
 

 

Abstract 

 

Highly automated vehicles with multiple environmental 

sensors require all the sensors aligned online to the same 

coordinate to ensure driving performance and improve 

customer convenience, especially when misalignment 

occurs during driving due to degradation, ageing, 

vibration, or accidents. The alignment between the LiDAR 

and the ego vehicle is one of several types of alignments. 

In this paper, an online alignment approach using road 

elements, e.g., lane markings and traffic signs, in 

aggregated LiDAR point cloud is developed. The 

optimization process to minimize the variance of 

aggregated point cloud for each road element is employed 

to automatically calculate the alignment parameters. To 

improve the algorithm robustness and accuracy, several 

excitation conditions occurred in daily driving are 

identified by algorithm sensitivity analysis with small input 

perturbations. The road elements are detected using 

unique designed heuristic algorithms from the distorted 

point cloud due to the inaccurate alignment parameters 

during optimization. The whole solution is validated by the 

data collected from several test vehicles, and the validation 

results demonstrate the effectiveness and robustness of the 

proposed solution. 

 

1. Introduction 

LiDAR (Light Detection And Ranging) is an important 

sensor for highly automated vehicles (HAVs) since it 

directly measures 3D coordinates of the surrounding 

objects. It is critical for the perception and localization in 

HAVs. The LiDAR emits a laser beam in a given direction 

defined by a vertical emission angle and a horizontal 

emission angle (azimuth), and measures the time interval 

from the emission to its return after being reflected by any 

object surface, thereby determines the distance of the 

object surface to the LiDAR. By scanning in different 

directions, a point cloud is generated by the LiDAR, which 

captures the 3D position information of the surfaces of the 

objects in the environment. In addition, the LiDAR also 

measures the intensity of the reflected laser beam, which 

indicates the object surface characteristics such as color, 

texture, material, etc. 

The raw LiDAR points are recorded in the LiDAR 

coordinate system. In the HAV application, we need the 

positions of detected objects with respect to the vehicle 

coordinate system. Thus, the LiDAR-to-vehicle (extrinsic) 

alignment is needed to map the LiDAR points into the 

vehicle coordinate system. Moreover, in an application 

such as localization, the detected objects need to be 

reported in an earth-fixed coordinate system. The IMU 

(Inertial Measurement Unit, also known as INS - Inertial 

Navigation System) and GPS/GNSS (Global Positioning 

System / Global Navigation Satellite System) are used to 

provide the transform to further map the LiDAR points into 

the earth-fixed coordinate system.  

The LiDAR-to-vehicle alignment can be represented by 

a 4x4 transformation matrix, or equivalently 6 parameters 

based on Euler angle definition, i.e., translation Tx, Ty and 

Tz, and orientation Roll, Pitch and Yaw. There are three 

types of approaches to determine the alignment. The first 

type is to minimize the distance between the LiDAR point 

cloud of an object to the ground-truth coordinate of the 

object. The ground truth can be obtained using the 

GPS/GNSS equipment or the camera positioning system 

(e.g., VICON system [1]). This type of approaches requires 

accurate ground truthing, so it’s suitable for manufacturing 

alignment but not online alignment. The second type is to 

minimize the object vagueness in the aggregated LiDAR 

point cloud for an object [2]. This type of approaches 

requires that the vehicle maneuver contains enough 

excitation, and the desired objects can be identified. The 

third type, known as hand-eye calibration, is to minimize 

the difference of the transformation matrices between two 

positions estimated using the data from the vehicle inertial 

system and using the LiDAR frame to frame point cloud 

registration [3, 4, 5]. This type of approaches also needs 

enough vehicle maneuver excitation and may suffer from 

inaccurate point cloud registration due to degeneracy [6].  

Our approach discussed in this paper is of the second 

type. We propose to use common road elements, i.e., lane 

markings and/or traffic signs, for the LiDAR-to-vehicle 

alignment. With analytical study on sensitivity, we derive 

the conditions of vehicle maneuvers, which provide 

sufficient excitations to determine the 6 parameters of 

alignment respectively. We develop specific algorithms to 
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extract lane markings and traffic signs from the LiDAR 

point cloud as the targets for alignment. Then, an 

optimization is performed to determine the optimal 

alignment parameters to minimize the vagueness of the 

extracted targets. The whole algorithm is validated with the 

data collected by our test vehicle. The results show that the 

mean error of alignment is less than 0.2-degree error on 

orientation and 2cm error on translation. To the best of our 

knowledge, the proposed online LiDAR-to-vehicle 

alignment algorithms using traffic signs and lane markings 

and the associated sensitivity analysis are the first practical 

solution for the large scale of highly automated vehicles.   

2. Related work 

Hand-eye calibration: Hand-eye calibration is a 

popular method for extrinsic calibration for many different 

sensors [3, 4, 7]. For LiDAR-to-vehicle calibration, it 

determines the sensor pose transform A between two 

timestamps using point cloud registration methods, and 

vehicle pose transform B between the same timestamps. 

Then the calibration is to solve the equation AX=XB, where 

X is the vehicle-to-LiDAR transform. [8] formulates the 

hand-eye calibration into a least square problem using 

dual-quaternions, and provides the ways to determine the 

optimal solutions. To improve the robustness, [9] uses 

Schur matric decomposition in solving the hand-eye 

equation and detecting the outliers of sensor data when 

determining A and B. More studies incorporate extrinsic 

calibration into localization and mapping. [10] uses a graph 

optimization to formulate the autocalibration and 

localization to optimize A, X and B at the same time, which 

can reduce the impact of errors from B, but needs more 

computational resource. [11] estimates extrinsic 

parameters together with IMU bias and vehicle dynamics 

with Extended Kalman Filter (EKF), which uses Normal 

Distributions Transform (NDT) to register LiDAR scans as 

observations. [12] and [13] formulate an optimization 

problem to perform extrinsic and dynamic parameters 

together, which uses B-spline to constraint the dynamic 

trajectories and NDT to estimate the LiDAR trajectory. 

