This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

RadarGNN: Transformation Invariant Graph Neural Network for Radar-based
Perception

Felix Fent, Philipp Bauerschmidt and Markus Lienkamp
Technical University of Munich, Germany
School of Engineering and Design
Institute of Automotive Technology
felix.fent@tum.de

Abstract

A reliable perception has to be robust against challeng-
ing environmental conditions. Therefore, recent efforts fo-
cused on the use of radar sensors in addition to camera
and lidar sensors for perception applications. However,
the sparsity of radar point clouds and the poor data avail-
ability remain challenging for current perception methods.
To address these challenges, a novel graph neural network
is proposed that does not just use the information of the
points themselves but also the relationships between the
points. The model is designed to consider both point fea-
tures and point-pair features, embedded in the edges of
the graph. Furthermore, a general approach for achiev-
ing transformation invariance is proposed which is robust
against unseen scenarios and also counteracts the lim-
ited data availability. The transformation invariance is
achieved by an invariant data representation rather than an
invariant model architecture, making it applicable to other
methods. The proposed RadarGNN model outperforms all
previous methods on the RadarScenes dataset. In addi-
tion, the effects of different invariances on the object de-
tection and semantic segmentation quality are investigated.
The code is made available as open-source software under
https://github.com/TUMFTM/RadarGNN.

1. Introduction

Autonomous vehicles rely on an accurate representation
and understanding of their environment. To achieve this,
even under severe weather conditions, the perception has
to be robust against changing environmental conditions.
However, current perception systems rely mainly on data
from camera or light detection and ranging (lidar) sensors,
which are negatively affected by certain environmental con-
ditions [38]. The perception capability of both sensor types
is for example reduced by fog or rain and camera sensors

(b) Ground truth (c) Model prediction

Figure 1. