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Abstract

We present an algorithm to detect unseen road debris us-
ing a small set of synthetic models. Early detection of road
debris is critical for safe autonomous or assisted driving,
yet the development of a robust road debris detection model
has not been widely discussed. There are two main chal-
lenges to building a road debris detector: first, data collec-
tion of road debris is challenging since hazardous objects
on the road are rare to encounter in real driving scenarios;
second, the variability of road debris is broad, ranging from
a very small brick to a large fallen tree. To overcome these
challenges, we propose a novel approach to few-shot learn-
ing of road debris that uses semantic augmentation and do-
main randomization to augment real road images with syn-
thetic models. We constrain the problem domain to uncom-
mon objects on the road and allow the deep neural network,
HazardNet, to learn the semantic meaning of road debris to
eventually detect unseen road debris. Our results demon-
strate that HazardNet is able to accurately detect real road
debris when only trained on synthetic objects in augmented
images.

1. Introduction
Object detection for autonomous vehicles mostly focuses

on common objects and obstacles such as vehicles, bikes,
pedestrians, traffic light/signs, and lane lines. However,
equally important yet challenging objects to detect on the
road are hazardous debris such as furniture, tires, fallen
trees, animals, potholes, and more. When the height of
road debris is larger than 15 centimeters, the treading ve-
hicle may roll or detour from the path and potentially cause
a fatal accident. Identification and localization of such haz-
ardous objects is a critical task for both autonomous vehi-
cles and regular road users. Based on the AAA traffic safety
report1, between 2011-2014, there were 200,000 crashes re-
lated to road debris, resulting in 39,000 injuries and 500

1https://exchange.aaa.com/prevent-road-debris

Figure 1. The cyclic workflow of HazardNet. Synthetic models of
road debris are generated with domain randomization and rendered
over real images using semantic augmentation. These augmented
images are used to train HazardNet and evaluated on augmented
and real images of road debris to assess few-shot learning perfor-
mance. The evaluation results are used to tune the augmented data,
and the cycle continues until performance converges.

deaths. Two thirds of road debris are vehicle parts, unse-
cured cargo, and separated tow trailers. Since the most se-
rious accidents occur on highways, where vehicles are trav-
eling at high speeds, it is crucial for road debris detectors to
identify objects early from a far distance.

There are two main challenges to road debris detection.
The first is that data collection of road debris is extremely
time-consuming, expensive, and dangerous. The conven-
tional method requires physical vehicles to collect data.
However, road debris are quite rare to encounter and thus
requires long data collection times. In addition, when the
data collecting vehicle approaches the road debris, it should
either stop or detour, which are both dangerous maneuvers
on the road. Though staging road debris on private roads
is feasible, staging on various public roads is infeasible and
limited by regulation. The second challenge is the broad
variety of road debris, ranging from a small brick to a large
detached trailer. The appearance and shapes of different
hazardous road objects are difficult to categorize. For in-
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stance, the appearance of a deceased animal and that of a
ladder are quite dissimilar. An effective road debris detec-
tor should thus be able to identify an enormous number of
distinct road objects, making it almost the same as a detec-
tor of all objects excluding common road entities.

We overcome the challenges of limited data and variabil-
ity of road debris by using semantic augmentation with syn-
thetic models and domain randomization. Contrary to con-
ventional supervised learning methods on real labeled im-
ages, we propose to train a machine learning model, Haz-
ardNet, to detect hazardous road objects using few-shot
learning. We generate training data for this objective by
augmenting real images with several representative syn-
thetic models in a semantically valid way. The main goal
here is not only detecting road debris in training data but
also learning the semantic context of road debris so that in-
stances unseen during training can be detected at test time.
This approach avoids dangerous and time-consuming data
collection using a physical vehicle and speeds up the devel-
opment process by using the synthetic data and recycling
existing real data as well. See Figure 1.