They also extract planes to build a surfels map for point-

to-plane distance loss. These methods address the noise in 

B to some extent, but still suffer from A inaccuracy due to 

registration degeneracy and accumulated error.   

Other LiDAR-to-vehicle calibration methods: To 

avoid the error accumulation issue in hand-eye methods, 

other methods are developed based on scanning the same 

stationary object and obtain the aggregated point cloud 

over time. The LiDAR-to-vehicle misalignment generates 

vagueness in the aggregated point cloud and the methods 

are to minimize the vagueness [14, 15, 16, 17, 2]. To 

measure the vagueness, [14] defines the distance between 

the planar surfaces. [17] uses the distance between 

correspondences of matched points. [16, 2] use PCA 

(principal component analysis) to determine the variance 

of the point cloud. [15, 16] require predefined locations. 

[14, 17] use ICP (iterative closest point) on the point clouds 

not associated with specific targets, which has the 

challenge to find the accurate correspondences when 

misalignment is relatively big. Our method follows the idea 

of PCA. We select lane markings and traffic signs as targets 

to minimize their variance. Our algorithm achieves 0.2-

degree error, comparing to [2] which doesn’t use specific 

targets and achieves around 2-degree error.   

Lane marking detection: Methods to detect lane 

markings in a LiDAR point cloud are discussed in [18, 19, 

20, 21, 22, 23]. Most of the methods use intensity of the 

LiDAR points to segment lane marking points and detect 

ground before detecting lane markings. [18, 20] also use 

the elevation information to determine lane marking points. 

[23] use clustering to better utilize the characteristics of the 

line shape. Many of these methods assume accurate 

alignment, which have the challenge with the inaccurate 

alignment. Most of these methods output a line model 

representing the position and direction of a lane marking, 

while our application requires capturing the shape or 

outline of the lane marking segment. Therefore, we 

develop a new method to better capture the lane marking 

boundaries in each single LiDAR frame. 

Traffic sign detection: So far, most traffic sign (object) 

detection algorithms are based on deep neural networks, 

e.g. VoxelNet [24], PointNet [25], LaserNet [26]. 

However, such methods are challenging to be applied to 

the online alignment due to computation resource 

concerns.  

3. Problem formulation 

Denote a point in LiDAR coordinate system at time i as ��� = ���� , ��� , 	�� 
�
. Convert this point into the vehicle 

coordinate system: ��� = 
� ∗ ��� + �    �1� 

where ��� = ����, ��� , 	��
�
 is the point’s coordinates in the 

vehicle coordinate system, 
� is the 3x3 rotation matrix for 

LiDAR-to-vehicle alignment, and �  is the translation 

vector for LiDAR-to-vehicle alignment. The x, y and z axes 

of the vehicle coordinate system are in the directions of 

vehicle forward, left, and up, respectively. Convert this 

point into the earth-fixed coordinate system: �� = 
� ∗ ��� + �� �2� 

where ��  is the point’s coordinates in the earth-fixed 

coordinate system, and 
�  and ��  are the rotation matrix 

and translation vector from the vehicle to the earth-fixed 

coordinate system based on IMU and GPS, respectively. 

We define the earth-fixed coordinate system to be the 

vehicle coordinate system at the initial state of a drive. 

Once the vehicle moves after the initial state, the two 

coordinate systems become different, so are 
� and �� . For 
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a stationary point in the earth-fixed coordinate system, its 

location should not change from time i to time j. The 

calibration is formulated as an optimization problem: ���������� �
� , �� = argmin�&' ,(� ) ∥ ��  − �, ∥��,,� �3� 

Consider a stationary target with a board shape, such as 

a traffic sign or a segment of a lane marking. Denote {P} 

as the set of LiDAR points associated with this target in 

earth-fixed coordinate system collected at different time. 

{P} represents an aggregated point cloud of a target in the 

earth-fixed coordinate system. The position change ∥ ��  −�, ∥  of each point in {P} increases the 3D location 

variance of the point cloud. Thus, the optimization can be 

formulated as: ���������� �
� , �� = argmin�&',(� .��{�} �4�
 

where .��{�} represents the 3D location variance of the 

aggregated point cloud of this target. 

Notice that �
� , �� is derived from 6 parameters (Tx, Ty, 

Tz, Roll, Pitch and Yaw) representing LiDAR-to-vehicle 

transformation.  

4. Sensitivity analysis 

To understand how the vehicle routes and the targets 

impact the results of the alignment calibration, the 

sensitivity analysis is performed as follows: (1) introduce 

small perturbations for the 6 parameters; (2) calculate the 

change on the object location in the earth-fixed system; (3) 

identify the appropriate routes/targets for the calibration of 

different parameters. 

Without loss of generality, in the following we assume 

the roll (23� �  and pitch (24� � angles of the vehicle with 

respect to the earth-fixed coordinate system are very small 

and can be neglected, i.e., �23� ≅ 24� ≅ 23, ≅ 24, ≅ 0�. Thus, 

the rotation matrix 
� is the one based on only yaw 27� . 

