Use case 1: cabin assembly quality inspection Use Case
1 includes five objects: Airgun, Electricity12, Hammer,
Hook, and Plug, which are assembled in the cabin of a truck.
These objects from the same assembly station could share
large similarities in albedo. By accurately classifying them,
we can verify that the correct part has been assembled in the
cabin.
Use cases 2 to 4: logistic picking inspection Use case 2
comprises three objects: Fork1, Fork2, and Fork3; use case
3 includes four objects: CouplingHalf, Gear1, Gear2, and
Pinion; and use case 4 consists of three objects: Cross, Pin1,
and Pin2. These objects can be found in various logistic
picking stations, and their classification is vital in ensuring
that the operators have picked the correct parts for delivery.
The parts in the same station are likely to belong to a closely
related product family, which could share large similarities
in shape and albedo.
Use case 5: wheel assembly quality inspection Use case
5 involves inspecting whether a wheel has been correctly
assembled with a screw. As the wheel can be assembled
inside-out, leading to four possible categories during assem-
bly: front side of the wheel with a screw (FwS), front side
of the wheel without a screw (FwoS), back side of the wheel
with a screw (BwS), and back side of the wheel without a
screw (BwoS).
Use case 6: engine assembly quality inspection Use case
6 involves inspecting the Oring that is assembled on the
Power Take Off. It includes three categories: correct as-
sembly of the Orings (Oon), offside assembly of the Top
Oring (Ooff), and missing Top Oring (noO).

In summary, we selected four use cases with 15 isolated
parts from the assembly and logistic stations. These parts
varied in appearance, with some being similar while others

differed. Additionally, we included two use cases with two
assembled parts. Each category of assembled parts shared
numerous similarities as they contained the same objects
but differed in alignment details. We chose these 17 objects
from six use cases as they may represent the challenges en-
countered in real-world industrial parts classification sce-
narios.

3.1. Dataset Acquisition

To evaluate the effectiveness of domain randomization,
we generated two synthetic datasets, one with random back-
grounds and post-processing (Syn R) and one without those
(Syn O).

The Syn O dataset was created by rendering 3D CAD
models from varying camera angles and under diverse light-
ing conditions. Each object was randomly rotated, scaled,
and translated to generate variations. We used camera an-
gles of 360 degrees and six distinct light directions for each
model. To ensure that the entire object was captured, the
camera was automatically positioned, and random light in-
tensities were used during rendering. We followed the ren-
dering parameters described in work [22].

The Syn R dataset was generated using a similar pro-
cess as the Syn O dataset, with the additional step of intro-
ducing random colors to the lighting. Besides, we incor-
porated randomly selected backgrounds from the Unsplash
dataset [32], along with various post-processing techniques
such as random color tints, blurs, and noise [22].

During the generation of the dataset, the randomization
process was only applied to the virtual camera and environ-
ment. As for the CAD models, we applied a single-color
texture that approximated the real objects to give them a
reasonably realistic appearance. Nevertheless, to maintain
the Sim-to-Real domain gap, other parameters affecting sur-
face appearance, such as metallic, specular, and roughness,
were held constant across all CAD models.

In total, we generated 33K images for both Syn R and
Syn O datasets. For each category in each use case, we
generated 1200 synthetic images for training and 300 syn-
thetic images for validation. For testing, we captured 566
real images from various industrial scenarios. The number
of images per category is outlined in Tab. 1. Some sam-
ples of Syn R, Syn O, and real images for each category
are present in Fig. 1.

4. Evaluation
4.1. Experimental Setup

Our evaluation of the SIP-17 dataset as a benchmark in-
volves testing five classification models that are currently
considered state-of-the-art. These models, which represent
different design principles, are widely known for their ef-
fectiveness and relatively simple implementation. The five
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Syn_O

Syn_R

Real

Use case 1

Airgun Electricity12 Hammer Hook Plug Fork1 Fork2 Fork3

CouplingHalf Gear1 Gear2 Pinion Cross Pin1 Pin2

Use case 2

Use case 4

noO Oon OoffBwS BwoS FwS FwoS

Syn_O

Syn_R

Real

Use case 3

Syn_O

Syn_R

Real

Use case 5 Use case 6

Figure 1. Sample images from the SIP-17 dataset, showcasing three categories: Syn O, synthetic images without random backgrounds and
post-processing; Syn R, synthetic images with random backgrounds and post-processing; and Real, images captured from cameras in real
industrial scenarios. Use cases 1-4 require the classification of isolated industrial parts, while use cases 5 and 6 require the classification of
assembled parts.
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Use cases Categories Train
(Syn R/
Syn O)