To learn the general concept of road debris, we apply
domain randomization by selecting several representative
synthetic objects and placing them on the road in various lo-
cations and orientations and in images with different times
of day and weather conditions. When a synthetic model is
augmented on the image, it is augmented not in a random lo-
cation but on the road as a hazardous obstacle using ground
plane estimation. Since our main focus is to detect debris
on the road, the synthetic model is placed on the path where
the ego-vehicle moves forward. Our placement method also
avoids overlap with common road elements such as vehi-
cles, pedestrians, traffic signs, and vertical poles. Both do-
main randomization and semantic augmentation are essen-
tial for few-shot learning of visual and semantic road debris
information. Even though there are an uncountable num-
ber of distinct road debris, the concept and meaning of road
debris can be decoded using these two techniques.

In this paper, we mostly focus on road debris detection
in the autonomous driving domain. However, the approach
can be applied to other domains such as general detection of
under-represented objects, medical imagery, speech recog-
nition or any machine learning domain utilizing simulation
data.

2. Previous Work
Synthetic Data: Recent work in deep learning has

demonstrated the effectiveness of using synthetic data for
object detection [13], semantic segmentation [47, 49], lane
line detection [15], and optical flow [22, 32]. In the realm
of autonomous vehicle perception, fully synthetic datasets
such as CARLA [11], GTA5 [47], SYNTHIA [49], and
Virtual KITTI [13] have been used to improve semantic

segmentation of urban scenes [6, 8, 20, 26, 28, 39, 52, 57,
58, 64, 66, 67]. A number of these works use adversarial
learning to facilitate domain adaptation from simulation to
real data [6, 20, 26, 28, 58, 66, 67]. More similar to our ap-
proach, [56] performs domain randomization by rendering
synthetic objects with random background images captured
in the real world. However, the generated scenes do not
follow any physical constraints, e.g. objects are placed at
random 3D locations.

Augmentation: Rather than using completely synthetic
data, several works augment real images by adding syn-
thetic 3D models to the scene. In such cases, augmenta-
tion is typically applied to indoor scenes by placing ob-
jects in random locations [35, 53], and thus the resulting
images need not bear resemblance to the physical world.
Though road debris location has a strong association with
the image ground plane, existing methods have no mech-
anism for realistically placing synthetic objects. More re-
cently, [19] accomplishes image augmentation by generat-
ing a large dataset of 3D CAD models for various household
objects and rendering each object over a cluttered back-
ground with added Gaussian noise. Another approach to
augmentation is to add masked objects from real images to
other images [12, 14, 27, 40].

Domain Randomization and Adaptation: Domain
randomization is one of the most effective methods to re-
duce the sim-to-real domain gap. The concept was first in-
troduced in [55] to expose deep neural networks (DNNs)
to a wide range of different environments by randomizing
the simulator when generating training data. This approach
makes the assumption that if networks are trained on suf-
ficiently varied synthetic data, models trained only in sim-
ulation can generalize to the real world without retraining.
As in [55], domain randomization has most commonly been
applied to robot manipulation and control [1,23,36,50,65].
Domain randomization for object detection is another ap-
plication that has gained interest in the last few years
[24, 39, 56, 64]. In a similar vein, the objective of domain
adaptation is to align the source and target domains such
that a model trained on the source domain can be applied to
tasks in the target domain [3,59]. Specifically for object de-
tection, a number of recent works build upon Domain Adap-
tive Faster R-CNN [7], which adds domain adaptive com-
ponents to Faster R-CNN [45] and trains the model in an
adversarial manner. Subsequently, [18, 21, 42, 51, 70] have
also applied adversarial learning to domain adaptation for
object detection. [62] presents a categorical regularization
framework on top of [7] that highlights the important image
regions corresponding to categorical information.