4.1. Translational alignment sensitivity analysis 

For the translational parameters, we introduce the 

perturbation �∆ = [∆3 , ∆4 , ∆7]′. From equations (2) and (1), 

we have the new object coordinates due to the perturbation 

as follows �∆� = 
� ∗ <
� ∗ ��� + � + �∆= + �� = �� + 
� ∗ �∆ �5� 

Consequently, we have  �∆� − �∆, = �
� − 
,� ∗ �∆ ≅ 

−2 sin �@AB C@ADE � 

⎝
⎜⎛sin�@AB I@ADE � ∗ ∆3 + cos �@AB I@ADE � ∗ ∆4

cos �@AB I@ADE � ∗ ∆3 − sin �@AB I@ADE � ∗ ∆40 ⎠
⎟⎞       �6� 

From the above equation, we have the following results: s-

i) z-axis translational parameter �7 cannot be calibrated by 

minimizing object localization errors, because the change ∆7 has no effect on the localization error ��∆� − �∆,�. S-ii) 

The localization error ��∆� − �∆,�  by translational 

misalignment �∆ does not depend on the vehicle locations, 

but depends on the vehicle orientation (yaw: 27� , 27,), which 

implies the distance from the vehicle to the object has no 

effect on the translational calibration. s-iii) In order to have 

big impacts on the localization error from translational 

misalignment, we cannot have |27� −  27,| ≅ 0 but better 

have |27� −  27,| ≅ 180°. In other words, the translational 

calibration cannot be performed during straight-line 

driving but at turning (e.g., left turn, right turn or U-turn). 

4.2. Orientational alignment sensitivity analysis 

From Equations (1) and (2) we have  ��� = <
�=S ∗ [�
��S ∗ ��� − ��� − �]    �7� 

In Equation (7), <
�=S = <
�=CU
 and �
��S = �
��CU. For 

any angular perturbation V′ = V + W, from Equations (1), 

(2) and (7),  �X� = 
� ∗ <
�IX ∗ ��� + �= + ��     �8� 

Further we have    �X� − �� = 
� ∗ <
�IX − 
�= ∗ <
�=S ∗ �
��S∗ ��� − �� − 
� ∗ �� �9� 

Let  ��� − �� − 
� ∗ �� = ��� , �� , Z��′ , from Equations 

(1) and (2), ��� , �� , Z��S = 
� ∗ 
� ∗ ���, which is the static 

object coordinate as detected by LiDAR with the rotation 

to the earth-fixed system but without the translation to the 

earth-fixed system. <�, , �, , Z,=S − ��� , �� , Z��S  is the 

position change of the object between time i and j in the 

earth-fixed coordinate system, which is also the opposite 

position change of the vehicle during this time in the earth-

fixed coordinate system. We have Z� − Z, ≅ 0  when the 

vehicle is on a flat road, which is usually the case. 

Now for the roll angular perturbation V3S = V3 + W , 

assuming W  is small, we have Z[\W ≅ 1  and \�]W ≅ W . 

Next, we consider two different routes: (a) straight-line 

driving; (b) at turning. When doing straight-line driving 

starting from the initial state, vehicle yaw 27� ≅ 27, ≅ 0, 

vehicle forward movement ^�, − ��^ > 0, and vehicle left 

movement �� − �, ≅ 0. From Equation (9), we can have 

(the detailed inference is omitted here due to the paper 

length restriction) 

�X� − �X, ≅ W ∗ ` 0\�]V4 ∗ ��, − ���Z[\V4 ∗ sin V7 ∗ ��, − ���a   �10� 
Since normally the pitch angular alignment V4 is small, the 

dominate localization error is on z-axis. S-iv) If the yaw 

angular alignment V7  is also small, then the roll angular 

boresight alignment cannot be calibrated during straight-

line driving. S-v) If V7 ≅ 90°,  then the roll angular 

alignment can be calibrated during straight-line driving as 

long as |�, − ��| ≫ 0, which is the forward movement of 

the vehicle. 
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When at turning, considering V4  is small and Z� ≅ Z, , 

similar to Equation (10) we have �X� − �X, ≅ W ∗ Z[\V4

∗
⎝
⎜⎜
⎛2 ∗ sin c27� − 27,2 d ∗ cos�V7 + 27� + 27,2 � ∗ Z�

2 ∗ sin c27� − 27,2 d ∗ sin�V7 + 27� + 27,2 � ∗ Z�e ⎠
⎟⎟
⎞   �11� 

w = −2 ∗ sin c27� − 27,2 d ∗ �cos cV7 + 27� + 27,2 d ∗ ��
+ sin cV7 + 27� + 27,2 d ∗ ��� + sin�V7 + 27,� ∗

<�, − ��= + cos�V7 + 27,� ∗ ��� − �,� �12�
 

When the object is at the similar height as the LiDAR, 

then Z� is small and the dominate localization error is on z-

axis. S-vi) From the above equation we know roll angular 

alignment can be calibrated at turning.   

For the pitch angular perturbation V4S = V4 + W, again, 

we consider the cases of straight-line driving and at 

turning. For straight-line driving, 27� ≅ 27, ≅ 0  and �� ≅�,. With the assumption of Z� ≅ Z, , like Equation (10) we 

have 

�X� − �X, ≅ W ∗ c 00cos V7 ∗ ��, − ���d �13� 

s-vii) If V7 ≅ 90°  then pitch alignment cannot be 

calibrated during straight-line driving. S-viii) When V7 ≅0°, the pitch alignment can be calibrated during straight-

line driving, and it is better to have large vehicle location 

changes, i.e., <|�, − ��|= ≫ 0.  s-ix) When at turning, 

considering Z� ≅ Z, , similar as in Equation (11), the pitch 

angular alignment can be calibrated at turning.  