Valid
(Syn R/
Syn O)

Test
(real
images)

Airgun 1200 300 39
Electricity12 1200 300 44

Use case 1 Hammer 1200 300 34
Hook 1200 300 40
Plug 1200 300 53

Fork1 1200 300 32
Use case 2 Fork2 1200 300 30

Fork3 1200 300 30
CouplingHalf 1200 300 33

Use case 3 Gear1 1200 300 34
Gear2 1200 300 38
Pinion 1200 300 44
Cross 1200 300 40

Use case 4 Pin1 1200 300 39
Pin2 1200 300 36

Back wheel with screw (BwS) 1200 300 32
Use case 5 Back wheel without screw (BwoS) 1200 300 32

Front wheel with screw (FwS) 1200 300 32
Front wheel without screw (FwoS) 1200 300 32

Orings on (Oon) 1200 300 42
Use case 6 TopOring off (Ooff) 1200 300 42

no TopOring (noO) 1200 300 42

Table 1. Number of images per category in the SIP-17 dataset.

models under evaluation are:
ResNet [11]: ResNet is a deep CNN architecture that in-
troduced the concept of residual connections. Its simplicity
and effectiveness have made it a popular baseline for image
classification and benchmarking new methods. It is also
frequently used as a classifier for various Sim-to-Real ob-
ject identification tasks. In our experiments, we employed
ResNet with 152 layers (ResNet152).
EfficientNet [27]: EfficientNet is a family of CNN archi-
tectures that achieve state-of-the-art performance while be-
ing computationally efficient. In our experiments, we uti-
lized the EfficientNet B7 model.
ConvNext [17]: ConvNext is a recent CNN architecture
that introduced a split-attention mechanism to enhance the
ability of the network to aggregate features. It ”modern-
ized” a standard ResNet toward the design of a Vision
Transformer and achieved state-of-the-art classification re-
sults in CNNs on several benchmarks. In our experiments,
we employed the ConvNext base model.
Vision Transformer (VIT) [7]: VIT is based on the trans-
former architecture used in natural language processing.
Unlike traditional CNNs, it employs a self-attention mecha-
nism that processes image patches directly, effectively cap-
turing global dependencies and relationships between dif-
ferent parts of the input image. It has achieved state-of-the-
art performance on several image recognition benchmarks.
In our experiments, we utilized the VIT model with a base
configuration and a patch size of 16 (vit b 16).
DINO [3]: DINO is a self-supervised contrastive learn-
ing approach that improves feature representation for image
classification tasks. It utilizes a teacher network to generate
representations of an image and trains a student network to

predict similarities between pairs of images in order to learn
more meaningful and transferable features. Self-supervised
learning methods have shown some effectiveness in Sim-
to-Real tasks by learning features that are more transferable
across domains. For example, Tian et al. [28] have pro-
posed a self-supervised approach using contrastive learning
to learn domain-independent features. In light of this, we
aim to evaluate a self-supervised contrastive learning model
DINO on our dataset. In our experiments, we employed the
DINO model with VIT as its backbone and utilized a base
configuration with a patch size of 16 (Dino vitbase16).

We chose the models with a comparable amount of pa-
rameters. For the self-supervised learning model DINO, we
used the VIT pre-trained on ImageNet as its backbone and
trained the linear classifier on our dataset for 25 epochs.
For supervised learning models, we trained the models pre-
trained on ImageNet for 25 epochs. To thoroughly evaluate
the models performance, we conducted two types of exper-
iments: (1) training the models with the 15 isolated parts
and (2) training the models with objects per use case. All
the models were trained with Syn R and Syn O datasets and
tested on real images.

