

Abstract

Highly automated vehicles with multiple environmental

sensors require all the sensors aligned online to the same

coordinate to ensure driving performance and improve

customer convenience, especially when misalignment

occurs during driving due to degradation, ageing,

vibration, or accidents. The alignment between the LiDAR

and the ego vehicle is one of several types of alignments.

In this paper, an online alignment approach using road

elements, e.g., lane markings and traffic signs, in

aggregated LiDAR point cloud is developed. The

optimization process to minimize the variance of

aggregated point cloud for each road element is employed

to automatically calculate the alignment parameters. To

improve the algorithm robustness and accuracy, several

excitation conditions occurred in daily driving are

identified by algorithm sensitivity analysis with small input

perturbations. The road elements are detected using

unique designed heuristic algorithms from the distorted

point cloud due to the inaccurate alignment parameters

during optimization. The whole solution is validated by the

data collected from several test vehicles, and the validation

results demonstrate the effectiveness and robustness of the

proposed solution.

1. Introduction

LiDAR (Light Detection And Ranging) is an important

sensor for highly automated vehicles (HAVs) since it

directly measures 3D coordinates of the surrounding

objects. It is critical for the perception and localization in

HAVs. The LiDAR emits a laser beam in a given direction

defined by a vertical emission angle and a horizontal

emission angle (azimuth), and measures the time interval

from the emission to its return after being reflected by any

object surface, thereby determines the distance of the

object surface to the LiDAR. By scanning in different

directions, a point cloud is generated by the LiDAR, which

captures the 3D position information of the surfaces of the

objects in the environment. In addition, the LiDAR also

measures the intensity of the reflected laser beam, which

indicates the object surface characteristics such as color,

texture, material, etc.

The raw LiDAR points are recorded in the LiDAR

coordinate system. In the HAV application, we need the

positions of detected objects with respect to the vehicle

coordinate system. Thus, the LiDAR-to-vehicle (extrinsic)

alignment is needed to map the LiDAR points into the

vehicle coordinate system. Moreover, in an application

such as localization, the detected objects need to be

reported in an earth-fixed coordinate system. The IMU

(Inertial Measurement Unit, also known as INS - Inertial

Navigation System) and GPS/GNSS (Global Positioning

System / Global Navigation Satellite System) are used to

provide the transform to further map the LiDAR points into

the earth-fixed coordinate system.

The LiDAR-to-vehicle alignment can be represented by

a 4x4 transformation matrix, or equivalently 6 parameters

based on Euler angle definition, i.e., translation Tx, Ty and

Tz, and orientation Roll, Pitch and Yaw. There are three

types of approaches to determine the alignment. The first

type is to minimize the distance between the LiDAR point

cloud of an object to the ground-truth coordinate of the

object. The ground truth can be obtained using the

GPS/GNSS equipment or the camera positioning system

(e.g., VICON system [1]). This type of approaches requires

accurate ground truthing, so it’s suitable for manufacturing

alignment but not online alignment. The second type is to

minimize the object vagueness in the aggregated LiDAR

point cloud for an object [2]. This type of approaches

requires that the vehicle maneuver contains enough

excitation, and the desired objects can be identified. The

third type, known as hand-eye calibration, is to minimize

the difference of the transformation matrices between two

positions estimated using the data from the vehicle inertial

system and using the LiDAR frame to frame point cloud

registration [3, 4, 5]. This type of approaches also needs

enough vehicle maneuver excitation and may suffer from

inaccurate point cloud registration due to degeneracy [6].

Our approach discussed in this paper is of the second

type. We propose to use common road elements, i.e., lane

markings and/or traffic signs, for the LiDAR-to-vehicle

alignment. With analytical study on sensitivity, we derive

the conditions of vehicle maneuvers, which provide

sufficient excitations to determine the 6 parameters of

alignment respectively. We develop specific algorithms to

Online LiDAR-to-Vehicle Alignment Using Lane Markings and Traffic Signs

Yao Hu, Xinyu Du, Shengbing Jiang

General Motors

GM Global Technical Center, Warren, MI 48092, USA
{yao.hu, xinyu.du, shengbing.jiang}@gm.com

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3348

extract lane markings and traffic signs from the LiDAR

point cloud as the targets for alignment. Then, an

optimization is performed to determine the optimal

alignment parameters to minimize the vagueness of the

extracted targets. The whole algorithm is validated with the

data collected by our test vehicle. The results show that the

mean error of alignment is less than 0.2-degree error on

orientation and 2cm error on translation. To the best of our

knowledge, the proposed online LiDAR-to-vehicle

alignment algorithms using traffic signs and lane markings

and the associated sensitivity analysis are the first practical

solution for the large scale of highly automated vehicles.

2. Related work

Hand-eye calibration: Hand-eye calibration is a

popular method for extrinsic calibration for many different

sensors [3, 4, 7]. For LiDAR-to-vehicle calibration, it

determines the sensor pose transform A between two

timestamps using point cloud registration methods, and

vehicle pose transform B between the same timestamps.