For the yaw angular perturbation V7S = V7 + W, like 

Equation (10) we have  

�X� − �X, ≅ `W ∗ ��, − ���W ∗ ��� − �,�0 a �14� 
Therefore, s-x) the yaw angular alignment can be 

calibrated as long as the vehicle location change is big 

enough. Since the vehicle orientation has no impact on the 

localization error, the yaw alignment can be calibrated 

either during straight-line driving or at turning. 

5. Algorithm  

Based on the sensitivity analysis, at turning, the 5 

parameters (Tx, Ty, Roll, Pitch and Yaw) are estimated 

using traffic sign data, namely 5P-optimization. During 

straight-line driving maneuvers, the 2 parameters (Roll and 

Yaw, due to V7 ≅ 90° in our test vehicle) are estimated 

using either lane markings or traffic signs, namely 2P-

optimization. In the optimization (section 5.3), we derive 


� and � using all 6 parameters combining variables (2P or 

5P) with fixed parameters. Due to s-i), Tz is calculated 

separately based on the ground point position after 

optimization and the predetermined vehicle-to-ground 

distance.   

The whole algorithm flow is shown in Figure 1. The 

LiDAR data and GPS/IMU data are loaded. Each traffic 

sign and lane markings are extracted using the algorithms 

in 5.1 and 5.2. The raw LiDAR data in front of the vehicle 

is loaded for Tz calculation. For each frame, up to 10 points 

with the lowest z value are saved into the buffer. A moving 

buffer with up to N (e.g., 5000) points is used to save the 

latest ground points.  

 
Figure 1: The flowchart of the traffic-sign-based alignment 

algorithm. 

 

If the number of road elements (traffic signs or lane 

marks) during straight-line driving is greater than a 

threshold (e.g., 7), an 2P optimization, described in section 

5.3, will be conducted. Please note the traffic signs and lane 

marks are processed separately due to the difference of loss 

functions. In order to improve the algorithm robustness, 

multiple road elements are used for optimization rather 

than a single one in [16]. Similarly, 5P optimization is 

conducted with enough of traffic sign data at turning.   

After an optimization is performed, Tz is calculated. The 

ground data are projected to the vehicle coordinate using 

the current estimated alignment parameters. Only the data 

with z values within [-0.4, 0.4] are kept. The mean value 

(noted as h.ij) of filtered data is calculated. Tz is then 

calculated as k7_�m�( − n]\opqrms − h.ij , where  k7_�m�(   is 

the current estimate of Tz, and n]\opqrms  is the distance 

between the vehicle center of gravity and ground, which is 

a predefined constant. This is because the z value of ground 

points in the LiDAR coordinate equals to  h.ij  - k7_�m�(, 
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and also equals to −Tz −n]\opqrms . The updated Tz result 

is pushed to the result buffer as well, and the buffer to store 

all ground point cloud data is cleared.  

Once there are enough results in the buffer, the average 

and the standard deviation of all alignment results are 

calculated. The results, which are more than 1 standard 

deviation from the average value, are filtered. The average 

of filtered results will be used as the final alignment result.  

5.1. Lane marking detection 

A lane marking segment is of a rectangle shape on the 

ground. Lane markings captured during straight-line 

driving allow us to determine the Yaw and Roll. With 

GPS/IMU data, we enable the lane marking detection only 

when the vehicle is driving in a straight line. 

An aggregated point cloud of a lane marking segment is 

generated in four steps: 1) detect candidate lane marking 

points in each LiDAR frame, 2) aggregate candidate points 

from consecutive frames in the earth-fixed coordinate 

system, 3) select a lane marking target based on current 

vehicle position, and 4) remove outlier points. 

For each LiDAR frame, we first perform ground 

segmentation to select the points on the ground based on 

[27], which is based on the elevation and slope conditions 

of each LiDAR point. Next, we detect the candidate lane 

marking points from the ground points based on intensity. 

To precisely capture the boundaries of the lane markings, 

we detect the rising edge and falling edge of the intensity 

across the azimuth angle. Figure 2 shows an example of the 

intensity of the ground points associated with the same 

vertical emission angle (a scan line). 

 
Figure 2: An example of intensity of ground points in one scan 

line. 

 

We use a state machine to determine lane marking points 

shown in Figure 3. Starting with initial State 0 and 

sweeping towards right, if a rising edge is detected, the 

state goes to State 1, representing that a left bound of a lane 

marking is detected. We update the saved left bound if a 

new rising edge is detected and it is close to the previous 

rising edge. If we detect a falling edge, we save this falling 

edge as a right bound of the lane marking and go to State 

2. We update the saved right bound if a new falling edge is 

detected and it is close to the previous falling edge. If we 

detect a rising edge, we save it as a new left bound, and go 

to State 1.  

If we detect a falling edge while in State 0, we may start 

from the middle of a lane marking segment. Then we save 

the first ground point as the left bound and the detected 

falling edge as the right bound, and go to State 2.  

The sweep most likely ends in State 2, with pairs of left 

and right bounds. If it ends in State 1, we may end the 

sweep in the middle of a lane marking segment. If the 

distance between the last left bound and the last ground 

point is small, we save the last ground point as a right 

bound; otherwise, we ignore the last left bound.  

 
Figure 3: The state machine of sweeping a scan line of ground 

points. 

 

After the sweep, we filter out the bound pairs whose 

widths are too large, and combine the consecutive pairs if 

they are very close and their widths are small. Finally, all 

the points located within each of bound pair are all labeled 

as candidate lane marking points. We perform the same 

process in each scan line in the current LiDAR frame. The 

detected candidate lane marking points are stored in a 

buffer.  

