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Abstract

The performance of deep neural networks is typically
measured with ground truth data which is expensive and
not available during operation. At the same time, safety-
critical applications, such as highly automated driving,
require an awareness of the current performance, espe-
cially during operation with distorted inputs. Recently, per-
formance prediction for semantic segmentation by an im-
age reconstruction decoder was proposed. In this work,
we investigate three approaches to improve its predictive
power: Parameter initialization, parameter sharing, and
inter-decoder lateral connections. Our best setup estab-
lishes a new state of the art in performance prediction
with image-only inputs on Cityscapes and KITTI and even
excels a method exploiting both point cloud and image
inputs on Cityscapes. Further, our investigations reveal
that the best Pearson correlation between the segmenta-
tion quality and the reconstruction quality does not always
lead to the best predictive power. Code is available at
https://github.com/ifnspaml/PerfPredRecV2.

1. Introduction

Deep neural networks dominate the state of the art in se-
mantic segmentation [7, 44, 57], but at the same time lack
reliable confidence estimates [43, 56]. This needs to be ad-
dressed considering safety-critical applications in distorted
environments, e.g., highly automated driving [1,3,4,12,19,
21, 29].

Confidence estimates can be made either at the pixel
level or at the image level. A prominent approach for pixel-
level confidence estimation is uncertainty estimation using
deep ensembles [30] or Monte-Carlo dropout [14, 22, 23].
However, both have high complexity, relying either on mul-
tiple models or multiple forward passes. There have been
efforts to reduce the complexity to a single model and for-
ward pass [34, 41, 42, 47], but concerns have been raised
regarding their practicality [48].
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Figure 1. Our improvement upon state of the art. We re-
port the mean absolute error ∆mIoUM (14) in % on our mixed
clean/distorted DCS

test (see Table 1 and Section 4). All methods use
ResNet18 as encoder and Monodepth2 (MD) or SwiftNet
(SN) as decoders. Our proposed method advances state of the art
in image-only performance prediction [2] and excels even point
cloud- and image-based performance prediction [27].

In contrast, our objective is image-level confidence es-
timation through estimating the mean intersection-over-
union (mIoU ). We frame these methods under the term
performance prediction. The closest prior art in seman-
tic segmentation [2, 26, 27] is based on auxiliary decoders.
In [26,27], a mono-depth estimation decoder is used to pre-
dict the mIoU . However, these approaches require both im-
age data and point cloud data from a LiDAR sensor. In [2],
an image reconstruction decoder is used for mIoU predic-
tion which relies solely on image data.

In this work, we build upon [2] and propose several
methods to reduce the prediction error. In Figure 1, we re-
port the mean absolute error ∆mIoUM, showing that our
method excels the state of the art [2, 27]. Our contributions
are fivefold: First, we investigate whether reusing the se-
mantic segmentation weights as initialization for the image
reconstruction decoder instead of solely following a random
initialization scheme is meaningful. Second, we propose
parameter sharing beyond the encoder following a particu-
lar sharing scheme. Third, we propose inter-decoder lateral
connections between the segmentation decoder and recon-
struction decoder. Fourth, we show that it is better to rely
on the predictive power of a performance estimate instead
of the Pearson correlation used in [2]. Indeed this is one
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of our major take-aways as we observed that a model with
a high Pearson correlation between segmentation perfor-
mance and reconstruction performance is not automatically
also the model with the lowest prediction error. Finally,
we report results on Cityscapes [10] and KITTI 2015 [15],
where our proposed method outperforms the state of the art
in image-only performance prediction [2] on both datasets
and even excel image- and point cloud-based performance
prediction for semantic segmentation [27] on Cityscapes
(see Figure 1). To the best of our knowledge, our inves-
tigations and proposed methods are novel in performance
prediction for semantic segmentation.

2. Related Works
Pixel-level confidence estimation: Uncertainty estima-

tion is a prominent approach when it comes to pixel-level
confidence estimates in semantic segmentation. A promi-
nent application is anomaly segmentation [5,6]. Two widely
used approaches are deep ensembles [30] and Monte-Carlo
dropout [14], both also applicable for semantic segmenta-
tion [22,23,48]. A major drawback of both methods is their
reliance on multiple models or multiple forward passes.
Recent works propose single-model single-forward uncer-
tainty estimation [34, 41, 42, 47] which address the com-
plexity issue. In [48], however, concerns were raised re-
garding their practicality due to poor calibration under dis-
tributional shifts. Other approaches make use of auxiliary
(sub-)networks for pixel-wise fault detection [50] and self-
training with pseudo-labels [9].

In contrast, our method addresses image-level perfor-
mance prediction instead of pixel-level confidence estima-
tion. In particular, we estimate the mean intersection-over-
union using a single model and a single forward pass. This
aligns our approach with the standard evaluation of a se-
mantic segmentation, where the mean intersection-over-
union is a major evaluation metric.