Then the calibration is to solve the equation AX=XB, where

X is the vehicle-to-LiDAR transform. [8] formulates the

hand-eye calibration into a least square problem using

dual-quaternions, and provides the ways to determine the

optimal solutions. To improve the robustness, [9] uses

Schur matric decomposition in solving the hand-eye

equation and detecting the outliers of sensor data when

determining A and B. More studies incorporate extrinsic

calibration into localization and mapping. [10] uses a graph

optimization to formulate the autocalibration and

localization to optimize A, X and B at the same time, which

can reduce the impact of errors from B, but needs more

computational resource. [11] estimates extrinsic

parameters together with IMU bias and vehicle dynamics

with Extended Kalman Filter (EKF), which uses Normal

Distributions Transform (NDT) to register LiDAR scans as

observations. [12] and [13] formulate an optimization

problem to perform extrinsic and dynamic parameters

together, which uses B-spline to constraint the dynamic

trajectories and NDT to estimate the LiDAR trajectory.

They also extract planes to build a surfels map for point-

to-plane distance loss. These methods address the noise in

B to some extent, but still suffer from A inaccuracy due to

registration degeneracy and accumulated error.

Other LiDAR-to-vehicle calibration methods: To

avoid the error accumulation issue in hand-eye methods,

other methods are developed based on scanning the same

stationary object and obtain the aggregated point cloud

over time. The LiDAR-to-vehicle misalignment generates

vagueness in the aggregated point cloud and the methods

are to minimize the vagueness [14, 15, 16, 17, 2]. To

measure the vagueness, [14] defines the distance between

the planar surfaces. [17] uses the distance between

correspondences of matched points. [16, 2] use PCA

(principal component analysis) to determine the variance

of the point cloud. [15, 16] require predefined locations.

[14, 17] use ICP (iterative closest point) on the point clouds

not associated with specific targets, which has the

challenge to find the accurate correspondences when

misalignment is relatively big. Our method follows the idea

of PCA. We select lane markings and traffic signs as targets

to minimize their variance. Our algorithm achieves 0.2-

degree error, comparing to [2] which doesn’t use specific

targets and achieves around 2-degree error.

Lane marking detection: Methods to detect lane

markings in a LiDAR point cloud are discussed in [18, 19,

20, 21, 22, 23]. Most of the methods use intensity of the

LiDAR points to segment lane marking points and detect

ground before detecting lane markings. [18, 20] also use

the elevation information to determine lane marking points.

[23] use clustering to better utilize the characteristics of the

line shape. Many of these methods assume accurate

alignment, which have the challenge with the inaccurate

alignment. Most of these methods output a line model

representing the position and direction of a lane marking,

while our application requires capturing the shape or

outline of the lane marking segment. Therefore, we

develop a new method to better capture the lane marking

boundaries in each single LiDAR frame.

Traffic sign detection: So far, most traffic sign (object)

detection algorithms are based on deep neural networks,

e.g. VoxelNet [24], PointNet [25], LaserNet [26].

However, such methods are challenging to be applied to

the online alignment due to computation resource

concerns.

3. Problem formulation

Denote a point in LiDAR coordinate system at time i as ��� = ���� , ��� , 	��
�
. Convert this point into the vehicle

coordinate system: ��� =
� ∗ ��� + � �1�

where ��� = ����, ��� , 	��
�
 is the point’s coordinates in the

vehicle coordinate system,
� is the 3x3 rotation matrix for

LiDAR-to-vehicle alignment, and � is the translation

vector for LiDAR-to-vehicle alignment. The x, y and z axes

of the vehicle coordinate system are in the directions of

vehicle forward, left, and up, respectively. Convert this

point into the earth-fixed coordinate system: �� =
� ∗ ��� + �� �2�

where �� is the point’s coordinates in the earth-fixed

coordinate system, and
� and �� are the rotation matrix

and translation vector from the vehicle to the earth-fixed

coordinate system based on IMU and GPS, respectively.

We define the earth-fixed coordinate system to be the

vehicle coordinate system at the initial state of a drive.

Once the vehicle moves after the initial state, the two

coordinate systems become different, so are
� and �� . For

3349

a stationary point in the earth-fixed coordinate system, its

location should not change from time i to time j. The

calibration is formulated as an optimization problem: ���������� �
� , �� = argmin�&' ,(�) ∥ �� − �, ∥��,,� �3�

Consider a stationary target with a board shape, such as

a traffic sign or a segment of a lane marking. Denote {P}

as the set of LiDAR points associated with this target in

earth-fixed coordinate system collected at different time.

{P} represents an aggregated point cloud of a target in the

earth-fixed coordinate system. The position change ∥ �� −�, ∥ of each point in {P} increases the 3D location

variance of the point cloud. Thus, the optimization can be

formulated as: ���������� �
� , �� = argmin�&',(� .��{�} �4�

where .��{�} represents the 3D location variance of the

aggregated point cloud of this target.

Notice that �
� , �� is derived from 6 parameters (Tx, Ty,

Tz, Roll, Pitch and Yaw) representing LiDAR-to-vehicle

transformation.

4. Sensitivity analysis

To understand how the vehicle routes and the targets

impact the results of the alignment calibration, the

sensitivity analysis is performed as follows: (1) introduce

small perturbations for the 6 parameters; (2) calculate the

change on the object location in the earth-fixed system; (3)

identify the appropriate routes/targets for the calibration of

different parameters.

Without loss of generality, in the following we assume

the roll (23� � and pitch (24� � angles of the vehicle with

respect to the earth-fixed coordinate system are very small

and can be neglected, i.e., �23� ≅ 24� ≅ 23, ≅ 24, ≅ 0�. Thus,

the rotation matrix
� is the one based on only yaw 27� .