Next in step 2), with Equation (1) and (2), we aggregate 

the candidate points from consecutive frames into the 

earth-fixed coordinate system with an initial guess of the 

LiDAR-to-vehicle alignment and the GPS/IMU data 

associated with each point. Then in step 3), we select a lane 

marking segment based on the region with respect to the 

current vehicle position. The points within the region form 

an aggregated point cloud of a target.  

We observe some incorrect lane marking points with a 

high elevation above the actual ground, and they are far 

from the sensor. This is due to the accumulated elevation 

difference between the neighbors during ground 
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segmentation, and a point far from the sensor may have a 

high elevation while its slope is close to its neighbor.  

Since the lane marking segment is close to a straight line 

in the 3D space, we perform 3D line fitting based on Hough 

transform [28] to remove the outliers. The kept inlier points 

form a point cloud of one target. They are saved as one 

target in a target buffer. 

5.2. Traffic sign detection 

The traffic signs are detected based on the aggregated 

LiDAR point cloud using the initial guess of alignment. 

The aggregated data is then filtered by spatial and intensity. 

Considering the typical positions of traffic signs, we only 

keep the data with the distance between 6 meters and 100 

meters in LiDAR coordinate. Since the traffic sign is 

usually covered by the highly reflective material, only the 

data with the intensity greater than 190 are kept.  

Due to the sparsity of the LiDAR data, a certain number 

(e.g., 500) of frames of data are aggregated in the earth-

fixed coordinate. An unsupervised clustering algorithm, 

Density-based spatial clustering of applications with noise 

(DBSCAN [29]), is applied to label each LiDAR data point 

in the earth-fixed coordinate. The points that are close to 

each other are clustered as one traffic sign candidate. Since 

the same traffic sign may be observed in different batches, 

the center of each traffic sign candidate is calculated. If the 

center of the current traffic sign is close to the previous 

identified traffic sign, the data from both signs are 

combined as one target. 

From the LiDAR alignment accuracy perspective, we 

remove some traffic sign candidates from the buffer, if the 

minimum speed of the ego vehicle is less than 5 m/s. When 

the ego vehicle speed is very low, the wheel speed sensor 

may generate wrong measurement due to the resolution 

limitation, which may generate inaccurate alignment 

results. Based on sensitivity analysis above, the traffic sign 

candidates are removed, if the change of the ego vehicle 

position is less than 40m. We also remove the candidates 

with the small amount of traffic sign points (e.g., 120) or 

the large amount of traffic sign points (e.g., 20,000).  

The data spatial distribution is also checked to ensure a 

sign-like dimension. PCA is applied to each traffic sign 

candidate and generates three eigenvectors. These 

eigenvectors represent the orthogonal direction of the 

largest three variations for the traffic sign point cloud. Then 

all the data corresponding to that traffic sign candidate are 

projected to three eigenvectors. If the range of largest 

variation is too big (e.g., greater than 8m), but the range of 

the smallest variation is too small (e.g., less than 2m), we 

consider these are fake signs and remove them from the 

buffer (e.g., semi-truck shown in Figure 4 (b) or other 

moving vehicles in Figure 4 (a)). The traffic sign 

candidates are removed, if the range of all three directions 

are large (e.g., more than 6m).  

Sometimes, there are multiple traffic signs detected, but 

close to each other. It may be due to multiple signs close to 

each other or one sign but with sparse LiDAR points. If it’s 

the former case, multiple signs should be separated; if it’s 

the latter case, these clusters should be combined. Figure 5 

shows an example on the road.  

 

 
(a) 

 
(b) 

Figure 4: Examples of fake traffic sign candidates. 

 

 
Figure 5: Examples of multiple traffic signs close to each other. 

 

A clustering with a smaller threshold is employed and 

the following algorithm is used to separate or combine 

clusters. Firstly, the minimum distance between any two 

clusters is calculated. Here the distance is defined as the 

Euclidean distance in the earth-fixed coordinate. Then for 

each cluster, a list is generated with the indices including 

itself and the other clusters, whose distance to this cluster 

is less than a threshold (e.g., 0.5 m). We then combine the 

lists sharing the same indices. For instance, cluster 1 is 

close to the clusters 3 and 5 (i.e. list(1) = {1,3,5}), and the 

cluster 2 is close to the clusters 5 and 6 (i.e. list(2) = 
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{2,5,6}). Since the list 1 and the list 2 share the same index 

5, these two lists are combined into one list with the indices 

{1,2, 3, 5, 6}. Each list after combination is corresponding 

to an actual cluster (traffic sign). The distance between two 

clusters is at least 0.5m. We then combine all the data 

belonging to these indices in each list.  

5.3. Optimization  

The variance of the target point cloud is employed for 

the loss function, and the Adam optimization algorithm 

[30] is used to determine the alignment parameters by 

minimizing the loss. Denote each point k in the LiDAR 

coordinate for target ] as  tm,u. With equations (1) and (2), 

we map it into the earth-fixed coordinate system, and 

denote its coordinates as tm,uv . We put all the projected 

points into one matrix tmv, each column of which is tm,uv . 