Image-level performance prediction: One way of ad-
dressing image-level performance prediction for semantic
segmentation is to predict the mean intersection-over-union
(mIoU ). There exist medical applications in semantic seg-
mentation that instead predict the related Dice similarity co-
efficient [13,31–33]. They, however, rely on either multiple
forward passes [32, 33] or the semantic segmentation out-
put [13, 31]. Our approach predicts the mIoU relying on
a single model and single forward pass even without using
the final segmentation output in inference. We will now fo-
cus on semantic segmentation for highly automated driving.
Note that [49, 51] deal with the same research question in
object detection. In [38], a generative adversarial network
for image compression is used to perform a domain mis-
match estimation based on the correlation of image recon-
struction and semantic segmentation quality. The authors
of [39, 52, 53] predict the IoU of image segments based on

pixel-wise dispersion values. Different to [38,39,52,53], we
are interested in predicting the image-level mIoU . In [55],
the mIoUNet is proposed which predicts the mIoU di-
rectly. Different to [55], we do not use a separate network
but rather attach an image reconstruction decoder to an al-
ready trained semantic segmentation network followed by
a separately tuned regression. The closest prior art meth-
ods use auxiliary decoders [2, 26, 27]. In [27], the authors
use a multi-task network with a semantic segmentation de-
coder and a depth estimation decoder. They predict the
per-image mIoU by measuring the per-image depth esti-
mation error using point cloud data and a subsequent re-
gression. Slight modifications, including parameter sharing,
were made in [26] to improve the original approach [27].
Different to [26, 27], the authors of [2] propose to attach
an image reconstruction decoder to an already trained se-
mantic segmentation network. Similarly to [26, 27], the
per-image reconstruction quality in combination with a sub-
sequent regression is used to predict the per-image mIoU .
This makes the approach of [2] an image-only approach as
no point cloud data is needed.

In this work, based on [2], we improve performance pre-
diction by a specific parameter initialization, a particular pa-
rameter sharing scheme, and inter-decoder lateral connec-
tions. To the best of our knowledge, all three approaches are
novel in performance prediction for semantic segmentation.
Further, similar to [27] and different to [2], we report not
only the Pearson correlation but also the predictive power
in our ablation studies. This led us to one of our major
take-aways: The model with the highest Pearson correla-
tion between segmentation and reconstruction performance
is not automatically the model with the lowest prediction
error (i.e., highest predictive power). This finding may be a
bit of a surprise.

3. Method Description
We introduce the theoretical background and mathemati-

cal notations (Section 3.1), give a sketch of the performance
prediction prior art we build upon (Section 3.2), present our
novel approach (Section 3.3), and finally, we outline the per-
formance prediction framework (Section 3.4).

3.1. Theoretical Background

Let x = (xi) ∈ IH×W×C be a normalized image of
height H , width W , and C = 3 color channels, with
pixel xi ∈ IC , pixel index i ∈ I, pixel index set I =
{1, ...,H ·W}, and I = [0, xmax], with xmax = 1. Next, let
F : IH×W×C→O be a deep neural network, with L layers,
output y = F (x;θ), task-specific output space O = OL,
and network parameters θ. Further, let f ℓ ∈ Oℓ be an
intermediate feature representation at layer ℓ ∈ L, with
output space Oℓ = FHℓ×Wℓ×Cℓ

ℓ , where typically Fℓ = R,
height Hℓ, width Wℓ, Cℓ feature maps, and layer index set
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L = {1, ..., E, ..., L}, with E introduced in the following.
We divide F into an encoder E : IH×W×C → OE with E
layers and a decoder D : OE→OL with D = L − E lay-
ers. Finally, we define the latent space z = E(x;θ1:E) ∈
OE and y = F (x;θ) = D(E(x;θ1:E);θE+1:L) =
D(z;θE+1:L), where θℓ1:ℓ2 gives the parameter set of layer
ℓ1 to layer ℓ2, with ℓ1, ℓ2 ∈ L and special case θ = θ1:L.

Semantic segmentation: The decoder Dseg of a seman-
tic segmentation network F seg produces class probabilities
y = yseg = Dseg(zseg;θseg

E+1:L) via a final softmax activa-
tion, where y = (yi,s) ∈ Oseg and zseg = Eseg(x;θseg

1:E),
with Oseg = IH×W×S , class index s ∈ S, class set
S = {1, ..., S}, and number of classes S. Further, let
y = (yi,s) ∈ {0, 1}H×W×S be the one-hot-encoded ground
truth. Note ∀i ∈ I :

∑
s∈S yi,s = 1,

∑
s∈S yi,s = 1. Dur-

ing training, we minimize the cross entropy loss

J seg = Ex∼ptrain

[
1

|I|
∑
i∈I

∑
s∈S

yi,s · log (yi,s)

]
, (1)

with Ex∼ptrain representing the expectation value over a
training datasetDtrain or minibatch with distribution ptrain.

Input image reconstruction: The decoder Drec of
an image reconstruction network F rec produces a recon-
structed input image x̂ = yrec = Drec(zrec;θrec

E+1:L) via a
final sigmoid activation, where x̂ ∈ IH×W×C . During train-
ing, we minimize the mean squared error loss

J rec = Ex∼ptrain

[
∥x− x̂∥22
HWC

]
. (2)

Input image distortion: Let xϵ ∈ IH×W×C be a dis-
torted input image. Given x and xϵ, we can compute the
respective distortion rϵ = xϵ − x, where we define the ef-
fective distortion strength as

ϵ =

√
1

HWC
Ex∼p (||rϵ||22), (3)

with Ex∼p representing the expectation value over a dataset
D with distribution p. In this work, D is restricted to the
validation set Dval and test set Dtest with their individual
distributions pval and ptest, respectively. We call ϵ the ef-
fective distortion strength (measured after generating the
distortion), while we introduce ϵ as the target distortion
strength (hyperparameter to generate the distortion), follow-
ing [2]. The difference between ϵ and ϵ comes on the one
hand from the general restriction of xϵ to lie in IH×W×C in-
stead of RH×W×C , and on the other hand from algorithmic-
specific restrictions of the respective distortion type. We
refer the interested reader to [2] for more details.