Few-shot Learning: Few-shot, One-shot, or Zero-
shot learning extrapolates beyond labeled data by infer-
ring information about instances not seen during training
[25, 48, 61, 63]. Recent work in zero-shot object detec-
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Figure 2. The data generation and training pipeline for HazardNet. Given a real image with ground truth labels, we use geometric cues
and environmental information to randomly generate a synthetic model with texture corresponding to a similar environment. Once the
model is selected, domain randomization is applied to render the synthetic model with random 3D pose, color tone, and visibility. Next,
the rendered model is segmented and used to semantically augment the real image (e.g. taking into consideration overlapping objects and
lane information.). We use the augmented images to train HazardNet and apply post-processing to the output predictions.

tion [2,9,29,41,46,68,69] focuses on detecting a set of un-
seen classes chosen to be excluded during training. In such
cases, high-performance object detection networks, partic-
ularly YOLOv2 [44], have been used as backbones to pro-
vide a baseline for detection [9, 68, 69]. Most recently, [69]
trained a conditional variational autoencoder to synthesize
visual features for an input image, which was then used to
re-train a confidence predictor to encourage detection of un-
seen objects.

Hazard Detection: Early approaches for image-based
road hazard/obstacle detection use classical stereo recon-
struction [33, 60] to detect small road obstacles at long
distances. Following this work, geometric detection algo-
rithms were used to detect obstacles from stereo images,
including extensions of the Stixel algorithm [37], geometric
clustering methods [4, 31], and the Fast Direct Planar Hy-
pothesis Testing (FPHT) method [38, 43], which assumes
that the road is planar. However, it is difficult to detect dis-
tant shallow objects with stereo vision. In addition, stereo
vision and parallax-based approaches on the road are prone
to fail and produce numerous false positive detections since
road features are ambiguous and the 3D road profile breaks
the planar assumption. More recently, advances in deep
learning have shifted the focus to monocular obstacle de-
tection [16, 34, 54]. For instance, [34] proposed an autoen-
coder framework that leverages semantic segmentation and
anomaly calculation to detect obstacle regions in an input
image. RGB-D images have also been used as input to
DNN-based obstacle detection algorithms, including Mer-
geNet [16] and RFNet [54]. [10] detects hazardous objects
by segmentation -based anomaly detection.

3. Few-shot Learning of Road Debris

The lack of available data naturally makes few-shot
learning an attractive approach to detecting real-world road
debris. While we use synthetic road debris to train a DNN
and detect those specific models, our ultimate objective is

to detect unseen road debris in real-world images. To this
end, we apply 1) semantic augmentation to meaningfully
place synthetic objects in the scene and 2) domain random-
ization to increase the variety of road debris appearance. Se-
mantic augmentation and domain randomization endow the
DNN with semantic and visual understanding of road debris
in the context of the ego vehicle and environmental condi-
tions. The data generation and training pipeline is shown in
Figure 2. Section 3.1 describes how 3D synthetic models
are generated and saved as masked images given an input
real-world image. Section 3.2 discusses domain randomiza-
tion in the context of varying the appearance of the rendered
synthetic models. Section 3.4 outlines the HazardNet archi-
tecture, and Section 3.5 considers important performance
metrics for road debris detection.

3.1. Synthetic model generation

The most common and hazardous road debris are vehicle
parts (tires, mufflers, hubcaps, bumpers), unsecured cargo
(mattress, furniture, box, detached trailer), tree branches,
and animals. Therefore, we collected 20 synthetic mod-
els of the most common road debris, including: cardboard
boxes, small and big rocks, tires, wheels, wooden pallets,
roadkill, wooden logs, traffic cones, barrels, mattresses, de-
tached mufflers, trash cans, traffic sign bases, and detached
trailers. When spawning objects on the road, their 3D in-
formation such as location in latitude/longitude, orientation
(yaw/pitch/roll), lighting, weather condition, and time of
day are saved as metadata. Since the appearance of the syn-
thetic model should match the environmental conditions of
the real image being augmented, we ensure that the weather
conditions and times of day are consistent. The object is
segmented using the instance segmentation mask generated
by the simulator and saved as an image along with the mask
and metadata.
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Figure 3. Road debris models spawned by a simulator and the
corresponding segmentation masks.