To determine the 3D variances of tmv , We calculate the 

center point of tmv: tm,wv = meanu tm,uv  �15� 

Then we perform singular value decomposition: 

<tmv − tm,wv =� = ym z\m,U \m,E \m,{
| z.m,U�.m,E�.m,{� | �16� 

where \m,U , \m,E  and \m,{  are singular values in a 

descending order. Denote }m  as the number of points of tmv. Therefore, 
~�,����, 

~�,���� and 
~�,���� are corresponding to the 

standard deviations in the length, width and height 

direction of a road element (e.g., lane mark segment or 

traffic sign), respectively. The optimal alignment <
� , �=∗
 

should generate the minimal variances in the width and 

height directions for an aggregated lane mark segment. For 

a traffic sign, the variances of all three directions are 

minimized. Therefore, the optimization problem to 

determine the alignment parameters is formulated as (17) 

and (18), respectively: 

<
� , �=∗ = argmin<&',(= ) \m,E + \m,{�}m
�

m�U �17� 

<
� , �=∗ = argmin<&',(= ) \m,U + \m,E + \m,{�}m
�

m�U �18� 

where �  is the number of targets used to generate each 

calibration result. For the traffic sign optimization, both 2P 

and 5P optimization are performed with (18). 

6. Experiments 

For validation, the proposed algorithms are tested with 

several recordings collected from different test vehicles on 

different days. The LiDAR used in these tests is 

Velodyne® VLP-32, mounted on the roof of the vehicle, 

whose vertical field of view is 48°. The RTK sensor is used 

to generate GPS/IMU information. A Dell laptop with 

Ubuntu 16.04, 31.3 GB memory and Intel Xeon CPU E3-

1505M @2.8GHz is used to run all the tests. The Adam 

optimizer learning rate is set as 0.001, the number of steps 

is 1500. The ground truth values are calibrated and 

validated manually by our test fleet engineers.  

6.1. Alignment results based on lane markings 

This subsection presents the test results of the alignment 

algorithm using lane markings. This data is collected from 

a suburban area with 1040 lane marking segments detected 

as targets. We tune the algorithm based on this recording. 

With the same data, we perform 6 tests defined by a 

combination of initial guess and L value. For the initial 

guess of alignment parameters, we add 0.3-degree error on 

the ground truth values in Test 1, 2 and 3, and add 3-degree 

error in Test 4, 5 and 6. For L, the number of targets used 

in each optimization, we select L=10 in Test 1 and 4, L=20 

in Test 2 and 5, and L=40 in Test 3 and 6. 

Error is calculated by the output parameter value minus 

its ground truth value. 0 error means perfect accuracy. The 

mean and standard deviation of these errors of each test are 

listed in Table 1. Overall, the mean error of roll is about -

0.3 degree, and the mean error of yaw is about ±0.1 degree. 

The mean error of roll is slightly bigger than the mean error 

of yaw. 

 
Table 1: Alignment results using lane markings. 

 Mean roll 

error (deg) 

Mean yaw 

error (deg) 

STD roll 

error (deg) 

STD yaw 

error (deg) 

Test 1 -0.320 0.096 0.097 0.575 

Test 2 -0.314 0.098 0.073 0.511 

Test 3 -0.316 0.062 0.055 0.356 

Test 4 -0.294 -0.153 0.061 0.616 

Test 5 -0.291 -0.119 0.049 0.409 

Test 6 -0.295 -0.106 0.035 0.298 

 

With bigger errors in the initial guess, the roll error 

doesn’t change much, but the yaw error (absolute value) 

increased slightly. Moreover, the standard deviation of the 

yaw error is bigger than the standard deviation of the roll 

error. This can be interpreted by the geometry 

characteristic of the lane marks. The range in width is 

bigger than the range in height for a lane mark. In LiDAR 

point clouds, the lane mark points have a bigger variance 

in the width direction than the height direction. In addition, 

the standard deviations decrease when we increase the 

number of targets used in each calibration, which indicates 

more stable results. 

The comparison with other existing methods is ignored 

in this test since no methods are found configurable to align 

only roll and pitch under straight line motion. 

6.2. Alignment results based on traffic signs  

The first test we conducted is to show the effectiveness 

3354



 

 

of using multiple traffic signs during optimization. The 

initial guess of alignment parameters is offset by 0.2 m for 

translation parameters and 3 degrees for rotation 

parameters from the ground truth values, which also 

applied to other tests in this section. The aggregated point 

cloud at turning is shown in Figure 6.  Three traffic signs, 

noted in yellow, are used in alignment estimation. Our test 

results indicate that the estimation error with three traffic 

signs together is less than 0.4 degree, but the estimation 

error from each individual sign can be as high as 3.2 

degree. 

 

 
Figure 6: Aggregated LiDAR point cloud at turning. 

 

We tune the algorithm using one recording, and test on 

three different recordings. The 2P and 5P optimization 

errors for one recording from one test vehicles are shown 

in Table 2 and Table 3 respectively. Each column is the 

estimation error. The translation error unit is meter and the 

rotation error unit is degree. Each row is the optimization 

result using 7 traffic signs. There are totally 27 2P results 

and 10 5P results. Due to the space limitation, only the 

maximum, minimum, average and standard deviation of 27 

2P results are shown in Table 3.  The vehicle was driven 

for 17.27 minutes, and the total driving distance is 

11,955.9m. Total number of LiDAR frames is 156,200.  