3.2. A Retrospective on Performance Prediction

Our work builds upon [2] and proposes distinct improve-
ments. An overview of the performance prediction frame-
work is given in Figure 2, explained in the following.

Semantic Segmentation

Performance Prediction

D Eseg Dseg SQ

Drec

RQ ŜQ

input
data y

mIoU

m̂IoU

ground
truth

x zseg y

x̂

x PSNR

Figure 2. Performance prediction framework. A semantic
segmentation with encoder Eseg, latent space zseg, and decoder
Dseg, is extended by a performance prediction. It consists of a
reconstruction decoder Drec followed by reconstruction quality
computation (RQ) and segmentation quality estimation (ŜQ). The
latter is a calibrated regression between segmentation quality (SQ)
mIoU (8), and reconstruction quality (RQ) PSNR (10), between
input x and reconstructed input x̂. It yields the estimate m̂IoU
(12) without using ground truth y.

Network architecture and general approach: An im-
age reconstruction decoder Drec is attached to an already
trained semantic segmentation network F seg consisting of
an encoder Eseg, latent space representation zseg, and a de-
coder Dseg. While the architectural composition of Drec

can be freely chosen, we assume its design follows Dseg.
To create an image reconstruction decoder using Dseg as
the basis, we simply modify the L-th layer of Dseg such
that x̂ = Drec(zseg;θrec

E+1:L) ∈ IH×W×C . In particular, the
last convolution outputs C instead of S feature maps and
uses a sigmoid instead of a softmax activation. Since Drec

operates on zseg, we can write zrec = zseg.
After training, the reconstruction quality (RQ, PSNR) is

used to predict the segmentation quality (SQ, mIoU ) in the
form of a segmentation quality estimate (ŜQ, m̂IoU ).

Two-stage training and network parameters: The net-
work is trained with a two-stage protocol. First, the se-
mantic segmentation is trained standalone. Then, its pa-
rameters θseg are fixed. A follow-up training of the recon-
struction decoder Drec and its randomly initialized network
parameters θrec

E+1:L is then performed, always operating on
zrec = zseg. Overall, we will find that θrec

ℓ ̸= θseg
ℓ , with

E < ℓ ≤ L and θℓ being the parameters of the ℓ-th layer.
Our view and hypotheses: With the given retrospective

on [2], we derive three architectural changes which we hy-
pothesize to improve the predictive power of ŜQ: First, we
consider a random initialization of the parameters θrec

E+1:L

of Drec to be suboptimal for the task of performance predic-
tion, instead, we propose to initialize θrec

E+1:L with weights
based on Dseg. Second, instead of sharing only the encoder
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Eseg between both tasks, we expect sharing more network
parts will improve the performance prediction. Third, when
both Dseg and Drec are trained independently from each
other, it is not guaranteed that they establish a high predic-
tive power of ŜQ w.r.t. SQ. We hypothesize that by intro-
ducing inter-decoder lateral connections, this problem can
be better addressed.

3.3. Improvements to Performance Prediction

In the following, we will elaborate on our contributions
to improve the performance prediction quality. Supporting
visualizations can be found in the Supplement Section 2.

On correlation and predictive power: Investigations
in [2] are built on the maximization of the correlation be-
tween PSNR and mIoU . In [26, 27] both Pearson corre-
lation and predictive power estimates in the form of pre-
diction errors are reported throughout all ablation studies.
We follow [26, 27] and report Pearson correlation between
PSNR and mIoU along with the predictive power of m̂IoU
in the form of prediction errors. Note that this will lead us
to a major take-away: The model with the highest Pearson
correlation is not automatically the model with the lowest
prediction error or best predictive power.

Parameter initialization: It is well known that param-
eter initialization is crucial for fast convergence and good
final performance [16]. In [2], reconstruction decoder pa-
rameters θrec

E+1:L are randomly initialized, which is reason-
able, if one is interested in a good image reconstruction.
We, however, are interested in a high predictive power of
ŜQ. We now introduce the subscript t to refer to a par-
ticular time stamp, e.g., θrec

E+1:L,t=0 refers to the network
parameters of Drec after initialization but before training.
As we consider F seg to be already trained and fixed, we
neglect t for θseg. From now on, (any subparts of) θseg al-
ways refer to the final state, i.e., after training the semantic
segmentation. Assuming that both decoders share the same
architecture, we hypothesize that initializing the image re-
construction decoder Drec with trained semantic segmen-
tation decoder weights θseg

E+1:L may lead to a higher pre-
dictive power of ŜQ. Thus, we propose to choose the ini-
tialization θrec

E+1:L−1,t=0 = θseg
E+1:L−1 and to just initialize

the output layer parameters θrec
L,t=0 randomly. Note that this

proposal does not introduce any overhead to [2] regarding
number of parameters or operations.