3.2. Domain randomization on objects

The observable gap between synthetic models and real
images includes appearances such as color, texture, and
shadows. However, [56] showed that for DNNs, such ar-
tifacts from synthetic images are less important than the ac-
tual shape of objects. Therefore, we apply domain random-
ization to the generated models in Section 3.1 by randomly
positioning the models in the simulator with different color
and textures. Specifically, various road debris models in
the simulator are generated by randomly sampling 3D po-
sition, 3D orientation, color tone, material, and visibility
by fog or haze. Once these models are generated, one or
more of these domain randomized instances are spawned
in a simulated environment with environmental conditions
that match that of the real image being augmented (using
the metadata described in Section 3.1). Examples of do-
main randomization are shown in Figure 4. Most of the
aforementioned randomization hyper-parameters were se-
lected in a uniformly random manner. For model position,
objects were placed up to 300 meters away from the camera
or when the height of the 2D bounding box is at least 10 pix-
els. For model orientation, yaw, pitch, and roll angles were
randomly selected. This orientation was further automati-
cally corrected to follow the physics rules in the simulator,
which considers model shape, road shape, and gravity.

3.3. Semantic model augmentation

In the last step of data generation, we augment the real
images with the domain randomized synthetic models. Dur-
ing augmentation, we need to encode the semantic mean-
ing of road debris, e.g. unusual objects on the road block-
ing a vehicle’s path. By adding more semantic constraints
for where road debris can be located, DNNs can more effi-
ciently and accurately learn to distinguish road debris from
other road elements. Therefore, synthetic models are placed
on the planned path of the ego vehicle or its neighboring
lanes (either left and right lanes or shoulders). Models

Figure 4. Examples of spawned ladder models using domain ran-
domization with different times of day and weather conditions.

are not augmented in other unrelated lanes or in the sky
to reduce the complexity of the road debris domain. Even
though road debris can be on the sidewalk or in opposite
lanes, debris out of the ego-vehicle’s driving area are not
considered for augmentation. In addition, we constrain the
synthetic model to be on the ground and it cannot overlap
with other objects identified by existing human-generated
ground truth labels. Figure 5 shows examples of semantic
augmentation with various synthetic models and environ-
mental conditions. The green rectangles are human-labeled
ground truth, the blue rectangles indicate acceptable aug-
mentations, and the red rectangles are rejected for augmen-
tation. We note that synthetic models in accepted augmen-
tations are on the road, and overlap with other objects is
accepted as long as the synthetic model is in front of exist-
ing objects (e.g. any occlusion introduced by augmentation
must be physically plausible). In the case of the rejected
augmentation shown in the bottom left image in Figure 5,
the synthetic rock model is unnaturally above the truck.
This case was filtered out by checking the y-coordinates of
the bottom of overlapping rectangles. In the bottom right
image, the synthetic wood pallet model was not an accepted
augmentation since it was placed in the sky.
3.4. HazardNet architecture

ResNet [17] is used as the backbone architecture of Haz-
ardNet. However, DarkNet [44] or any DNN can be used
since the main contribution of this paper is balanced data
collection and sampling, domain randomization, and se-
mantic augmentation. HazardNet learns features and out-
puts bounding box proposals, which are post-processed us-
ing non-maximum suppression (NMS) to output the final
detection results. The architecture of HazardNet is shown
in Figure 6. The final output layers (120 × 68 × 5) consist
of one channel for detection confidence regression and four
channels for bounding box positions, e.g. the normalized
center position (xc, yc) and the width w and height h both
divided by two. Binary cross entropy (BCE) in Equation
(1) is used as the loss function of the confidence channel for
each output pixel.