Table 2: Results for 5P optimization and Tz calculation  

Sign 
Tx error 
(m) 

Ty error 
(m) 

Tz error 
(m) 

Roll error 
(deg) 

Pitch error 
(deg) 

Yaw error 
(deg) 

1 -0.017 0.022 0.011 0.114 0.032 0.032 
2 -0.126 0.055 0.003 0.080 -0.035 -0.046 
3 0.055 -0.055 0.018 -0.101 -0.042 0.403 
4 -0.044 -0.049 0.007 0.091 -0.109 -0.053 
5 -0.032 -0.143 0.011 0.056 0.054 0.147 
6 0.013 -0.045 0.012 -0.022 0.189 0.074 
7 0.037 -0.012 0.013 -0.013 0.024 0.189 
8 0.100 -0.015 0.033 0.034 -0.067 0.316 
9 0.052 -0.041 0.027 0.023 0.047 0.226 
10 -0.074 -0.048 0.014 0.126 0.541 0.267 
Avg. -0.004 -0.033 0.015 0.039 0.063 0.156 
Std. 0.068 0.053 0.009 0.070 0.187 0.153 

 

The alignment results of multiple recordings from 

various vehicles are shown in Table 4. Each row indicates 

the average alignment error using all the data from the 

whole recording. It can be clearly observed that our 

dynamic LiDAR alignment algorithm can achieve high 

alignment accuracy. 

We compare with another two existing methods in this 

test using the same data of the test of Table 2 and 3. Hand-

eye + LOAM uses the registration method in [31] and 

solution in [3] to perform the hand-eye calibration. 

Linkalibr is introduced in [11] using NDT and EKF to 

perform alignment with localization. The results are shown 

in Table 5. The results show our approach achieves better 

accuracy in translation and roll. Pitch is better than 

Linkalibr. Yaw is close among these three approaches. 

With further case study, the root cause of inaccuracy in 

hand-eye + LOAM and Linkalibr is mainly the LiDAR 

point cloud registration error. This shows our approach is 

robust under such challenging scenarios. 

Table 3: Results for 2P optimization and Tz calculation.  
Results Tz error (m) Roll error (deg)  Yaw error (deg) 

Maximum 0.042 0.211 0.461 

Minimum -0.001 -0.103 -0.096 

Average 0.020 0.045 0.188 

Standard Deviation 0.012 0.080 0.136 

Table 4: Average alignment error for different vehicles. 

Veh 
Distance 

(m) 

Processing 

Time (mins) 

Tx error 

(m) 

Ty error 

(m) 

Tz error 

(m) 

Roll 

error (deg) 

Pitch 

error 

(deg) 

Yaw 

error 

(deg) 

1 11676 191.4 0.000 0.007 0.004 0.048 0.005 0.009 

2 11956 146.2 -0.004 -0.033 0.018 0.044 0.063 0.179 

3 12313 142.9 0.012 0.003 0.000 0.017 0.012 0.032 

Table 5: Average alignment error from different methods. 

Method 

Tx 

error 

(m) 

Ty 

error 

(m) 

Tz 

error 

(m) 

Roll error 

(deg) 

Pitch 

error 

(deg) 

Yaw error 

(deg) 

Ours based on traffic signs -0.004 -0.033 0.018 0.044 0.063 0.179 

Hand-eye [3] + LOAM [31] 0.399 0.215 2.467 0.131 0.077 0.188 

Linkalibr [11] 0.427 0.161 1.161 1.515 1.517 0.155 

7. Conclusion 

This paper presents an online LiDAR-to-vehicle 

alignment approach using road elements including lane 

markings, traffic signs, and ground point position. Based 

on the sensitivity analysis, appropriate vehicle routes with 

the most excitation for different parameters are selected. 

The approach is validated by the test vehicle data. The 

results show that the mean error during about 12KM 

driving can achieve up to 0.2-degree error on orientation 

and 2cm error on translation, which demonstrates the 

effectiveness of developed approaches. This approach 

relies on the availability and accuracy of the road elements. 

In the future, we will study on methods to cover other 

different targets to improve the usability and robustness. 

Acknowledgement 

This work is supported by Wende Zhang, Hao Yu, Yilu 

Zhang, Paul Krajewski, Wen-Chiao Lin, Shiming Duan, 

Sarah Gagnon, Michael Wahlstrom, Joaquin Carcache, and 

Joseph Jang at General Motors. 

3355



 

 

References 

[1]  P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur and X. 

Savatier, "A study of Vicon system positioning 

performance," Sensors, vol. 17, no. 7, pp. 1591-1609, 

2017.  

[2]  A. Diehm, J. Gehrung, M. Hebel and M. Arens, "Extrinsic 

self-calibration of an operational mobile LiDAR system," 

Proceedings of SPIE, Laser Radar Technology and 

Applications XXV, vol. 11410, pp. 1-17, 2020.  

[3]  R. Horaud and F. Dornaika, "Hand-eye calibration," The 

International of Robotics Research, vol. 14, no. 3, pp. 195-

210, 1995.  

[4]  F. Dornaika and R. Horaud, "Simultaneous robot-world 

and hand-eye calibration," IEEE Transacations on 

Robotics and Automation, vol. 14, no. 4, pp. 617-622, 

1998.  

[5]  A. Gostar, C. Fu, W. Chuah, M. Hossain, R. Tennakoon, 

A. Bab-Hadiashar and R. Hoseinnezhad, "State transition 

for statistical SLAM using planar features in 3D point 

clouds," Sensors, vol. 19, pp. 1614-1630, 2019.  

[6]  J. Zhang, M. Kaess and S. Singh, "On degeneracy of 

optimization-based state estimation problems," in IEEE 

International Conference on Robotics and Automation 

(ICRA), Stockholm, Sweden, 2016.  

[7]  M. Shah, R. D. Eastman and T. Hong, "An overview of 

robot-sensor calibration methods for evaluation of 

perception systems," in Proceedings of the Workshop on 

Performance Metrics for Intelligent Systems, College 

Park, MD, USA, 2012.  

[8]  A. Dekel, L. H¨arenstam-Nielsen and S. Caccamo, 

"Optimal least-squares solution to the hand-eye calibration 

problem," in Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, 2020.  