Parameter sharing: In [2], the encoder is shared be-
tween F seg and F rec. This reduces the number of pa-
rameters but also establishes a shared latent space rep-
resentation zseg. The decoders Dseg and Drec produce
their individual outputs y = Dseg(zseg;θseg

E+1:L) and x̂ =
Drec(zseg;θrec

E+1:L), respectively, both using zseg as in-
put. Therefore, one can assume, whenever the distri-
bution of zseg changes, both Dseg and Drec will likely
produce a wrong output with respect to the input x, as

zseg = Eseg(x) is jointly used. One could now reduce
the number of shared parameters, where in the extreme case
∀ℓ ∈ L : θseg

ℓ ̸= θrec
ℓ hold, meaning also to seperate

encoders Eseg and Erec. This aligns with the approach
in [38], where, however, a domain mismatch instead of a
per-image mIoU estimate was predicted. In addition, low
rank correlation numbers were reported. Instead, we in-
tend to increase the number of shared weights up to the
extreme case θrec

1:L−1 = θseg
1:L−1 (as the last layer L is task-

specific, we cannot share its weights). As Eseg is shared,
i.e., θrec

1:E = θseg
1:E holds, we aim to also increase the num-

ber of shared parameters between Dseg and Drec. Assum-
ing both decoders have D layers, we introduce the decoder
layer identifiers d1, d2 ∈ {1, ..., D−1}, d1 ≤ d2, indicating
the first and last shared decoder layers. Note that

ℓ = E + d (4)

holds. One could now implement a forward sharing scheme,
i.e., d1 = 1 (first decoder layer) is fixed and d2 is increased
up to D−1 (penultimate decoder layer). We, however, fol-
low a backward sharing scheme, where we fix d2 = D−1
instead and gradually decrease d1 down to 1. We obtain
θrec
ℓ1:ℓ2 = θseg

ℓ1:ℓ2
, i.e., we share network parameters from lay-

ers ℓ1 = E+ d1 to ℓ2 = E+D−1. As a result, the amount
of shared decoder layers in the backward sharing scheme is

∆d = D − d1. (5)

The forward sharing scheme resembles investigations
in [26], while our backward sharing scheme is indeed
novel. In initial experiments, we observed that the back-
ward scheme leads to better results which is why we sticked
to the backward scheme. Altogether, we hypothesize that
aligning the two decoders in their feature extraction will in-
crease the predictive power of ŜQ. Note that w.r.t. [2], this
reduces the number of parameters and operations, two prop-
erties which are highly desirable.

Inter-decoder lateral connections: Encoder-decoder
lateral connections (EDLCs) between Eseg and Dseg are
known to be beneficial when it comes to semantic segmen-
tation quality [7,44]. In [2], EDLCs between Eseg and Drec

are also employed, which resulted in improved image re-
construction and correlation of RQ and SQ. We hypothesize
that adding inter-decoder lateral connections (IDLCs) be-
tween Dseg and Drec further enhances the predictive power
of ŜQ. In particular, we obtain x̂ = Drec(Zseg;θrec

E+1:L),
where bottleneck data Zseg = (zseg,F) comprises both
the former zseg, but also some EDLC and IDLC data F
that serve as input to Drec. Set F contains feature maps
f ℓ ∈ F that are not only from the encoder (f ℓ ∈ FEDLC,
with ℓ ∈ LEDLC ⊂ L and f ℓ = f seg

ℓ = f rec
ℓ , as in [2]) but

also from the semantic segmentation decoder (f ℓ ∈ F IDLC,
with ℓ ∈ LIDLC ⊂ L and f ℓ = f seg

ℓ ̸= f rec
ℓ , our pro-

posal). Note that set F = FEDLC ∪ F IDLC holds, where
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FEDLC ∩ F IDLC = ∅. In the following, we will only focus
on the subset f ℓ ∈ F IDLC, with ℓ ∈ LIDLC.

The question remains, how both decoders are inter-
connected with each other. We focus on parameter-free
inter-decoder lateral connections as we want to limit the
additional computational overhead. Let Dseg and Drec

share the same architecture. Then, ∀ℓ ∈ {ℓ ∈ L|ℓ <
L} : f seg

ℓ ,f rec
ℓ ∈ Oℓ, i.e., every pair of network lay-

ers ℓ share the same space Oℓ. We intentionally exclude
layer L as both decoders have their individual output space.
This gives us the option of an additive lateral connection,
f rec
ℓ ← f seg

ℓ + f rec
ℓ , which is then fed to the next layer

of Drec (instead of the original f rec
ℓ ). If only one IDLC

is used (e.g., in layer ℓ′), we can write x̂ = Drec(f rec
ℓ′ +

f seg
ℓ′ ;θrec

ℓ′+1:L), with f rec
ℓ′ = Drec(zseg;θrec

E+1:ℓ′) and f seg
ℓ′ =

Dseg(zseg;θseg
E+1:ℓ′). The choice of the IDLCs and their re-

spective layers ℓ′ will be reported later on. As we have
ℓ′ = E + d′, where E is a fixed parameter, we will use

d′ ∈ LIDLC ⊂ {1, ..., D−1}, (6)

from now on, where d′ corresponds to the index of the IDLC
decoder layer as before. This modification to [2] slightly
increases the number of operations, however, we consider
the computational overhead to be negligible.