4.1. Translational alignment sensitivity analysis

For the translational parameters, we introduce the

perturbation �∆ = [∆3 , ∆4 , ∆7]′. From equations (2) and (1),

we have the new object coordinates due to the perturbation

as follows �∆� =
� ∗ <
� ∗ ��� + � + �∆= + �� = �� +
� ∗ �∆ �5�

Consequently, we have �∆� − �∆, = �
� −
,� ∗ �∆ ≅

−2 sin �@AB C@ADE �

⎝
⎜⎛sin�@AB I@ADE � ∗ ∆3 + cos �@AB I@ADE � ∗ ∆4

cos �@AB I@ADE � ∗ ∆3 − sin �@AB I@ADE � ∗ ∆40 ⎠
⎟⎞ �6�

From the above equation, we have the following results: s-

i) z-axis translational parameter �7 cannot be calibrated by

minimizing object localization errors, because the change ∆7 has no effect on the localization error ��∆� − �∆,�. S-ii)

The localization error ��∆� − �∆,� by translational

misalignment �∆ does not depend on the vehicle locations,

but depends on the vehicle orientation (yaw: 27� , 27,), which

implies the distance from the vehicle to the object has no

effect on the translational calibration. s-iii) In order to have

big impacts on the localization error from translational

misalignment, we cannot have |27� − 27,| ≅ 0 but better

have |27� − 27,| ≅ 180°. In other words, the translational

calibration cannot be performed during straight-line

driving but at turning (e.g., left turn, right turn or U-turn).

4.2. Orientational alignment sensitivity analysis

From Equations (1) and (2) we have ��� = <
�=S ∗ [�
��S ∗ ��� − ��� − �] �7�

In Equation (7), <
�=S = <
�=CU
 and �
��S = �
��CU. For

any angular perturbation V′ = V + W, from Equations (1),

(2) and (7), �X� =
� ∗ <
�IX ∗ ��� + �= + �� �8�

Further we have �X� − �� =
� ∗ <
�IX −
�= ∗ <
�=S ∗ �
��S∗ ��� − �� −
� ∗ �� �9�

Let ��� − �� −
� ∗ �� = ��� , �� , Z��′ , from Equations

(1) and (2), ��� , �� , Z��S =
� ∗
� ∗ ���, which is the static

object coordinate as detected by LiDAR with the rotation

to the earth-fixed system but without the translation to the

earth-fixed system. <�, , �, , Z,=S − ��� , �� , Z��S is the

position change of the object between time i and j in the

earth-fixed coordinate system, which is also the opposite

position change of the vehicle during this time in the earth-

fixed coordinate system. We have Z� − Z, ≅ 0 when the

vehicle is on a flat road, which is usually the case.

Now for the roll angular perturbation V3S = V3 + W ,

assuming W is small, we have Z[\W ≅ 1 and \�]W ≅ W .

Next, we consider two different routes: (a) straight-line

driving; (b) at turning. When doing straight-line driving

starting from the initial state, vehicle yaw 27� ≅ 27, ≅ 0,

vehicle forward movement ^�, − ��^ > 0, and vehicle left

movement �� − �, ≅ 0. From Equation (9), we can have

(the detailed inference is omitted here due to the paper

length restriction)

�X� − �X, ≅ W ∗ ` 0\�]V4 ∗ ��, − ���Z[\V4 ∗ sin V7 ∗ ��, − ���a �10�
Since normally the pitch angular alignment V4 is small, the

dominate localization error is on z-axis. S-iv) If the yaw

angular alignment V7 is also small, then the roll angular

boresight alignment cannot be calibrated during straight-

line driving. S-v) If V7 ≅ 90°, then the roll angular

alignment can be calibrated during straight-line driving as

long as |�, − ��| ≫ 0, which is the forward movement of

the vehicle.

3350

When at turning, considering V4 is small and Z� ≅ Z, ,

similar to Equation (10) we have �X� − �X, ≅ W ∗ Z[\V4

∗
⎝
⎜⎜
⎛2 ∗ sin c27� − 27,2 d ∗ cos�V7 + 27� + 27,2 � ∗ Z�

2 ∗ sin c27� − 27,2 d ∗ sin�V7 + 27� + 27,2 � ∗ Z�e ⎠
⎟⎟
⎞ �11�

w = −2 ∗ sin c27� − 27,2 d ∗ �cos cV7 + 27� + 27,2 d ∗ ��
+ sin cV7 + 27� + 27,2 d ∗ ��� + sin�V7 + 27,� ∗

<�, − ��= + cos�V7 + 27,� ∗ ��� − �,� �12�

When the object is at the similar height as the LiDAR,

then Z� is small and the dominate localization error is on z-

axis. S-vi) From the above equation we know roll angular

alignment can be calibrated at turning.

For the pitch angular perturbation V4S = V4 + W, again,

we consider the cases of straight-line driving and at

turning. For straight-line driving, 27� ≅ 27, ≅ 0 and �� ≅�,. With the assumption of Z� ≅ Z, , like Equation (10) we

have

�X� − �X, ≅ W ∗ c 00cos V7 ∗ ��, − ���d �13�

s-vii) If V7 ≅ 90° then pitch alignment cannot be

calibrated during straight-line driving. S-viii) When V7 ≅0°, the pitch alignment can be calibrated during straight-

line driving, and it is better to have large vehicle location

changes, i.e., <|�, − ��|= ≫ 0. s-ix) When at turning,

considering Z� ≅ Z, , similar as in Equation (11), the pitch

angular alignment can be calibrated at turning.