BCE(t, p) = t · log(p) + (1− t) · log(1− p− ϵ) (1)

where p is the predicted value of from the DNN, t is the
corresponding ground truth value, and ϵ (we used 10−7) is
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Figure 5. Semantic model augmentation. Green rectangles:
ground truth of dynamic objects labeled by a human. Blue rect-
angles: accepted semantic augmentation. Red rectangles: rejected
augmentation.

to avoid numerical error when p = 1. Since real data was
sampled balancing over micro operational design domains
(µODD) as discussed in Section 4.1, the focal loss function
[30] was not used. The loss function of the bounding box
channels is the l1 norm in Equation (2).

l1(TTT ,PPP ) = ||TTT −PPP ||1 (2)

where TTT = [xc, yc, w/2, h/2] is the ground truth bound-
ing box and PPP is the prediction. The network is further
optimized with an INT8 representation using TensorRT2.
The inference time of an optimized HazardNet model, in-
cluding post-processing times, is less than 5ms using an
Nvidia RTX GPU. Therefore, more than 200 frames of
(960 × 544 × 3) resolution images can be processed in a
second.

HazardNet is trained using the procedure in Figure 2.
The developed pipeline is for production and all processes
are automated without human intervention. Currently, syn-
thetic models are semantically augmented into real images
offline. However, we are working on completing a whole
training pipeline for online semantic data augmentation in
the training stage using a new real-time simulator. When
training is complete, we evaluate the model using real road
debris test data (see e.g. Section 4.3). We then extract all
false positive (FP) and false negative (FN) cases and create
a new set of synthetic data imitating the failure cases. Since

2https://developer.nvidia.com/tensorrt

Figure 6. Architecture of HazardNet consisting of 263 layers and
based on ResNet [17].

road debris in the real test data do not have matching syn-
thetic models, we generate data based on the 3D size of road
debris. 3D information is always available since all real-
world objects are labeled using both cameras and lidar. We
continue this cyclic workflow until the model performance
(based on FP and FN) converges, as shown in Figure 1.

3.5. Performance metrics

Detectors trained to perform few-shot learning tend to
output lots of false positive detections [69]. However, in
road debris detection it is crucial to minimize false posi-
tive detection. One of the most important objectives of the
road debris detector is thus the false positive detection rate
(FPR): FPR = FP/(FP + TN), where FP is the num-
ber of false positive detections and TN is the number of
true negative detections. When road debris is detected, the
vehicle needs to be stopped and sometimes may be required
to brake suddenly. Harsh braking due to a false positive
detection can cause severe accidents with neighboring ve-
hicles on highways and thus must be avoided. Therefore,
the FPR of HazardNet should be significantly low. Achiev-
ing both high recall and low FPR is challenging, so data
augmentation using well-balanced, large sets of real data is
key. Since the real data we use is collected from numerous
operational design domains (ODD) and contains most road
entities in a variety of scenarios, HazardNet is able to learn
unusual road debris against common road entities. We ex-
amine the effects of training and evaluating on real data in
the next section.

4. Experiments
4.1. Data collection and labeling

Among publicly available datasets, the nuScenes dataset
[5] includes some images of traffic cones and barriers,
which are categorized as hazards but common road ele-
ments with enough training data. [38] provides open road
debris data for stereo vision but we were not able to use

165



it since their test data includes our synthetic models such
as cardboard boxes, tires, logs, traffic cones, wood pallets.
Therefore, we collected our own real road debris dataset for
evaluation (i.e. the Real training and test datasets described
in Sections 4.2 and 4.3, respectively). In addition, we used a
well-balanced, in-house real dataset to apply semantic aug-
mentation (i.e. for the Sim training and test datasets de-
scribed in Sections 4.2 and 4.3).

First, real data without load debris was collected for Sim
data. It was collected from various locations, lighting con-
ditions, times of day, and weather conditions. There are four
main axes of data collection buckets:

• Road type: highways, freeways, suburban roads, ur-
ban roads, rural roads, and dirt roads, indoor/outdoor
parking lots.

• Time of day: day, night, dawn/dusk, sunset/sunrise

• Weather: clear, sun, moon, cloud, rain, snow, fog

• Objects: passenger car, emergency vehicles, heavy
trucks, bicycle, motor bike, scooter, pedestrians with
different level of traffic

Even data was collected considering above guidelines, the
majority of data tends to be in clear day time on a straight
road. When data is not balanced for each category, under-
represented categories tend to fail. For example, when un-
common construction trucks or snowing weather are quite
rare, the DNN model trained on biased data fails on detect-
ing such as trucks. With such difficulties, data should be
collected considering the balance of data.