3.4. Performance Prediction Framework

In the following, we introduce important metrics for our
work, where we follow [2] to establish comparability.

Semantic segmentation evaluation: The mean
intersection-over-union is defined as

mIoU ϵ =
1

|S|
∑
s∈S

TPs,ϵ

TPs,ϵ + FPs,ϵ + FN s,ϵ
, (7)

with class-wise true positives TPs,ϵ =
∑

n∈N TPn,s,ϵ,
false positives FPs,ϵ =

∑
n∈N FPn,s,ϵ, and false negatives

FN s,ϵ =
∑

n∈N FN n,s,ϵ. Further, ϵ indicates the average
distortion strength (3) and n ∈ N is an image index from set
N = {1, ..., |D|}. We further introduce the image-specific
mean intersection-over-union

mIoU n,ϵ =
1

|S|
∑
s∈S

TPn,s,ϵ

TPn,s,ϵ + FPn,s,ϵ + FN n,s,ϵ
, (8)

and its mean

mIoU ϵ =
1

|N |
∑
n∈N

mIoU n,ϵ. (9)

Thus, (9) first aggregates image-specific mean class statis-
tics via (8) and then computes the average over the dataset.
In contrast, (7) aggregates class statistics over the entire
dataset and only then takes the mean over the classes.

Image reconstruction evaluation: The peak signal-to-
noise ratio (PSNR) is defined as:

PSNRn,ϵ = 10 log

(
x2
max

J rec
n,ϵ

)
= −10 log

(
J rec
n,ϵ

)
, (10)

with J rec
n,ϵ =

1
HWC ∥xn,ϵ−x̂n,ϵ∥22 referring to (2) when only

xn,ϵ is fed into Eseg and I = [0, xmax], with xmax = 1 (see
Section 3.1). We further introduce its mean

PSNRϵ =
1

|N |
∑
n∈N

PSNRn,ϵ. (11)

Regression calibration: We use a polynomial regres-
sion for the semantic segmentation estimate

m̂IoU n,ϵ =
∑
k∈K

θreg · PSNRk
n,ϵ, (12)

with parameters θreg, k ∈ K = {0, ...,K}, K=2.
Performance prediction evaluation: The Pearson cor-

relation is defined as

ρ =

∑
n,ϵ(an,ϵ − µa)(bn,ϵ − µb)√∑

n,ϵ(an,ϵ − µa)2
√∑

n,ϵ(bn,ϵ − µb)2
, (13)

with an,ϵ = mIoU n,ϵ, bn,ϵ = PSNRn,ϵ, µa =
1

|N ||E|
∑

n,ϵ an,ϵ, µb = 1
|N ||E|

∑
n,ϵ bn,ϵ, and ϵ ∈ E , set

of distortion strengths E , and ρ ∈ [−1, 1]. In addition, we
define the mean absolute prediction error

∆M = ∆mIoUM =
1

|N ||E|
∑
n∈N

∑
ϵ∈E

∣∣∆n,ϵ

∣∣, (14)

with ∆n,ϵ = m̂IoU n,ϵ − mIoU n,ϵ, and the root mean
squared prediction error

∆R = ∆mIoUR =

√
1

|N ||E|
∑
n∈N

∑
ϵ∈E

(
∆n,ϵ

)2
. (15)

Both ∆mIoUM and ∆mIoUR represent the predictive
power of ŜQ for the task of performance prediction. We will
see in our experimental results that the predictive power is
a better representative of ŜQ’s quality than the Pearson cor-
relation on which [2] build their ablation study on.

4. Experimental Setup
In the following, we introduce our experimental setup.

All experiments were performed using PyTorch [45] and
a single NVIDIA GTX 1080Ti. Code is available at
https://github.com/ifnspaml/PerfPredRecV2.

Employed datasets: Table 1 lists all datasets and splits.
All models are trained on the Cityscapes [10] training set
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Table 1. Datasets & splits used in our experiments.

Dataset Official subset #Images Symbol

Cityscapes [10]
(CS)

train — 2,975 DCS
train

val
{

59 DCS
val

441 DCS
test

KITTI [15]
(KIT) train

{
50 DKIT

val

150 DKIT
test

DCS
train. After training, the results are evaluated on subsets

of Cityscapes validation set (validation subset DCS
val and test

subset DCS
test [2]) or subsets of KITTI 2015 [15] training set

(validation subset DKIT
val and test subset DKIT

test [2, 26, 27]).
Further, we follow [2, 26, 27] and create distorted

sets of DCS
val , DCS

test, DKIT
val , and DKIT

test . We refer to
the original data as “clean” and to the distorted data as
“distorted”. We employ the distortions Gaussian noise,
salt-and-pepper noise, FGSM [18], or PGD [40] attacks
(40 iterations, step size 2

255 ). All noises were ap-
plied with various target distortion strengths ϵ ∈ E =
{0.25, 0.5, 1, 2, 4, 8, 12, 16, 20, 24, 28, 32} · 1

255 following
[2, 26, 27]. Both FGSM and PGD are optimized to maxi-
mize (1) on the respective validation or test subsets.

