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Abstract

Room layout estimation is an important task for the 3D
reconstruction of indoor scenes and augmented reality ap-
plications. The layout of the room is usually estimated by
predicting the keypoints of the room corners, room planer
segmentation (floor, ceiling, right, left, and front walls), or
line detection. In this paper, we propose a novel way to
estimate the room layout from monocular RGB images us-
ing spatial transformation networks (STN). Since it is com-
monly known that the room has a cuboid layout, we train a
convolutional neural network to predict unsupervised per-
spective transformation parameters that can transform a
reference cuboid layout to the required room layout based
on the deep features of the input room image. We show
that the proposed method is simple and efficient in learn-
ing the room layout without the need to perform segmen-
tation, line detection, or keypoint estimation. We test the
proposed method on two challenging benchmarks; LSUN
Room Layout and Hedau dataset showing that our method
can achieve pixel accuracy errors of 5.24% on LSUN and
7.10% on Hedau at a speed of (10∼15 fps) outperforming
the state-of-the-art methods in room layout estimation task.
Paper’s code is available at: https://github.com/
lab231/ST-RoomNet/.

1. Introduction
The 3D construction of indoor scenes is an essential task

in computer vision which requires a lot of information about
the scene or multiple images of the scene. The room layout
estimation is a primary task in the process of 3D construc-
tion or in modern augmented reality (AR) applications, in
which the location information of the room walls, floor,
and ceiling is extremely important. Traditional methods
for 3D construction usually depend on multiple-view ap-
proaches, but recently, researchers pay more attention to
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Figure 1. An overview of the proposed method for room layout
estimation. A convolutional neural network is used to predict the
persepective transformation parameters that are used to transform
a reference layout scene to the input room’s layout through a dif-
ferentiable spatial transformation layer (STL).

the single-view geometry and how to exploit every piece
of information in the image for the 3D perception of the
scene. An indoor scene image includes much important se-
mantic information which can be extracted through convo-
lutional neural networks (CNN). That information includes
low-level information about the boundary lines and corner
points that exist in the scene and higher-level information
such as what objects exist in the scenes and the alignment
of those objects. The main objective of the room layout es-
timation is either to predict the segmentation mask for the
main room planes (walls, floor, and ceiling) or to predict
the keypoint coordinates of the corner of the room. The re-
cent research on room layout estimation [1–9] depend on
keypoints prediction approach or direct semantic segmen-
tation of the different planes of the room, however, those
approaches are inefficient since the room walls, floor, and
ceiling are usually occluded by objects that make most of
the wall plane not obvious, and in most cases, the corner
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points of the walls (keypoints) are occluded and not directly
obvious. Some other research [10, 11] depend on line esti-
mation approaches by segmentation and it also suffers from
the occlusion of most of the line, which affects the final
wall segmentation or keypoint estimation. In this paper, we
propose a novel approach for room layout estimation using
the commonly known spatial transformation network [12].
Spatial transformation networks are a special kind of CNN
where the transformation layer can spatially transform the
input image (or volume in 3D) depending on the localiza-
tion features of the image. A CNN is employed to estimate
deep representative features of the input room image in or-
der to predict eight perspective transformation parameters
following equation 1:

wx′wy′
w

 =

p11 p12 p13
p21 p22 p23
p31 p32 p33

xy
1

 (1)

where x and y are the input pixel coordinates, x′, and
y′ are the transformed pixels which can be obtained by nor-
malizing the output vector by w. Noting that p33 equals 1 so
the CNN model is designed to predict 8 parameters instead
of 9. A spatial transformation layer [12] is then employed to
transform the reference layout image into the required lay-
out using grid-based 1-to-1 mapping. The proposed method
can indirectly learn the transformation parameter for the ref-
erence layout based on end-to-end training that maps the in-
put RGB image into the layout plane segmentation without
any extra supervision. A detailed overview of the proposed
method is shown in Figure 1. The contribution of this paper
can be summarized as:

• We propose an end-to-end approach for the room lay-
out estimation using spatial transformation networks.

