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*Fraunhofer ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern
{juraj.fulir,lovro.bosnar,petra.gospodnetić}@itwm.fraunhofer.de

†RPTU Kaiserslautern-Landau, Postfach 3049, 67663 Kaiserslautern
hagen@informatik.rptu.de

A. Comparison between RealClutch and SynthClutch
In this section we present the comparison of the two datasets using images with corresponding viewpoints (Fig. 1). The

differences in surface reflectance is mainly due to per-texture domain randomization of synthetic object instances. To com-
pensate for the illumination intensity difference, we pre-process synthetic images using the exposure value −1.

RealClutch instance 1 RealClutch instance 2 SynthClutch instance 1 SynthClutch instance 2

Figure 1. Example images of different object instances in the dual dataset, observed across corresponding viewpoints.
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B. Hyperparameter analysis
B.1. Effectiveness of intensity biased random crops

In Tab. 1 we report the best results from grid search over different random cropping mechanisms for fully-convolutional
network (FCN) [5], DeepLabV3 (DLv3) [2] amd U-Net [6] architectures. The reported training epochs are measured until
validation loss convergence was detected, not the epoch of the best model, to measure the efficiency of optimization process.
We were always guided by results on the validation set, however also report the method’s effect on generalization to the test
set.

Cropping mechanism FCN DLv3 U-Net
F1V [%] F1T [%] E F1V [%] F1T [%] E F1V [%] F1T [%] E

Random (uniform) 49.4 25.5 275 0.1 0.0 170 46.2 26.6 365
Intensity bias (5) 44.5 23.5 305 2.4 0.1 200 50.2 27.1 375
Intensity bias (10) 54.5 28.4 325 54.4 25.8 450 55.5 31.3 375
Intensity bias (15) 53.3 31.1 440 50.4 25.8 385 54.1 33.7 465
Intensity bias (20) 56.8 30.4 385 56.9 27.1 340 55.2 33.7 315

Table 1. Validation F1 score (F1V ), test F1 score (F1T ) and training epochs (E) of models on RealClutch trained using different cropping
methods.

In Tab. 1 we observe that after at the intensity threshold 10 the gains mostly level-out. Further increase in the threshold
would reveal significantly less area of the object and was thus avoided. DeepLabV3 shows to be very sensitive to optimization
hyperparameters and requires more costly hyperparameter search. However, we observed that the intensity bias after a certain
threshold value increased training stability and final model performance.

B.2. Crop size

We consider training with crop sizes up to size 256 due to memory limits. In Tab. 2 we observed a consistent decrease
in model performance as we decrease crop size. This is related to the defect appearance ambiguity in lower crop sizes, as
the glints produced by defects appear similar to glints produced by correct geometry. Additional contextual information can
help resolve this problem by helping to localize the image patch on the object and ignore glints from common geometrical
features, most commonly seen from the screw threads as shown in Fig. 2.

Crop size (square) FCN DLv3 U-Net
F1V [%] F1T [%] F1V [%] F1T [%] F1V [%] F1T [%]

256 54.5 28.4 54.4 25.8 55.5 31.3
192 48.1 28.8 11.0 8.4 45.1 27.6
128 1.8 0.0 1.3 0.0 42.7 20.8

Table 2. Validation F1 score (F1V ) and test F1 score (F1T ) of models on RealClutch trained using different crop sizes.

Original Crop 256 Crop 192 Crop 128

Figure 2. Smaller crop sizes lose the contextual information that is useful for disambiguation between the defects and geometrical features
of the object. Notice the glint similarity between the screw thread (lower right) and defect on curved the surface (upper left).



C. Results of pre-training on source datasets
In this section we present the results of models reported in table 2 of the main paper, measured on the validation set of

the respective source dataset it was trained on. Note that the same models were used for fine-tuning, thus the values in those
experiments are same as these.

Source dataset FCN DLv3 U-Net
P [%] R [%] F1 [%] P [%] R [%] F1 [%] P [%] R [%] F1 [%]

RealClutch 55.3 53.7 54.5 53.1 55.8 54.4 58.4 52.9 55.5
DAGM [8] 81.6 73.9 77.6 82.4 74.2 78.1 78.8 69.2 73.7
KSDD2 [1] 71.3 67.5 69.4 70.3 69.7 70.1 69.9 69.0 69.5
Severstal Steel [7] 72.4 73.2 72.8 72.7 73.8 73.2 71.2 71.8 71.5
MTD [4] 71.0 61.7 66.0 65.6 56.5 60.7 65.8 57.5 61.4
CSEM-MISD [3] 35.1 24.3 28.7 41.0 23.5 29.9 42.6 22.0 29.0
SynthClutch 57.1 50.2 53.4 59.5 48.2 53.3 71.5 50.1 58.9
RealClutch (EX) 61.2 55.1 58.0 54.9 52.4 53.6 53.7 53.1 53.4
SynthClutch (EX) 57.7 50.8 54.0 62.2 51.8 56.5 69.0 50.4 58.3

Table 3. Precision (P), recall (R) and F1 score (F1) results of models trained on different source datasets with or without using fine-tuning
(FT) and exposure stacking (EX), evaluated on the respective source validation split.

D. Predictions of best models
In this section we present the predictions and plots of metrics for reported models pre-trained on SynthClutch and fine-

tuned on RealClutch. The following images represent images examples of different 3 viewpoints for different architectures.
In color coding they depict the true-positives (green), false-positives (red) and false-negatives (blue).

The exposure stacking seems to be working inconsistently. In some cases the the poorly illuminated regions receive more
complete predictions and in some difficult cases predictions are completely removed. This might be a problem with domain
differences between the real and synthetic data, as in the real environment there exist inter-reflections between the object and
the manipulator, adding intensity in unexpected regions, which gets amplified by increase in exposure. This can be fixed by
randomizing an environment texture which will regularize the model to learn more robust features. However the exact type
of environment texture could affect the visibility and this study is left as future work.
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Figure 3. Example predictions of best FCN pre-trained on SynthClutch and fine-tunned on RealClutch.
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Figure 4. Example predictions of best DeepLabV3 pre-trained on SynthClutch and fine-tunned on RealClutch.



1 exposure 3 exposures

Figure 5. APRF plot of best U-Net pre-trained on SynthClutch and fine-tunned on RealClutch.



We also report the RealClutch test set plots of accuracy (A), precision (P), recall (R), F1 and F2 score dependent on the
prediction binarization threshold, which we dub the APRF plots. The dotted line (TH) is the threshold value selected on the
validation set of RealClutch, used to report the results in table 2 of the main paper.

Exposure augmentation Exposure stacking

Figure 6. APRF plot of best FCN pre-trained on SynthClutch and fine-tunned on RealClutch.

Exposure augmentation Exposure stacking

Figure 7. APRF plot of best DeepLabV3 pre-trained on SynthClutch and fine-tunned on RealClutch.

Exposure augmentation Exposure stacking

Figure 8. APRF plot of best U-Net pre-trained on SynthClutch and fine-tunned on RealClutch.
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