Secondly, the Real road debris were staged on the road
in various locations and orientations. Staging was done
because collecting real road debris data in-the-wild is ex-
tremely difficult, even with access to millions of customers’
vehicle data. Collecting road debris data on highways is
also dangerous and does not enable staging, though such
settings are important to consider. As a result, the data
was collected in a limited number of relatively static en-
vironments. We placed 30 different road debris on private
roads and a vehicle equipped with all sensors (camera, lidar,
radar) recorded data starting from about 200 meters away
and drove towards the road debris. The staged real road de-
bris are all unseen categories and unseen objects excluded
from synthetic models. The unseen road debris includes
trash bags, stuffed animals, wood branches, standing barri-
ers, folded cardboard boxes, delineator posts, and more.

For all the real data used in this paper, the ego-vehicle
was equipped with not only cameras but also lidar and radar
sensors. When human labelers annotate objects and assign
corresponding 3D distances from the vehicle, these radar
and lidar sensors are fully utilized for more accurate 3D es-
timation of roads and objects. For every camera frame, hu-
man labelers annotated dynamic objects such as vehicles,

bikes, and pedestrians, as well as static objects such as lane
lines, road marks, road boundaries, traffic signs/lights, and
vertical landmarks using all sensors.

Every image was also associated with other metadata
such as weather, time/date, refined GPS/IMU signals (lat-
itude, longitude, altitude, and orientation), and road condi-
tion (wet, snow, dirt, etc.). As mentioned in Section 3.1,
this information is used when augmenting real images with
synthetic models.

4.2. Training datasets

The experiments were conducted using three different
training datasets, which we refer to as: Sim, Real, and Hy-
brid(Sim + Real). The Sim training dataset consists of about
5,000 sampled images balanced on various µODD as de-
scribed in Section 4.1. The 3D synthetic road debris models
were used to augment the images with domain randomiza-
tion and semantic augmentation. The breakdown of each
synthetic road debris subclass is shown in Figure 7. The
Real training dataset consists of about 10,000 real images
and has no overlap with the Sim dataset images. The road
debris in each Real dataset image was labeled by humans as
described in Section 4.1. The Hybrid training dataset is the
combination of the Sim and Real training datasets, and thus
has a total of about 15,000 images.

Figure 7. Frequency of synthetic model classes in the Sim training
dataset.

4.3. Test datasets

We evaluated HazardNet on two test datasets (not used
in training): Real and Sim, which were used for cross-
validation of the model trained using few-shot learning and
the model with fully supervised learning, respectively. The
Real test dataset consists of about 3,000 images, and each
image contains zero, one or multiple labeled road debris in-
stances with various poses (see Section 4.1 for details). This
real, unseen test dataset is used to evaluate the performance
of HazardNet for few-shot learning. The Sim test dataset is
generated in the same manner as the training dataset using
domain adaptation and semantic augmentation of synthetic
models on real images. The test data consists of about 5,000
images. This Sim test data is used to evaluate supervised
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learning of HazardNet and represents an upper bound on
performance.