For the yaw angular perturbation V7S = V7 + W, like

Equation (10) we have

�X� − �X, ≅ `W ∗ ��, − ���W ∗ ��� − �,�0 a �14�
Therefore, s-x) the yaw angular alignment can be

calibrated as long as the vehicle location change is big

enough. Since the vehicle orientation has no impact on the

localization error, the yaw alignment can be calibrated

either during straight-line driving or at turning.

5. Algorithm

Based on the sensitivity analysis, at turning, the 5

parameters (Tx, Ty, Roll, Pitch and Yaw) are estimated

using traffic sign data, namely 5P-optimization. During

straight-line driving maneuvers, the 2 parameters (Roll and

Yaw, due to V7 ≅ 90° in our test vehicle) are estimated

using either lane markings or traffic signs, namely 2P-

optimization. In the optimization (section 5.3), we derive

� and � using all 6 parameters combining variables (2P or

5P) with fixed parameters. Due to s-i), Tz is calculated

separately based on the ground point position after

optimization and the predetermined vehicle-to-ground

distance.

The whole algorithm flow is shown in Figure 1. The

LiDAR data and GPS/IMU data are loaded. Each traffic

sign and lane markings are extracted using the algorithms

in 5.1 and 5.2. The raw LiDAR data in front of the vehicle

is loaded for Tz calculation. For each frame, up to 10 points

with the lowest z value are saved into the buffer. A moving

buffer with up to N (e.g., 5000) points is used to save the

latest ground points.

Figure 1: The flowchart of the traffic-sign-based alignment

algorithm.

If the number of road elements (traffic signs or lane

marks) during straight-line driving is greater than a

threshold (e.g., 7), an 2P optimization, described in section

5.3, will be conducted. Please note the traffic signs and lane

marks are processed separately due to the difference of loss

functions. In order to improve the algorithm robustness,

multiple road elements are used for optimization rather

than a single one in [16]. Similarly, 5P optimization is

conducted with enough of traffic sign data at turning.

After an optimization is performed, Tz is calculated. The

ground data are projected to the vehicle coordinate using

the current estimated alignment parameters. Only the data

with z values within [-0.4, 0.4] are kept. The mean value

(noted as h.ij) of filtered data is calculated. Tz is then

calculated as k7_�m�(− n]\opqrms − h.ij , where k7_�m�(is

the current estimate of Tz, and n]\opqrms is the distance

between the vehicle center of gravity and ground, which is

a predefined constant. This is because the z value of ground

points in the LiDAR coordinate equals to h.ij - k7_�m�(,

3351

and also equals to −Tz −n]\opqrms . The updated Tz result

is pushed to the result buffer as well, and the buffer to store

all ground point cloud data is cleared.

Once there are enough results in the buffer, the average

and the standard deviation of all alignment results are

calculated. The results, which are more than 1 standard

deviation from the average value, are filtered. The average

of filtered results will be used as the final alignment result.

5.1. Lane marking detection

A lane marking segment is of a rectangle shape on the

ground. Lane markings captured during straight-line

driving allow us to determine the Yaw and Roll. With

GPS/IMU data, we enable the lane marking detection only

when the vehicle is driving in a straight line.

An aggregated point cloud of a lane marking segment is

generated in four steps: 1) detect candidate lane marking

points in each LiDAR frame, 2) aggregate candidate points

from consecutive frames in the earth-fixed coordinate

system, 3) select a lane marking target based on current

vehicle position, and 4) remove outlier points.

For each LiDAR frame, we first perform ground

segmentation to select the points on the ground based on

[27], which is based on the elevation and slope conditions

of each LiDAR point. Next, we detect the candidate lane

marking points from the ground points based on intensity.

To precisely capture the boundaries of the lane markings,

we detect the rising edge and falling edge of the intensity

across the azimuth angle. Figure 2 shows an example of the

intensity of the ground points associated with the same

vertical emission angle (a scan line).

Figure 2: An example of intensity of ground points in one scan

line.

We use a state machine to determine lane marking points

shown in Figure 3. Starting with initial State 0 and

sweeping towards right, if a rising edge is detected, the

state goes to State 1, representing that a left bound of a lane

marking is detected. We update the saved left bound if a

new rising edge is detected and it is close to the previous

rising edge. If we detect a falling edge, we save this falling

edge as a right bound of the lane marking and go to State

2. We update the saved right bound if a new falling edge is

detected and it is close to the previous falling edge. If we

detect a rising edge, we save it as a new left bound, and go

to State 1.

If we detect a falling edge while in State 0, we may start

from the middle of a lane marking segment. Then we save

the first ground point as the left bound and the detected

falling edge as the right bound, and go to State 2.

The sweep most likely ends in State 2, with pairs of left

and right bounds. If it ends in State 1, we may end the

sweep in the middle of a lane marking segment. If the

distance between the last left bound and the last ground

point is small, we save the last ground point as a right

bound; otherwise, we ignore the last left bound.