4.2. Experimental Results and Discussion

All the experiments have been repeated three times to
obtain an average top-1 classification accuracy. The results
of training on 15 isolated parts are presented in Fig. 2, while
the results of training on each individual use case are sum-
marized in Fig. 3. To highlight the best and second-best
models in terms of total accuracy trained with Syn R and
Syn O, we use blue and green colors, respectively, in Fig. 2
(a) as well as Fig. 3 (a) and (b).
Domain randomization comparison: By comparing
Fig. 2 (a), Fig. 3 (a) and (b), it is evident that the mod-
els trained on Syn R outperformed those trained on Syn O
when trained on both 15 isolated parts and individual use
cases. These findings suggest the significance of domain
randomization in Sim-to-Real tasks, highlighting the ben-
efits of training models with diverse synthetic data to im-
prove their resilience to real-world variations. As models
trained on Syn R achieved better overall performance, our
analysis will mainly focus on the results obtained from this
dataset. We present the class-wise performance of the mod-
els trained with Syn R in Fig. 2 (b) and Fig. 3 (c).
Model performance comparison: As shown in Fig. 2,
training on 15 isolated parts with Syn R yielded the highest
total accuracy of 83.2% for the ConvNext model, followed
by DINO (78.4%) and VIT (74.7%). These results are con-
sistent with those in Fig. 3, where ConvNext demonstrated
the best performance in use cases 1 to 4 and the second-
best performance in use case 5, followed by DINO and VIT.
Notably, the ConvNext model exhibited the smallest perfor-
mance difference between training on Syn O and Syn R,
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(a) Accuracy (%) of all isolated parts. Blue and green
colors indicate the best and second-best models in terms
of accuracy while training with Syn R or Syn O. (b) Class-wise accuracy (%) of all isolated parts while trained with Syn R.

Figure 2. Results of all isolated parts.

(a) Accuracy (%) of all use cases trained with Syn R. Blue and green colors
indicate the best and second-best models in terms of accuracy.

(b) Accuracy (%) of all use cases trained with Syn O. Blue and green colors
indicate the best and second-best models in terms of accuracy.

(c) Class-wise accuracy (%) of all use cases trained with Syn R.

Figure 3. Results of all use cases.

indicating its potential robustness for cross-domain classi-
fication, possibly due to its split-attention mechanism. On
the other hand, the self-supervised learning model DINO
achieved the second-best average performance, which may
suggest the effectiveness of contrastive learning strategies
for cross-domain classification tasks.

The results also suggest that DINO outperformed Con-
vNext in some categories, such as Hook and Gear1. There-
fore, combing the strength of ConvNext and DINO may po-
tentially lead to further improvement in model performance.

For instance, we could use a contrastive learning strategy
on ConvNext or add a supervised loss to DINO to create su-
pervised contrastive learning models with attention mecha-
nisms, potentially enhancing their ability to capture subcat-
egory details in cross-domain classification.

High-performing categories: The highest accuracy
achieved in our experiments was by the ConvNext model in
use cases 2 and 3 while trained with Syn R, with accuracies
of 93.5% and 90.4%, respectively. These findings indicate
the potential of utilizing synthetic data in parts classification
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(a) Confusion matrix on the use case 1. (b) Confusion matrix on the use case 2. (c) Confusion matrix on the use case 3.

(d) Confusion matrix on the use case 4. (e) Confusion matrix on the use case 5. (f) Confusion matrix on the use case 6.

Figure 4. Confusion matrices on different use cases with the ConvNext model.

and suggest that training models only on synthetic images
with domain randomization may yield promising results.
Low-performing categories We carried out further analy-
sis to identify which categories may have contributed to the
low performance in other use cases. When analyzing the re-
sults of isolated parts classification from use cases 1 to 4, a
comparison between Fig. 2 (b) and Fig. 3 (c) reveals that the
class-wise results obtained from training on individual use
cases exhibit a similar trend to those obtained from train-
ing on all 15 parts. These findings suggest that, in industrial
parts classification, models are likely to confuse objects that
share the same manufacturing process and stations. In addi-
tion, both Fig. 2 (b) and Fig. 3 (c) reveal that the categories
Hook and Gear1 received the lowest accuracy across most
models in isolated parts classifications.

As for the results of assembled parts classification from
use cases 5 and 6, Fig. 3 (a) indicates that they performed
considerably worse than the isolated part classification. All
models received an accuracy of around 50% or lower in use
cases 5 and approximately 40% in use cases 6.

To further explore the issue, confusion matrices were
generated for all use cases of the best model, ConvNext, as
shown in Fig. 4. Upon analyzing these matrices, it became
apparent that certain subcategories exhibited high confusion

rates. Specifically, in the isolated parts classification, Hook
was frequently confused with Plug, while Gear1 was often
mistaken for CouplingHalf or Gear2. In the assembled parts
classification of use case 5, Back wheel with srew (BwS)
exhibits high confusion with Back wheel without srew
(BwoS), and Front wheel with screw (FwS) was frequently
misclassified as Front wheel without screw (FwoS). More-
over, in use case 6, all categories were confused and mis-
classified as Orings on (Oon). These low-performance re-
sults indicate that the models failed to capture the semantic
representation that distinguishes these categories.