• The proposed method simply predicts 8 parameters
of transformation instead of the traditional complex
semantic segmentation or keypoint estimation ap-
proaches.

• We propose two lightweight CNN architectures for
room layout estimation that can process frames at rel-
atively high speeds (15.1 and 10.0 fps).

The remaining of this paper is organized as follows: the
related work (section 2), the proposed method (section 3)
for the details of our method, datasets for training and test-
ing (section 4), the experimental results that presents our
experiments on room layout estimation (section 5), limita-
tions and future work based on our method (section 6), and
finally, the conclusion of the paper (section 7).

2. Related work
In the room layout estimation task, the classical meth-

ods [10, 11] aimed at modeling the structure of an envi-
ronment using complete low-level features such as image
edge features and superpixel features, then using hypothe-
ses to generate the room layout, but those methods were
limited in accuracy, in addition to the computational com-
plexity of their implementations. The recent methods for
room layout which are based on deep learning approaches
either depend on walls, floor, and ceiling semantic segmen-
tation approaches or keypoint estimation approaches. Long
et al. [13] was the first to propose a fully convolutional
network (FCN) for semantic segmentation which opened
the way for the plane segmentation methods. Mallya and
Lazebnik [1] used FCN to predict an edge map, and the
layout ranking method is applied to the map to sample the
vanishing points. Dasgupta et al. [2] directly used FCN to
predict the semantic segmentation mask of the walls, ceil-
ing, and floor. Then a hole-filling technique is used to re-
fine the segmentation map followed by vanishing point es-
timation techniques based on the predicted segmentation to
produce the layout. The plane segmentation-based meth-
ods are computationally expensive as they need many post-
processing stages to get the final layout. This method of
Dasgupta et al. [1], for example, takes 30 seconds to pro-
cess a single frame. Zhang et al. [3] proposed a high-quality
edge segmentation approach using an encoder-decoder ar-
chitecture with a one-dimensional latent representation to
aggregate the information of every region, and an adaptive
sampling strategy is used to produce the layout. Ren et
al. [4] proposed a Coarse-to-Fine Indoor Layout Estimation
(CFILE) in which they combined the room contours seg-
mentation and plane segmentation to produce robust layout
results with surface smoothness and geometric constraints.
Lin et al. [5] proposed a layout estimation method based on
the combination of plane segmentation, line segmentation,
and heatmap smoothing loss without the need for extra post-
processing stages, and they could relatively improve the
previous layout estimation results. Lee et al. [6] proposed
RoomNet which is an encoder-decoder architecture for si-
multaneous segmentation of keypoints location and layout
type prediction. The predicted layout type is used to reorder
the estimated keypoints to ensure the correctness of the pre-
dicted layout. Hirzer et al. [7] used three segmentation hy-
potheses for the room layout estimation, they proposed to
predict the locations of the corners in a room image and se-
lect one of the three hypotheses that is consistent with the
layout estimated from the room corners. Zheng et al. [8]
proposed a structural deep metric learning (SDML) to esti-
mate the room layout by explicitly modeling the structural
relations across different rooms. They trained a model to
minimize the difference between the room image and its
layout. Wang et al. [9] proposed Feature Pyramid Net-
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Figure 2. (a) The proposed general layout of the room. (b) An
example of the label correction applied to the LSUN [15] layout
hypotheses that neglect the real structure of the room. (c) An ex-
ample of the label correction applied to Hedau [16] dataset.

works (FPN) [14] for room layout estimation by predicting
coarse positions of the room keypoints preserving the key-
points order. Then moving the coordinates of each point to
the nearest image boundary as a second refinement stage.
Although the previously mentioned methods could achieve
acceptable accuracies, most of them still suffer from com-
plex implementation due to the extra post-processing and
refinement stages. In our proposed method, we train an
end-to-end CNN to directly predict the room layout with-
out the need for extra post-processing stages as the model
directly predicts the perspective (homography) transforma-
tion parameters by regression that can transform a reference
room’s layout to the required room’s layout, in opposite to
all the previously mentioned methods which either depend
on semantic segmentation or keypoint estimation. Thanks
to the use of a customized spatial transformation network,
we could outperform the current method in room layout es-
timation, and we could perform the task at relatively high
speed.