Figure 3: The state machine of sweeping a scan line of ground

points.

After the sweep, we filter out the bound pairs whose

widths are too large, and combine the consecutive pairs if

they are very close and their widths are small. Finally, all

the points located within each of bound pair are all labeled

as candidate lane marking points. We perform the same

process in each scan line in the current LiDAR frame. The

detected candidate lane marking points are stored in a

buffer.

Next in step 2), with Equation (1) and (2), we aggregate

the candidate points from consecutive frames into the

earth-fixed coordinate system with an initial guess of the

LiDAR-to-vehicle alignment and the GPS/IMU data

associated with each point. Then in step 3), we select a lane

marking segment based on the region with respect to the

current vehicle position. The points within the region form

an aggregated point cloud of a target.

We observe some incorrect lane marking points with a

high elevation above the actual ground, and they are far

from the sensor. This is due to the accumulated elevation

difference between the neighbors during ground

3352

segmentation, and a point far from the sensor may have a

high elevation while its slope is close to its neighbor.

Since the lane marking segment is close to a straight line

in the 3D space, we perform 3D line fitting based on Hough

transform [28] to remove the outliers. The kept inlier points

form a point cloud of one target. They are saved as one

target in a target buffer.

5.2. Traffic sign detection

The traffic signs are detected based on the aggregated

LiDAR point cloud using the initial guess of alignment.

The aggregated data is then filtered by spatial and intensity.

Considering the typical positions of traffic signs, we only

keep the data with the distance between 6 meters and 100

meters in LiDAR coordinate. Since the traffic sign is

usually covered by the highly reflective material, only the

data with the intensity greater than 190 are kept.

Due to the sparsity of the LiDAR data, a certain number

(e.g., 500) of frames of data are aggregated in the earth-

fixed coordinate. An unsupervised clustering algorithm,

Density-based spatial clustering of applications with noise

(DBSCAN [29]), is applied to label each LiDAR data point

in the earth-fixed coordinate. The points that are close to

each other are clustered as one traffic sign candidate. Since

the same traffic sign may be observed in different batches,

the center of each traffic sign candidate is calculated. If the

center of the current traffic sign is close to the previous

identified traffic sign, the data from both signs are

combined as one target.

From the LiDAR alignment accuracy perspective, we

remove some traffic sign candidates from the buffer, if the

minimum speed of the ego vehicle is less than 5 m/s. When

the ego vehicle speed is very low, the wheel speed sensor

may generate wrong measurement due to the resolution

limitation, which may generate inaccurate alignment

results. Based on sensitivity analysis above, the traffic sign

candidates are removed, if the change of the ego vehicle

position is less than 40m. We also remove the candidates

with the small amount of traffic sign points (e.g., 120) or

the large amount of traffic sign points (e.g., 20,000).

The data spatial distribution is also checked to ensure a

sign-like dimension. PCA is applied to each traffic sign

candidate and generates three eigenvectors. These

eigenvectors represent the orthogonal direction of the

largest three variations for the traffic sign point cloud. Then

all the data corresponding to that traffic sign candidate are

projected to three eigenvectors. If the range of largest

variation is too big (e.g., greater than 8m), but the range of

the smallest variation is too small (e.g., less than 2m), we

consider these are fake signs and remove them from the

buffer (e.g., semi-truck shown in Figure 4 (b) or other

moving vehicles in Figure 4 (a)). The traffic sign

candidates are removed, if the range of all three directions

are large (e.g., more than 6m).

Sometimes, there are multiple traffic signs detected, but

close to each other. It may be due to multiple signs close to

each other or one sign but with sparse LiDAR points. If it’s

the former case, multiple signs should be separated; if it’s

the latter case, these clusters should be combined. Figure 5

shows an example on the road.

(a)

(b)

Figure 4: Examples of fake traffic sign candidates.

Figure 5: Examples of multiple traffic signs close to each other.

A clustering with a smaller threshold is employed and

the following algorithm is used to separate or combine

clusters. Firstly, the minimum distance between any two

clusters is calculated. Here the distance is defined as the

Euclidean distance in the earth-fixed coordinate. Then for

each cluster, a list is generated with the indices including

itself and the other clusters, whose distance to this cluster

is less than a threshold (e.g., 0.5 m). We then combine the

lists sharing the same indices. For instance, cluster 1 is

close to the clusters 3 and 5 (i.e. list(1) = {1,3,5}), and the

cluster 2 is close to the clusters 5 and 6 (i.e. list(2) =

3353

{2,5,6}). Since the list 1 and the list 2 share the same index

5, these two lists are combined into one list with the indices

{1,2, 3, 5, 6}. Each list after combination is corresponding

to an actual cluster (traffic sign). The distance between two

clusters is at least 0.5m. We then combine all the data

belonging to these indices in each list.

5.3. Optimization

The variance of the target point cloud is employed for

the loss function, and the Adam optimization algorithm

[30] is used to determine the alignment parameters by

minimizing the loss. Denote each point k in the LiDAR

coordinate for target] as tm,u. With equations (1) and (2),

we map it into the earth-fixed coordinate system, and

denote its coordinates as tm,uv . We put all the projected

points into one matrix tmv, each column of which is tm,uv .