4.4. Quantitative evaluation

To quantify the performance of HazardNet trained on the
three training datasets, Sim, Real, and Hybrid (Sim+Real)
described in Section 4.2, we compute the mean Average
Precision(mAP), true positive rate (TPR), false positive rate
(FPR), precision, and recall. For mAP, we divide each of
the two test datasets into difficulty buckets: small (8-25
pixel height), medium (25-100 pixel height), large (100+
pixel height), and all. When evaluating all the test in-
stances, we weight the mAP corresponding to each bucket
proportional to object size. The corresponding weights for
small, medium, and large objects are 0.5, 1, and 5. Table 1
shows cross-validation results for the Sim and Real training
and tests: (1) sim2sim(97.79%) and real2real(76.36%) are
the results of supervised learning with Sim and Real data,
respectively. As expected, these supervised learning ap-
proaches result in high performance. (2) sim2real (trained
on Sim and tested on Real data) is the proposed few-shot
learning framework using HazardNet with 35.42%35.42%35.42% mAP in
the All category. The low performance in the large category
(6.16%) is due to the limited number of augmented images
with objects close to the ego-vehicle, since we mostly fo-
cus on detecting distant road debris. (3) The other cross-
validation, real2sim (4.22%), provided the worst results.
Since the Real dataset is staged in limited venues (as de-
scribed in Section 4.1), the network overfit to those envi-
ronments and was not able to extrapolate to the Sim dataset
domain. (4) hybrid2real is a more interesting case. We com-
bined Sim and Real data and tested on Real data, and the
Hybrid model (hybrid2real, 80.53%) outperformed the su-
pervised learning approach (real2real, 76.36%). These re-
sults imply that the few-shot learned sim2real and hybrid
models are more generative than the real2real model with
supervised learning.

Figure 8 plots precision-recall curves for all three mod-
els evaluated on the Real test dataset. All three cases have
substantially high precision (more than 99%) even though
the few-shot learned Sim model had lower recall. The con-
fidence threshold value was determined on the validation
dataset with the highest F-score, which was 0.3 for the Sim
model. In addition, Figure 9 plots the receiver operating
characteristic (ROC) curves corresponding to all three mod-
els evaluated on the Real test dataset. We observe that all
three models have very low false positive detection rates
(less than 0.06%), which is essential for road debris detec-
tion even though the few-shot learned Sim model was not
as good as the Sim or Hybrid models.

Figure 8. Precision-Recall curves for models evaluated on the Real
test dataset.

Figure 9. ROC curves for models evaluated on the Real test
dataset.

4.5. Qualitative evaluation

To evaluate the efficacy of HazardNet in achieving few-
shot learning, we also visualize detection results for real im-
ages containing unseen road debris (sim2real case). Figure
10 shows example detections for a variety of road debris
classes and environmental conditions. While HazardNet
was trained only on simulated road debris, the network is
able to detect real debris from both small and large distances
from the camera. In Figure 11, we also show examples of
false negative detections.

5. Conclusion

We proposed a novel few-shot learning framework and
deep learning model, HazardNet, which detects road debris
for autonomous driving applications. We show that a small
set of synthetic models can guide the DNN to learn to de-
tect unseen real-world road debris. Our method can be ex-
tended to other applications where large-scale, real datasets
are hard to acquire. During augmentation, the shadow of
objects and the direction of lights were not considered and
they were left for future research.
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mAP(%) Sim Test Dataset Real Test Dataset
Train Dataset Small Medium Large All Small Medium Large All

Sima 96.05 99.56 100 97.79 35.11 41.44 6.16 35.42b

Realc 6.89 9.73 0.10 4.22 73.92 83.76 75.27 76.36d

Hybrid(Sim + Real) 95.03 99.13 100 97.13 74.79 91.78 80.41 80.53
a Sim is real image data with synthetic model augmentation, b mAP of few-shot learned HazardNet,

c Real is staged real road debris data, d mAP of the supervised learned network

Table 1. Mean average precision(mAP) scores using 0.5 IOU for HazardNet trained on Sim, Real, and Sim + Real training datasets. The
models were evaluated on both the Sim and Real test datasets and the mAP scores are further divided into small, medium, and large road
debris.

Figure 10. Detections of unseen road debris using HazardNet. Ground truth labels are drawn in blue, and HazardNet detections are drawn
in red. The network is able to detect debris missed by human annotators (row 3, columns 3 and 4).

Figure 11. False negative detections of unseen road debris using HazardNet. Ground truth labels are drawn in blue, and HazardNet
detections are drawn in red. Most of the false negative detections correspond to distant objects.
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