3. Proposed method
We model the room layout estimation problem as a gen-

eral cuboid scene transformation through the spatial trans-
formation networks. The details of the proposed method
will be shown in the following subsections.

3.1. General hypothesis

In order to perform the room layout estimation task, we
propose a reference cuboid representing the standard layout
of any room as shown in Figure 2-(a), and since we do ex-
periment our method on two common datasets (LSUN room
layout [15] and Hedau [16]), we correct the plane labels of
the room sides. In the case of the LSUN [15] dataset, the
cases when there are only two walls in the room (in addi-
tion to the ceiling and floor) neglect the real structure of the
room and label the two walls with left and right walls. Such
labeling is confusing as the front wall is in the middle of
the left and right walls. We correct such cases to follow the
general hypothesis that we propose and the model can learn
the relation between the reference layout and the required
layout. An example of this case is shown in Figure 2-(b). In
the case of Hedau [16] dataset, the original layout hypoth-
esis follows our hypothesis but the labels of the room sides
are different. We correct the labels of the room layouts in
the original data to follow the labels of our proposal. An
example of this case is shown in Figure 2-(c).

3.2. Modified spatial transformation networks

Spatial transformation networks (STN) [12] is a type of
convolutional network that can manipulate the input im-
age (or features) spatially, and can learn invariance to scale,
translation, scale, and generic warping through a differen-
tiable spatial transformer module. A grid is employed to
be used for the features’ spatial transformation and a bilin-
ear interpolation is used to define the values of the trans-
formed features. The original STN paper employed a CNN
for feature extraction (i.e. localization) and then a fully con-
nected layer is added to predict the six parameters of the
affine transformation. The parameters are given to the spa-
tial transformer layer to transform the input image and then
a CNN classifier is added for the final prediction. In our pro-
posed method, we follow a more advanced approach with
some modifications. We used the perspective (homogra-
phy) transformation layer instead of the simple affine layer
in the original study as the transformation from the refer-
ence layout to the required layouts follow the homography
transformation rules. Also in the training phase, we used
bilinear interpolation, but in the inference phase, we used
nearest neighbor interpolation to avoid the wrong labels in
the edge pixels of the room sides. The general architecture
of the proposed method is shown in Figure 3-(a).

3.3. Feature extractors

We employ two modern CNN architectures for the
task of input image feature extraction. First, we employ
ConvNext-Tiny [17] which is proven an efficient CNN ar-
chitecture for image classification outperforming most of
the modern computer vision models either convolutional-
based or vision transformer-based [18] models. ConvNext-
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Figure 3. The proposed architecture of our method. (a) The general architecture of the proposed method consists of the feature extractor
stage followed by a fully connected layer that predicts the transformation parameters needed for the perspective transformation of the
reference layout. (a) Details of the ConvNext-Tiny feature extractor. (b) Details of the modified Xception (MXception) feature extractor.