Network architectures: We deploy SwiftNet [44]
and DeepLabv3+ [7] for semantic segmentation and
adapt Monodepth2 [17] to the task of semantic seg-
mentation following [25, 28]. All models consist of an
ImageNet-pretrained [11, 54] encoder Eseg attached to
Dseg, which resembles either the SwiftNet (SN), the
DeepLabv3+ (DL), or the Monodepth2 (MD) decoder.
As Eseg we employ RN18 [20], RN50 [20], or the re-
cently introduced SW-T [35] or CN-T [36] (RN=ResNet;
SW-T=Swin-Tiny; CN-T=ConvNeXt-Tiny). Finally,
the image reconstruction decoder Drec follows the architec-
ture of the employed Dseg, with the adaptation of layer L as
described in Section 3.2. Further details on the network ar-
chitectures, e.g., number of decoder layers D and mappings
for decoder layer identifiers d, can be found in Supplement
Section 3.

Training details: We train the SwiftNet-based F seg

by following the SwiftNet training protocol [44] and
train for 200 epochs using the Adam [24] (RN18, RN50)
or AdamW [37] (SW-T, CN-T) optimizer with learning rate
4 · 10−4 and weight decay 10−4. A cosine annealing sched-
ule is applied with minimum learning rate 10−6. Further
training details can be found in Supplement Section 3.

The DeepLabv3+-based F seg is trained by com-
bining the DeepLabv3+ protocol from [7] with
parts of the SwiftNet training protocol as well as
MMsegmentation [8] training protocols. In particular,
we train for 200 epochs using the SGD optimizer with
momentum of 0.9 [46] (RN18, RN50) or the AdamW [37]

(SW-T, CN-T) optimizer. Further training details can be
found in Supplement Section 3.

Lastly, the Monodepth2-based F seg is trained follow-
ing the exact same protocol of the SwiftNet-based F seg.

Finally, for training Drec, we first freeze the network pa-
rameters of F seg. We then train for additional 10 epochs
with the same optimizer and data augmentation settings as
the underlying F seg was trained on. The batch size is ad-
justed to 8 for all encoder types.

Evaluation and regression details: We mainly report
Pearson correlation (13) of mIoU n,ϵ (8) and PSNRn,ϵ (10),
mean absolute error ∆mIoUM (14), and mean root squared
error ∆mIoUR (15). The regression calibration is per-
formed on clean and distorted DCS

val or DKIT
val , using (12).

We refer the interested reader to [2] for more details.

5. Experimental Evaluation and Discussion

We focus our experimental evaluation and discussion on
models with an RN18-based encoder with either SN-based
or MD-based semantic segmentation and image reconstruc-
tion decoders to be comparable with [2, 26, 27]. Results for
RN50-, SW-T- or CN-T-based encoders and DL-based de-
coders can be found in Supplement Section 4.

5.1. Baseline Performance

We first report performance of baselines on clean (ϵ = 0)
datasets in Table 2. We observe that mIoU ϵ is substan-
tially lower than mIoU ϵ. Further, as the models are trained
on DCS

train, they are expected to show lower performance on
both DKIT

val , and DKIT
test due to domain shifts. In the follow-

ing, we will investigate the predictive power of ŜQ and how
our proposed methods improve upon the baseline in [2].

5.2. Parameter Initialization

We report our results on parameter initialization for
mixed clean/distorted datasets in Table 3. We differentiate
between pure random initialization (r), as done in [2], and
semantic segmentation weights initialization (s). Consid-
ering the SN-based model, our results indicate that initial-
izing with semantic segmentation weights, although being
well motivated, performs slightly worse on DCS

val . Interest-
ingly, we observe the opposite on DKIT

val . This is indeed an
interesting outcome, especially since our models are solely
trained on DCS

train. However, as we do not want to degrade
the predictive power in the domain we trained our model
on, we will follow the random initialization (r) scheme in
Section 5.5 for the SN-based model. On the other hand,
our MD-based model shows slightly better results when us-
ing the segmentation weights (s) scheme which is why we
follow this scheme in Section 5.5 for the MD-based model.
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Table 2. Baseline performance on clean (ϵ = 0) validation and test datasets. Metrics mIoU ϵ=0 [%] (7), mIoU ϵ=0 [%] (9), and
PSNRϵ=0 [dB] (11) of the SN/MD-based Dseg and Drec and of the RN18-based Eseg. All models trained on DCS

train. Note that numbers
for SN-based Dseg and Drec and RN18-based Eseg are taken from [2].

Dseg,
Eseg mIoU ϵ=0 mIoU ϵ=0 PSNRϵ=0

Drec DCS
val DCS

test DKIT
val DKIT

test DCS
val DCS

test DKIT
val DKIT

test DCS
val DCS

test DKIT
val DKIT

test

SN RN18 65.02 72.95 43.12 39.46 49.37 61.41 36.04 34.18 29.86 29.39 20.31 20.60
MD RN18 60.52 72.95 42.05 39.84 45.71 59.43 33.24 32.61 37.87 37.86 25.52 26.12

Table 3. Parameter initialization on mixed clean/distorted val-
idation datasets. Metrics ρ (13), ∆M (14), and ∆R (15) of the
SN/MD-based Dseg and Drec and of the RN18-based Eseg. We
vary initialization of θrec

E+1:L−1 in Drec by using random weights
(“r”) or segmentation weights (“s”).