[9]  J. Liu, J. Wu and X. Li, "Robust and accurate hand–eye 

calibration method based on Schur matric decomposition," 

Sensors, vol. 19, no. 20, 2019.  

[10]  C. L. Gentil, T. Vidal-Calleja and S. Huang, 

"IN2LAAMA: inertial LiDAR localisation autocalibration 

and mapping," IEEE Transactions on Robotics, vol. 37, 

no. 1, pp. 275-290, 2021.  

[11]  S. Mishra, G. Pandey and S. Saripalli, "Target-free 

Extrinsic Calibration of a 3D-Lidar and an IMU," in 2021 

IEEE International Conference on Multisensor Fusion and 

Integration for Intelligent Systems (MFI), Karlsruhe, 

Germany, 2021.  

[12]  J. Lv, J. Xu, K. Hu, Y. Liu and X. Zuo, "Targetless 

Calibration of LiDAR-IMU System Based on Continuous-

time Batch Estimation," in 2020 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS), Las 

Vegas, NV, USA, 2020.  

[13]  J. Lv, X. Zuo, K. Hu, J. Xu, G. Huang and Y. Liu, 

"Observability-Aware Intrinsic and Extrinsic Calibration 

of LiDAR-IMU Systems," IEEE Transactions on 

Robotics, vol. 38, no. 6, pp. 3734 - 3753, 2022.  

[14]  P. Rieger, N. Studnicka, M. Pfennigbauer and G. Zach, 

"Boresight alignment method for mobile laser scanning 

systems," Journal of Applied Geodesy, vol. 4, no. 1, pp. 

13-21, 2010.  

[15]  F. Yuan, G. Li, Z. Zuo, D. Li, Z. Qi, W. Qiu and J. Tan, 

"Airborne LIDAR borsight error calibration based on 

surface coincide," IOP Conference Series: Earth and 

Environmental Science, vol. 17, 2014.  

[16]  R. Sands and B. Leslie, "OxTS boresight alignment 

determination with Velodyne VLP-16 LiDAR (AE021)," 

2017. [Online]. Available: 

https://www.oxts.com/app/uploads/2017/11/ae021_report

_171127.pdf. 

[17]  Z. Li, J. Tan and H. Liu, "Rigorous boresight self-

calibration of mobile and UAV LiDAR scanning systems 

by strip adjustment," Remote Sensing, vol. 11, no. 4, 2019. 

[18]  S. Kammel and B. Pitzer, "Lidar-based lane marker 

detection and mapping," in 2008 IEEE Intelligent Vehicles 

Symposium, Eindhoven, Netherlands, 2008.  

[19]  M. Thuy and F. P. León, "Lane detection and tracking 

based on lidar data," Metrology and Measurement 

Systems, vol. 17, no. 3, pp. 311-321, 2010.  

[20]  B. Yang, L. Fang, Q. Li and J. Li, "Automated extraction 

of road markings from mobile LiDAR point clouds," 

Photogrammetric Engineering & Remote Sensing, vol. 78, 

no. 4, pp. 331-338, 2012.  

[21]  A. Hata and D. Wolf, "Road marking detection using 

LiDAR reflective intensity data and its application to 

vehicle localization," in 17th International IEEE 

Conference on Intelligent Transportation Systems (ITSC), 

Qingdao, China, 2014.  

[22]  F. Ghallabi, F. Nashashibi, G. El-Haj-Shhade and M.-A. 

Mittet, "LiDAR-based lane marking detection for vehicle 

positioning in an HD map," in 2018 21st International 

Conference on Intelligent Transportation Systems (ITSC), 

Maui, HI, USA, 2018.  

[23]  C. Lin, Y. Guo, W. Li, H. Liu and D. Wu, "An automatic 

lane marking detection method with low-density roadside 

LiDAR data," IEEE Sensors Journal, vol. 21, no. 8, pp. 

10029 - 10038, 2021.  

[24]  Y. Zhou and O. Tuzel, "Voxelnet: end-to-end learning for 

point cloud based 3D object detection," in The IEEE 

Conference on Computer Vision and Pattern Recognition 

(CVPR), 2018.  

[25]  D. Xu, D. Anguelov and A. Jain, "Pointfusion: deep sensor 

fusion for 3D bounding box estimation," in The IEEE 

Conference on Computer Vision and Pattern Recognition 

(CVPR), 2018.  

[26]  G. P. Meyer, a. Laddha, E. Kee, C. Vallespi-Gonzalez and 

C. K. Wellington, "LaserNet: an efficient probabilistic 3D 

object detector for autonomous driving," in The IEEE 

Conference on Computer Vision and Pattern Recognition, 

2019.  

[27]  I. Bogoslavskyi and C. Stachniss, "Efficient online 

segmentation for sparse 3D laser scans," PFG – Journal of 

Photogrammetry, Remote Sensing and Geoinformation 

Science, vol. 85, pp. 41-52, 2017.  

3356



 

 

[28]  P. V. C. Hough, "Method and means for recognizing 

complex patterns". United States of America Patent 

US3069654A, 18 December 1962. 

[29]  M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A density-

based algorithm for discovering clusters in large spatial 

databases with noise," in KDD'96: Proceedings of the 

Second International Conference on Knowledge 

Discovery and Data Mining, 1996.  

[30]  D. Kingma and J. Ba, "Adam: a method for stochastic 

optimization," in The 3rd International Conference for 

Learning Representations (ICLR), San Diego, 2015.  

[31]  J. Zhang and S. Singh, "LOAM: Lidar Odometry and 

Mapping in Real-time," in Proceedings of Robotics: 

Science and Systems (RSS '14), 2014.  

 

3357