Tiny architecture, shown in Figure 3-(b), depends mainly
on image patch embedding using strided convolution layer
which is proved to be beneficial for accuracy (originally in-
spired from the swin-transformer [19]) and large kernel size
for convolutions. Also, the architecture consists of replicas
of residual blocks with depthwise [20], pointwise [20] con-
volutions, and layer normalization [21] instead of the tradi-
tional batch normalization. The depthwise convolution is a
special type of convolution where the convolution is applied
for channel separately in the input features, and pointwise
convolution is 1×1 convolution to project the input features
to new feature count. The combination of depthwise and
pointwise convolutions was first proposed by Challot [20]
and proved to be efficient in learning representative fea-
tures. The authors of ConvNext reported that using kernel
size of 7 × 7 produces much more accuracy than smaller
kernel sizes and even for larger kernels (9×9 or 11×11) in

image classification, and the GELU activation showed bet-
ter performance than RELU activation so we used the same
kernel size and GELU activation through all the architecture
as shown in Figure 3-(b). The second alternative architec-
ture employed in our method is a modified version of Xcep-
tion architecture (MXception) [22]. It is a reduced version
of the original Xception [20] taking the output from the 13th
Xception block and then adding average pooling to the final
features. The architecture also consists of residual blocks
of Xception where each Xception block consists of RELU,
3× 3 depthwise conv, 1× 1 conv, RELU, 3× 3 depthwise
conv, 1×1 conv, and a residual connection between the start
of the block and the end of the block. In the early Xception
blocks, this block has max-pooling at the end and 1×1 con-
volution in the residual connection. The modified Xception
architecture is shown in Figure 3-(c). Although we tried
to train different recent feature extractors, those ConvNext-
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Figure 4. Qualitative results obtained by the proposed method on
LSUN [15] using ConvNext and MXception feature extractors.

Tiny and MXception were the only two that could learn ro-
bust features for transformation as the trials with other fea-
ture extractors all failed which proves the efficiency of the
depthwise and pointwise as they are the common modules
between the two architectures.

3.4. Loss function

To train the proposed model, we employed Huber loss
to regress the final layout image. Huber loss (which is ei-
ther L1 or L2 loss depending on a threshold value) can be
mathematically stated as :

L =


1

2N

∑N
n=1(y − ỹ)2, if |y − ỹ| < t

t
N

∑N
n=1(|y − ỹ| − 1

2 t), otherwise
(2)

where N represents the number of pixels, y is the ground
truth pixel value and ỹ is the predicted pixel value, while
the threshold value, t, is selected as 1 since empirically it
speeds up the training process. We chose Huber loss over
L1 and L2 loss since it is faster than either of them.

4. Datasets for training and testing
We train the proposed method on LSUN Room Lay-

out Estimation [15] and Hedau [16] datasets. The LSUN
Room Layout Estimation dataset consists of 4,000 training

Figure 5. Qualitative results obtained by the proposed method on
Hedau [16] using ConvNext and MXception feature extractors.

images, 394 validation images, and 1,000 testing images,
while Hedau dataset consists of 209 training, 53 validation,
and 105 test images. To expand the variety of scenes, we
utilize random brightness during training by slightly alter-
ing the contrast of the input images and utilizing random
horizontal flipping taking into consideration flipping the la-
bels of the right and left walls. For evaluation, we evalu-
ate the proposed method on the test sets of LSUN [15] and
Hedau [16] dataset.

5. Experimental results

In this section, we report the experiments done using the
proposed methods and the results obtained from each exper-
iment on LSUN and Hedau datasets.

5.1. Experimental setup

To train and evaluate the proposed method, we used a
desktop computer with Nvidia RTX3090 TI GPU, Intel core
i7 @ 3.2GHz CPU, and 64 RAM. We resized the training
and test images/layout masks to a fixed size of 400 × 400.
We trained the models using the Tensorflow Keras envi-
ronment with Adam’s optimizer with weight decay (initial
learning rate of 0.001 and a weight decay of 0.0001). The
convNext-Tiny and Mxception feature extractors were ini-
tialized using ImageNet [23] weights, and trained equally
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Method PE(%) PE(%) Time
LSUN Hedau