Dseg,
Eseg Init

DCS
val DKIT

val

Drec ρ ∆M ∆R ρ ∆M ∆R

SN RN18 r 0.84 8.16 11.13 0.74 7.67 9.66
SN RN18 s 0.84 8.25 11.16 0.76 7.36 9.26
MD RN18 r 0.81 8.85 11.55 0.68 7.56 9.31
MD RN18 s 0.81 8.80 11.49 0.69 7.49 9.19

5.3. Parameter Sharing

We report our results on parameter sharing for mixed
clean/distorted datasets in Table 4, where we vary the
amount of shared decoder layers ∆d (5). The first line
always indicates no decoder parameter sharing, as in [2].
Considering the SN-based model, we achieve the best re-
sults with ∆d = 2 shared decoder layers. For the MD-based
model, we achieve the best results with ∆d = 4. For both
SN-based and MD-based models we observed that further
increasing ∆d following our proposed backward sharing
scheme led to a decreased performance. Moreover, we also
observe that a high correlation between the semantic seg-
mentation task and the image reconstruction task qualities,
represented by the Pearson correlation ρ, not always leads to
the best predictive power, represented by prediction errors
∆M and ∆R. Thus, it is better to tune metrics which di-
rectly reflect the predictive power of ŜQ. We conclude that
measuring the prediction errors ∆M and ∆R is better than
measuring the task correlation, represented by the Pearson
correlation ρ.

5.4. Inter-Decoder Lateral Connections

We report our results on inter-decoder lateral connec-
tions for mixed clean/distorted validation datasets in Ta-
ble 5. We vary the set of inter-decoder lateral connections
LIDLC (6), with LIDLC = ∅ referring to the baseline ap-
proach in [2]. Note that the values of d′ (6) in set LIDLC

are listed. As the MD-based model by design offers more
combinations for inter-decoder lateral connections, we only

Table 4. Parameter sharing on mixed clean/distorted valida-
tion datasets. Metrics ρ (13), ∆M (14), and ∆R (15) of the
SN/MD-based Dseg and Drec and of the RN18-based Eseg. We
vary the amount of shared decoder layers ∆d (5). Best results in
boldface, second best underlined.

Dseg,
Eseg ∆d

DCS
val DKIT

val

Drec ρ ∆M ∆R ρ ∆M ∆R

SN RN18 - 0.84 8.16 11.13 0.74 7.67 9.66
SN RN18 1 0.86 7.83 10.75 0.75 7.30 9.25
SN RN18 2 0.85 7.76 10.74 0.78 7.14 9.05
SN RN18 3 0.85 7.85 10.91 0.77 7.14 9.11
SN RN18 4 0.83 8.29 11.33 0.65 8.30 10.47

MD RN18 - 0.81 8.85 11.55 0.68 7.56 9.31
MD RN18 1 0.81 8.88 11.59 0.68 7.54 9.28
MD RN18 2 0.81 8.84 11.55 0.71 7.30 8.90
MD RN18 3 0.78 8.81 12.00 0.77 6.48 8.09
MD RN18 4 0.79 8.63 11.84 0.77 6.47 8.07
MD RN18 5 0.76 9.08 12.33 0.70 7.31 9.03

consider every other layer, i.e., 2, 4, 6, and 8, as this is al-
ready sufficient to show that our concept works. Consider-
ing performance onDCS

val , we observe that for both SN-based
and MD-based models the performance is best if we employ
all inter-decoder lateral connections. However, considering
the performance onDKIT

val , only for the MD-based model this
combination is best. The SN-based model shows best results
for the baseline which does not employ inter-decoder lat-
eral connections. We conclude that for in-domain data the
use and combination of inter-decoder lateral connections is
reasonable while for out-of-domain data it may depend on
the architecture.

5.5. Our Best Combinations

We report our results on the combination of all our pro-
posed methods for mixed clean/distorted validation datasets
in Table 6 and also compare them against the best results of
each individual method in Tables 3 to 5. We observe that
for both SN-based and MD-based models the combination
of our proposed approaches (highlighted in gray) leads to
the best results on DCS

val and either best or second best re-
sults on DKIT

val .
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Table 5. Inter-decoder lateral connections on mixed
clean/distorted validation datasets. Metrics ρ (13), ∆M (14),
and ∆R (15) of the SN/MD-based Dseg and Drec and of the RN18-
based Eseg. We vary the set of inter-decoder lateral connections
LIDLC (see Section 3.3), where its entries refer to decoder layer
identifiers d (6). Best results in boldface, second best underlined.