To determine the 3D variances of tmv , We calculate the

center point of tmv: tm,wv = meanu tm,uv �15�

Then we perform singular value decomposition:

<tmv − tm,wv =� = ym z\m,U \m,E \m,{
| z.m,U�.m,E�.m,{� | �16�

where \m,U , \m,E and \m,{ are singular values in a

descending order. Denote }m as the number of points of tmv. Therefore,
~�,����,

~�,���� and
~�,���� are corresponding to the

standard deviations in the length, width and height

direction of a road element (e.g., lane mark segment or

traffic sign), respectively. The optimal alignment <
� , �=∗

should generate the minimal variances in the width and

height directions for an aggregated lane mark segment. For

a traffic sign, the variances of all three directions are

minimized. Therefore, the optimization problem to

determine the alignment parameters is formulated as (17)

and (18), respectively:

<
� , �=∗ = argmin<&',(=) \m,E + \m,{�}m
�

m�U �17�

<
� , �=∗ = argmin<&',(=) \m,U + \m,E + \m,{�}m
�

m�U �18�

where � is the number of targets used to generate each

calibration result. For the traffic sign optimization, both 2P

and 5P optimization are performed with (18).

6. Experiments

For validation, the proposed algorithms are tested with

several recordings collected from different test vehicles on

different days. The LiDAR used in these tests is

Velodyne® VLP-32, mounted on the roof of the vehicle,

whose vertical field of view is 48°. The RTK sensor is used

to generate GPS/IMU information. A Dell laptop with

Ubuntu 16.04, 31.3 GB memory and Intel Xeon CPU E3-

1505M @2.8GHz is used to run all the tests. The Adam

optimizer learning rate is set as 0.001, the number of steps

is 1500. The ground truth values are calibrated and

validated manually by our test fleet engineers.

6.1. Alignment results based on lane markings

This subsection presents the test results of the alignment

algorithm using lane markings. This data is collected from

a suburban area with 1040 lane marking segments detected

as targets. We tune the algorithm based on this recording.

With the same data, we perform 6 tests defined by a

combination of initial guess and L value. For the initial

guess of alignment parameters, we add 0.3-degree error on

the ground truth values in Test 1, 2 and 3, and add 3-degree

error in Test 4, 5 and 6. For L, the number of targets used

in each optimization, we select L=10 in Test 1 and 4, L=20

in Test 2 and 5, and L=40 in Test 3 and 6.

Error is calculated by the output parameter value minus

its ground truth value. 0 error means perfect accuracy. The

mean and standard deviation of these errors of each test are

listed in Table 1. Overall, the mean error of roll is about -

0.3 degree, and the mean error of yaw is about ±0.1 degree.

The mean error of roll is slightly bigger than the mean error

of yaw.

Table 1: Alignment results using lane markings.

 Mean roll

error (deg)

Mean yaw

error (deg)

STD roll

error (deg)

STD yaw

error (deg)

Test 1 -0.320 0.096 0.097 0.575

Test 2 -0.314 0.098 0.073 0.511

Test 3 -0.316 0.062 0.055 0.356

Test 4 -0.294 -0.153 0.061 0.616

Test 5 -0.291 -0.119 0.049 0.409

Test 6 -0.295 -0.106 0.035 0.298

With bigger errors in the initial guess, the roll error

doesn’t change much, but the yaw error (absolute value)

increased slightly. Moreover, the standard deviation of the

yaw error is bigger than the standard deviation of the roll

error. This can be interpreted by the geometry

characteristic of the lane marks. The range in width is

bigger than the range in height for a lane mark. In LiDAR

point clouds, the lane mark points have a bigger variance

in the width direction than the height direction. In addition,

the standard deviations decrease when we increase the

number of targets used in each calibration, which indicates

more stable results.

The comparison with other existing methods is ignored

in this test since no methods are found configurable to align

only roll and pitch under straight line motion.

6.2. Alignment results based on traffic signs

The first test we conducted is to show the effectiveness

3354

of using multiple traffic signs during optimization. The

initial guess of alignment parameters is offset by 0.2 m for

translation parameters and 3 degrees for rotation

parameters from the ground truth values, which also

applied to other tests in this section. The aggregated point

cloud at turning is shown in Figure 6. Three traffic signs,

noted in yellow, are used in alignment estimation. Our test

results indicate that the estimation error with three traffic

signs together is less than 0.4 degree, but the estimation

error from each individual sign can be as high as 3.2

degree.

Figure 6: Aggregated LiDAR point cloud at turning.

We tune the algorithm using one recording, and test on

three different recordings. The 2P and 5P optimization

errors for one recording from one test vehicles are shown

in Table 2 and Table 3 respectively. Each column is the

estimation error. The translation error unit is meter and the

rotation error unit is degree. Each row is the optimization

result using 7 traffic signs. There are totally 27 2P results

and 10 5P results. Due to the space limitation, only the

maximum, minimum, average and standard deviation of 27

2P results are shown in Table 3. The vehicle was driven

for 17.27 minutes, and the total driving distance is

11,955.9m. Total number of LiDAR frames is 156,200.