Hedau et al. [16] 24.23 21.2 -
Ramalingam et al. [24] - 13.34 -
Zhao et al. [25] - 14.5 -
Mallya and Lazebnik [1] 16.71 12.83 -
Dasgupta et al. [2] 10.63 9.73 30 s
Ren et al. [4] 9.31 8.67 -
Zhao et al. [26] 5.29 6.60 1.79 s
RoomNet (3-iter) [6] 9.86 8.36 166 ms
RoomNet (re-imp.) [6] 11.24 12.19 20 ms
Hirzer et al. [7] 7.79 7.44 86 ms
Lin et al. [5] 6.25 7.41 67 ms
Zhang et al. [27] 6.58 7.36 150 s
Zheng et al. [8] 6.95 7.21 170 ms
Wang et al. [9] 7.99 - 32 ms

ST-RoomNet-MXception 7.15 8.25 66 ms
ST-RoomNet-ConvNext 5.24 7.10 102 ms

Table 1. Quantitative results on LSUN and Hedau datasets report-
ing the PE(%) and the time per image.

for 150 epochs.
The metric used for the evaluation of the proposed mod-

els is the Pixel Error (PE%), where PE is the average
pixel-wise error between the predicted layout mask and the
ground truth layout mask averaged over all images.

5.2. Results on LSUN dataset

We evaluated the proposed method on LSUN [15].
The proposed method (ST-RoomNet) could attain PE% of
7.15% using MXception feature extractor, and a PE% of
5.24% using ConvNext feature extractor and a processing
speed of 66 ms and 102 ms per image, respectively. The
proposed ST-RoomNet using ConvNext feature extractor
outperforms other state-of-the-art methods on LSUN room
layout estimation as shown in Table 1. Sample qualitative
results obtained by the proposed method on LSUN dataset
are shown in Figure 4 showing the outstanding performance
of the proposed method.

5.3. Results on Hedau dataset

In the evaluation of the proposed method on Hedau [16],
the proposed method (ST-RoomNet) could attain PE% of
8.25% using MXception feature extractor, and a PE% of
7.10% using ConvNext feature extractor. Qualitative results
shown in Figure 5 show that the proposed method can pro-
duce high-quality layouts even better than the ground truth
data of Hedau, which contains layouts that do not follow
the standard cuboid layout with non-refined edges. In such
cases, the proposed method can produce smooth edges fol-

Figure 6. Result comparison between the proposed method using
Affine and perspective transformation. The affine transformation
is limited and cannot learn room layout, however, the perspective
transformation is efficient enough for learning the room layouts.

lowing the standard cuboid layout as shown in Figure 5.
Table 1 shows that the proposed method using ConvNext
feature extractor outperforms other state-of-the-art methods
on Hedau Room estimation task.

5.4. Ablation study on the spatial transformation
layer

In this experiment, we train the proposed method using
MXception feature extractor on LSUN dataset to predict the
six parameters of affine transformation with an affine trans-
formation layer, and we compare the results with our stan-
dard experiment in which the feature extractor predicts the
eight parameters of the perspective transformation with a
perspective transformation layer. We report the result in Ta-
ble 2 showing that the affine transformation cannot be em-
ployed to learn the room layout problem since the PE% is
large (17.56). Since most of the room planes have homog-
raphy deformations instead of the simple affine deformation
in which the parallel lines in the reference scene remain par-
allel after transformation, and that is not the case in the real
layouts of the image. Figure 6 shows the difference between
the results obtained by the affine and perspective transfor-
mation layer during training highlighting the limitations of
the affine transformation and the robustness of the perspec-
tive transformation.

Transformation Layer PE(%)

Affine 17.56
Perspective 7.15

Table 2. Comparison between the PE% obtained on LSUN dataset
using affine and perspective transformation layers after training
using MXception feature extractor.
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F. extractor Convergence PE(%)

VGG16 [28] No -
ResNet50 [29] No -
ResNet50V2 [30] No -
InceptionV3 [31] No -
DenseNet121 [32] No -
Xception [20] Weak 18.23
MobileNetV2 [33] weak 33.51
MobileNetV3 [34] weak 27.66
EfficientNetB0 [35] weak 26.21
EfficientNetB1 [35] weak 31.21
EfficientNetB2 [35] weak 26.29
ConvNext-Small [17] weak 22.74

MXception [22] Yes 7.15
ConvNext-Tiny [17] Yes 5.24

Table 3. Comparison between popular feature extractors (F. ex-
tractor) in terms of the ability to converge during training and PE
(%) on LSUN dataset.