To summarize the issue, we divided these categories into
two groups. The first group comprises objects with simi-
lar albedos and simple shapes, such as Hooks and Plugs.
As depicted in Fig. 1 use case 1, Hooks are commonly as-
sembled on a black surface in real images. Since the color
of the Hook is also black, and it has a small size and sim-
ple shape, the model may focus on the albedo of the entire
image rather than the specific features of the Hook, result-
ing in confusion with other objects that share similar albedo
characteristics with Hook, such as Plugs.

The second category includes objects that share partial
similarities, such as Gear 1, CouplingHalf, and Gear 2, as
well as all assembled objects. As depicted in Fig. 1 use
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cases 3, classes such as Gear 1, CouplingHalf, and Gear
2 exhibit a similarity of around 50%. Therefore, the Con-
vNext model could potentially misclassify Gear 1 as either
CouplingHalf or Gear 2. Additionally, the degree of sim-
ilarity among assembled objects may be even higher, de-
pending on the size difference between the objects being
assembled together. For example, as demonstrated in use
cases 5 and 6 in Fig. 1, the screw and Orings only constitute
a small portion of the Wheel and Power Take Off, respec-
tively. This could potentially bias the model because larger
objects may have more easily identifiable features and sig-
nificant impacts on the model than smaller objects. This
could explain the poor results obtained from the confusion
matrix in Fig. 4 (e) and (d), where the model struggled to
capture the alignment relationship between the assembled
parts and misclassified them into a single category.

The low-performance categories in our dataset may in-
dicate the limitations and challenges associated with Sim-
to-Real industrial parts classification. They offer us op-
portunities to specialize in addressing the most challenging
use cases. Furthermore, the presence of high-performance
and low-performance categories suggests that our dataset
includes use cases in various levels of difficulty and com-
plexity, making it a potential benchmark for evaluating fu-
ture Sim-to-Real classification models.

5. Limitation and Future Work
Given that Sim-to-Real industrial parts classification

presents challenges for categories sharing the same albedo
and those that are partially the same, our next step is to fur-
ther develop the dataset to address these challenges.

One possible approach is to randomize the albedo on
synthetic images. Adding more variations of color, texture,
and material to the CAD models may generate synthetic im-
ages with more variations, enabling the network to perceive
real-world albedo as just another variation. Moreover, to
improve the classification of assembled parts, we could ap-
ply different random albedos to each object that is assem-
bled with others. This could potentially allow the models
to identify each assembled object and learn their alignment
relationships.

In addition, our SIP-17 dataset, which comprises only
17 objects from six industrial use cases, would only partly
explain a comprehensive representation of the diverse range
of real-world industrial parts. To address this limitation,
we intend to increase the size of our dataset by including
more isolated and assembled parts with varying degrees of
similarity, based on the insights gained from this study.

6. Conclusion
In this study, we present a Synthetic Industrial Parts

dataset (SIP-17) designed for Sim-to-Real industrial parts

classification. It contains 17 objects from six industrial use
cases, comprising both isolated and assembled parts. We
generated synthetic images using domain randomization
techniques, resulting in two datasets: Syn R, with random-
ized backgrounds and postprocessing, and Syn O, without
them.

To benchmark the dataset, we evaluated it with various
state-of-the-art classification models. The models allowed
varying levels of performance when training on data from
different use cases, with some achieving more than 90%
accuracy while some below 50%. These results may reveal
some potential and challenges of using synthetic data for
industrial parts classification and for further creating larger-
scale synthetic datasets. One of the main challenges was
raised from the subcategories that share similar albedo or
are partially the same.

We wish to encourage researchers to focus on Sim-to-
Real classification using only synthetic data for training,
with a particular emphasis on addressing the challenges
posed by the subcategories. Such research has the poten-
tial to bring significant benefits to the manufacturing indus-
try, where parts from the same stations often share similar
albedo and shapes. Enabling training without real-world
data can in principle eliminate the need for data collection
and annotation, thus saving time and resources for manufac-
turers. We hope our work will serve as a preliminary testbed
and benchmark for future Sim-to-Real industrial parts clas-
sification research.
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