Table 2: Results for 5P optimization and Tz calculation

Sign
Tx error
(m)

Ty error
(m)

Tz error
(m)

Roll error
(deg)

Pitch error
(deg)

Yaw error
(deg)

1 -0.017 0.022 0.011 0.114 0.032 0.032
2 -0.126 0.055 0.003 0.080 -0.035 -0.046
3 0.055 -0.055 0.018 -0.101 -0.042 0.403
4 -0.044 -0.049 0.007 0.091 -0.109 -0.053
5 -0.032 -0.143 0.011 0.056 0.054 0.147
6 0.013 -0.045 0.012 -0.022 0.189 0.074
7 0.037 -0.012 0.013 -0.013 0.024 0.189
8 0.100 -0.015 0.033 0.034 -0.067 0.316
9 0.052 -0.041 0.027 0.023 0.047 0.226
10 -0.074 -0.048 0.014 0.126 0.541 0.267
Avg. -0.004 -0.033 0.015 0.039 0.063 0.156
Std. 0.068 0.053 0.009 0.070 0.187 0.153

The alignment results of multiple recordings from

various vehicles are shown in Table 4. Each row indicates

the average alignment error using all the data from the

whole recording. It can be clearly observed that our

dynamic LiDAR alignment algorithm can achieve high

alignment accuracy.

We compare with another two existing methods in this

test using the same data of the test of Table 2 and 3. Hand-

eye + LOAM uses the registration method in [31] and

solution in [3] to perform the hand-eye calibration.

Linkalibr is introduced in [11] using NDT and EKF to

perform alignment with localization. The results are shown

in Table 5. The results show our approach achieves better

accuracy in translation and roll. Pitch is better than

Linkalibr. Yaw is close among these three approaches.

With further case study, the root cause of inaccuracy in

hand-eye + LOAM and Linkalibr is mainly the LiDAR

point cloud registration error. This shows our approach is

robust under such challenging scenarios.

Table 3: Results for 2P optimization and Tz calculation.
Results Tz error (m) Roll error (deg) Yaw error (deg)

Maximum 0.042 0.211 0.461

Minimum -0.001 -0.103 -0.096

Average 0.020 0.045 0.188

Standard Deviation 0.012 0.080 0.136

Table 4: Average alignment error for different vehicles.

Veh
Distance

(m)

Processing

Time (mins)

Tx error

(m)

Ty error

(m)

Tz error

(m)

Roll

error (deg)

Pitch

error

(deg)

Yaw

error

(deg)

1 11676 191.4 0.000 0.007 0.004 0.048 0.005 0.009

2 11956 146.2 -0.004 -0.033 0.018 0.044 0.063 0.179

3 12313 142.9 0.012 0.003 0.000 0.017 0.012 0.032

Table 5: Average alignment error from different methods.

Method

Tx

error

(m)

Ty

error

(m)

Tz

error

(m)

Roll error

(deg)

Pitch

error

(deg)

Yaw error

(deg)

Ours based on traffic signs -0.004 -0.033 0.018 0.044 0.063 0.179

Hand-eye [3] + LOAM [31] 0.399 0.215 2.467 0.131 0.077 0.188

Linkalibr [11] 0.427 0.161 1.161 1.515 1.517 0.155

7. Conclusion

This paper presents an online LiDAR-to-vehicle

alignment approach using road elements including lane

markings, traffic signs, and ground point position. Based

on the sensitivity analysis, appropriate vehicle routes with

the most excitation for different parameters are selected.

The approach is validated by the test vehicle data. The

results show that the mean error during about 12KM

driving can achieve up to 0.2-degree error on orientation

and 2cm error on translation, which demonstrates the

effectiveness of developed approaches. This approach

relies on the availability and accuracy of the road elements.

In the future, we will study on methods to cover other

different targets to improve the usability and robustness.

Acknowledgement

This work is supported by Wende Zhang, Hao Yu, Yilu

Zhang, Paul Krajewski, Wen-Chiao Lin, Shiming Duan,

Sarah Gagnon, Michael Wahlstrom, Joaquin Carcache, and

Joseph Jang at General Motors.

3355

References

[1] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur and X.

Savatier, "A study of Vicon system positioning

performance," Sensors, vol. 17, no. 7, pp. 1591-1609,

2017.

[2] A. Diehm, J. Gehrung, M. Hebel and M. Arens, "Extrinsic

self-calibration of an operational mobile LiDAR system,"

Proceedings of SPIE, Laser Radar Technology and

Applications XXV, vol. 11410, pp. 1-17, 2020.

[3] R. Horaud and F. Dornaika, "Hand-eye calibration," The

International of Robotics Research, vol. 14, no. 3, pp. 195-

210, 1995.

[4] F. Dornaika and R. Horaud, "Simultaneous robot-world

and hand-eye calibration," IEEE Transacations on

Robotics and Automation, vol. 14, no. 4, pp. 617-622,

1998.

[5] A. Gostar, C. Fu, W. Chuah, M. Hossain, R. Tennakoon,

A. Bab-Hadiashar and R. Hoseinnezhad, "State transition

for statistical SLAM using planar features in 3D point

clouds," Sensors, vol. 19, pp. 1614-1630, 2019.

[6] J. Zhang, M. Kaess and S. Singh, "On degeneracy of

optimization-based state estimation problems," in IEEE

International Conference on Robotics and Automation

(ICRA), Stockholm, Sweden, 2016.

[7] M. Shah, R. D. Eastman and T. Hong, "An overview of

robot-sensor calibration methods for evaluation of

perception systems," in Proceedings of the Workshop on

Performance Metrics for Intelligent Systems, College

Park, MD, USA, 2012.