5.5. Ablation study on the feature extractor

In our experiments, we tried to train different feature
extractor networks (popular classification networks) [20,
28–35] to study the effect of the architecture of the fea-
ture extractor on the pixel error of the room layout esti-
mation. In each experiment, we replaced the final classi-
fication layer of the original classification network with a
regression layer (fully connected layer with linear activa-
tion) with eight nodes followed by the spatial transforma-
tion layer. We found out that feature extractors such as
VGG16 [28], Resnet50 [29], ResNet50V2 [30], and Incep-
tionV3 [31] cannot converge at all as the loss explodes dur-
ing training. Other architectures such as original Xception
[20], MobileNetV2 [33], MobileNetV3 [34], EfficientNet
(B0, B1, B2) [35], and ConvNext-Small [17] can weakly
converge with relatively large pixel error values. They can-
not be considered as perfectly fitted models, however, the
proposed ConvNext-Tiny [17] and MXception [22] (Mod-
ified Xception) can perfectly converge and attain the best
(very small) pixel error values. We noticed that both the ar-
chitectures that could weakly and perfectly converge in the
room estimation task are all based on Depthwise convolu-
tion which proves the robustness of the depthwise convolu-
tion and its strength to learn complex tasks, also the depth
of the model plays a role in the convergence as we found
that ConvNext-Tiny can perfectly converge during training
however it has a reduced architecture of ConvNext-Small.
The same happens in the case of MXception which is a re-
duced version of the original Xception architecture. Table 3
shows a comparison between the different feature extractors
stated previously and the corresponding pixel error (PE%)

Figure 7. Failure cases of the proposed method due to wrong ex-
trapolation.

for those that could converge.

6. Limitations and future work
Although the proposed method (ST-RoomNet) is very ef-

ficient in learning the room layout problem, we noticed a
minor drawback of the proposed method which is the in-
ability of the model to extrapolate the layout. The extrapo-
lation is the task of predicting the values of the pixels out-
side the scene. This case rarely happens when the required
layout has a perspective transformation with a small zoom-
ing value (zooming out) which requires extrapolation of the
reference layout as shown in Figure 7. The current imple-
mentation of the spatial transformation layer simply pads
the outside pixels with the nearest value and does not take
into consideration the structure of the reference layout. This
will be our future work to add extrapolation to the imple-
mentation of the spatial transformer. Our future work will
also be focused on the room layout estimation of the 3D
scenes instead of the 2D scenes as the current method can
be extended for the 3D room layout estimation task with the
use of the 3D spatial transformer.

7. Conclusion
The proposed method (ST-RoomNet) can efficiently

learn the task of room layout estimation using an approach
of spatial transformation of a reference room layout to the
required layout. It can attain extremely small pixel error
(PE%) values (5.24 on LSUN and 7.10 on Hedau) outper-
forming the state-of-the-art methods on LSUN and Hedau
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room layout estimation datasets. The proposed method can
also process each image frame in 102 ms for the ConvNext-
tiny feature extractor and 66 ms for the MXception feature
extractor. The proposed method is novel since it does not
depend on the traditional approaches of the planer segmen-
tation or keypoint estimation that are employed in the state-
of-the-art methods. It depends on the spatial transforma-
tion network, especially on the perspective transformation
which could model the problem of the room layout estima-
tion with the aid of robust feature extractors such as Con-
vNext and MXception typically employed as feature extrac-
tors.
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