Dseg,
Eseg LIDLC DCS

val DKIT
val

Drec ρ ∆M ∆R ρ ∆M ∆R

SN RN18 ∅ 0.84 8.16 11.13 0.74 7.67 9.66
SN RN18 2 0.84 8.01 10.96 0.73 7.80 9.76
SN RN18 3 0.84 8.19 11.15 0.74 7.69 9.66
SN RN18 4 0.84 8.03 11.03 0.73 7.84 9.87
SN RN18 2,3,4 0.85 7.82 10.82 0.64 8.68 10.84

MD RN18 ∅ 0.81 8.85 11.55 0.68 7.56 9.31
MD RN18 2 0.81 8.83 11.53 0.68 7.53 9.26
MD RN18 4 0.81 8.87 11.58 0.69 7.49 9.20
MD RN18 6 0.81 8.80 11.50 0.69 7.47 9.16
MD RN18 8 0.83 8.26 10.90 0.68 7.63 9.37
MD RN18 2,4,6,8 0.83 8.22 10.81 0.73 7.17 8.69

Table 6. Best combination (ours) on mixed clean/distorted val-
idation datasets. Metrics ρ (13), ∆M (14), and ∆R (15) of the
SN/MD-based Dseg and Drec and of the RN18-based Eseg. ‘Init’
= ‘initialization mode’ (Table 3), ‘∆d’ = ‘amount of shared de-
coder layers’ (Table 4) & ‘LIDLC’ = ‘set of inter-decoder layer
connections’ (Table 5). A dash (-) indicates that this feature is dis-
abled. Best results in boldface, second best underlined.

Dseg,
Eseg Init ∆d LIDLC DCS

val DKIT
val

Drec ∆M ∆R ∆M ∆R

SN RN18 r - - 8.16 11.13 7.67 9.66
SN RN18 r 2 - 7.76 10.74 7.14 9.05
SN RN18 r - 2,3,4 7.82 10.82 8.68 10.84
SN RN18 r 2 2,3,4 7.45 10.40 7.12 9.03
MD RN18 s - - 8.80 11.49 7.49 9.19
MD RN18 r 4 - 8.63 11.84 6.47 8.07
MD RN18 r - 2,4,6,8 8.22 10.81 7.17 8.69
MD RN18 s 4 2,4,6,8 7.63 10.37 7.09 8.73

5.6. State of the Art Comparison

For comparison to state of the art [2, 26, 27] we use our
best RN18-based Eseg and SN/MD-based Dseg and Drec

models in Table 6 (highlighted in gray) and report the results
on our mixed clean/distorted test datasets in Table 7. We
also visualize some results in Figure 1, where we report the
predictive power of ŜQ as ∆M = ∆mIoUM for state-of-
the-art [2, 27] and our best methods. We observe in Table 7
and Figure 1 that our proposed method advances [2, 27] on
DCS

test as well as some models reported in [27] on DKIT
test . In

other words, our proposed methods set a new state of the

Table 7. State of the art comparison on mixed clean/distorted
test datasets. Metrics ρ (13), ∆M (14), and ∆R (15) for state-
of-the-art methods [2, 26, 27] and ours. Ours and [2] use DCS

train

for training, while [26, 27] also use video data DCS
vid, DKIT

vid . All
models have an RN18 encoder and employ SN/MD-based decoders.
‘Cal.’ = ‘regression calibration’ & ‘∗’ = ‘slightly modified DCS

test’.

Eval Video Cal. Method Dec. ρ ∆M ∆R

DCS
test

- DCS
val Ours SN 0.92 9.47 12.85

- DCS
val [2] SN 0.90 10.12 13.18

- DCS
val Ours MD 0.88 9.14 12.25

DCS
vid DCS

val [27] MD ∗0.58∗ ∗12.19∗ ∗15.71∗

DKIT
vid DCS

val [27] MD ∗0.43∗ ∗13.38∗ ∗16.12∗

DKIT
test

- DKIT
val Ours SN 0.74 7.80 10.10

- DKIT
val [2] SN 0.73 8.00 10.24

- DKIT
val Ours MD 0.70 7.92 9.79

DCS
vid DKIT

val [27] MD 0.54 7.81 9.79
DKIT

vid DKIT
val [27] MD 0.77 6.01 7.70

DKIT
vid DKIT

val [26, 27] MD 0.86 4.45 6.16

art in image-only performance prediction on both DCS
test and

DKIT
test and are even able to surpass point cloud- and image-

based methods [27] on DCS
test. For more results please refer

to the supplementary material.

6. Conclusions
We addressed performance prediction for semantic seg-

mentation by image reconstruction. In particular, we inves-
tigated three approaches to improve the predictive power.
Our investigations reveal that the best Pearson correlation
between segmentation quality and reconstruction quality
does not always lead to the best predictive power. Fur-
ther, our best combination is able to surpass state of the
art in image-only performance prediction on Cityscapes and
KITTI. In addition, we surpass the state of the art with point
cloud and image inputs on Cityscapes. Code is available at
https://github.com/ifnspaml/PerfPredRecV2.
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[1] Andreas Bär, Fabian Hüger, Peter Schlicht, and Tim Fing-

scheidt. On the Robustness of Redundant Teacher-Student
Frameworks for Semantic Segmentation. In Proc. of CVPR -
Workshops, pages 1380–1388, Long Beach, CA, USA, June
2019. 1

[2] Andreas Bär, Marvin Klingner, Jonas Löhdefink, Fabian
Hüger, Peter Schlicht, and Tim Fingscheidt. Performance
Prediction for Semantic Segmentation by a Self-Supervised
Image Reconstruction Decoder. In Proc. of CVPR - Work-
shops, pages 4399–4408, New Orleans, LA, USA, June
2022. 1, 2, 3, 4, 5, 6, 7, 8

[3] Andreas Bär, Marvin Klingner, Serin Varghese, Fabian
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