[8] A. Dekel, L. H¨arenstam-Nielsen and S. Caccamo,

"Optimal least-squares solution to the hand-eye calibration

problem," in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020.

[9] J. Liu, J. Wu and X. Li, "Robust and accurate hand–eye

calibration method based on Schur matric decomposition,"

Sensors, vol. 19, no. 20, 2019.

[10] C. L. Gentil, T. Vidal-Calleja and S. Huang,

"IN2LAAMA: inertial LiDAR localisation autocalibration

and mapping," IEEE Transactions on Robotics, vol. 37,

no. 1, pp. 275-290, 2021.

[11] S. Mishra, G. Pandey and S. Saripalli, "Target-free

Extrinsic Calibration of a 3D-Lidar and an IMU," in 2021

IEEE International Conference on Multisensor Fusion and

Integration for Intelligent Systems (MFI), Karlsruhe,

Germany, 2021.

[12] J. Lv, J. Xu, K. Hu, Y. Liu and X. Zuo, "Targetless

Calibration of LiDAR-IMU System Based on Continuous-

time Batch Estimation," in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Las

Vegas, NV, USA, 2020.

[13] J. Lv, X. Zuo, K. Hu, J. Xu, G. Huang and Y. Liu,

"Observability-Aware Intrinsic and Extrinsic Calibration

of LiDAR-IMU Systems," IEEE Transactions on

Robotics, vol. 38, no. 6, pp. 3734 - 3753, 2022.

[14] P. Rieger, N. Studnicka, M. Pfennigbauer and G. Zach,

"Boresight alignment method for mobile laser scanning

systems," Journal of Applied Geodesy, vol. 4, no. 1, pp.

13-21, 2010.

[15] F. Yuan, G. Li, Z. Zuo, D. Li, Z. Qi, W. Qiu and J. Tan,

"Airborne LIDAR borsight error calibration based on

surface coincide," IOP Conference Series: Earth and

Environmental Science, vol. 17, 2014.

[16] R. Sands and B. Leslie, "OxTS boresight alignment

determination with Velodyne VLP-16 LiDAR (AE021),"

2017. [Online]. Available:

https://www.oxts.com/app/uploads/2017/11/ae021_report

_171127.pdf.

[17] Z. Li, J. Tan and H. Liu, "Rigorous boresight self-

calibration of mobile and UAV LiDAR scanning systems

by strip adjustment," Remote Sensing, vol. 11, no. 4, 2019.

[18] S. Kammel and B. Pitzer, "Lidar-based lane marker

detection and mapping," in 2008 IEEE Intelligent Vehicles

Symposium, Eindhoven, Netherlands, 2008.

[19] M. Thuy and F. P. León, "Lane detection and tracking

based on lidar data," Metrology and Measurement

Systems, vol. 17, no. 3, pp. 311-321, 2010.

[20] B. Yang, L. Fang, Q. Li and J. Li, "Automated extraction

of road markings from mobile LiDAR point clouds,"

Photogrammetric Engineering & Remote Sensing, vol. 78,

no. 4, pp. 331-338, 2012.

[21] A. Hata and D. Wolf, "Road marking detection using

LiDAR reflective intensity data and its application to

vehicle localization," in 17th International IEEE

Conference on Intelligent Transportation Systems (ITSC),

Qingdao, China, 2014.

[22] F. Ghallabi, F. Nashashibi, G. El-Haj-Shhade and M.-A.

Mittet, "LiDAR-based lane marking detection for vehicle

positioning in an HD map," in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC),

Maui, HI, USA, 2018.

[23] C. Lin, Y. Guo, W. Li, H. Liu and D. Wu, "An automatic

lane marking detection method with low-density roadside

LiDAR data," IEEE Sensors Journal, vol. 21, no. 8, pp.

10029 - 10038, 2021.

[24] Y. Zhou and O. Tuzel, "Voxelnet: end-to-end learning for

point cloud based 3D object detection," in The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[25] D. Xu, D. Anguelov and A. Jain, "Pointfusion: deep sensor

fusion for 3D bounding box estimation," in The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[26] G. P. Meyer, a. Laddha, E. Kee, C. Vallespi-Gonzalez and

C. K. Wellington, "LaserNet: an efficient probabilistic 3D

object detector for autonomous driving," in The IEEE

Conference on Computer Vision and Pattern Recognition,

2019.

[27] I. Bogoslavskyi and C. Stachniss, "Efficient online

segmentation for sparse 3D laser scans," PFG – Journal of

Photogrammetry, Remote Sensing and Geoinformation

Science, vol. 85, pp. 41-52, 2017.

3356

[28] P. V. C. Hough, "Method and means for recognizing

complex patterns". United States of America Patent

US3069654A, 18 December 1962.

[29] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A density-

based algorithm for discovering clusters in large spatial

databases with noise," in KDD'96: Proceedings of the

Second International Conference on Knowledge

Discovery and Data Mining, 1996.

[30] D. Kingma and J. Ba, "Adam: a method for stochastic

optimization," in The 3rd International Conference for

Learning Representations (ICLR), San Diego, 2015.

[31] J. Zhang and S. Singh, "LOAM: Lidar Odometry and

Mapping in Real-time," in Proceedings of Robotics:

Science and Systems (RSS '14), 2014.

3357

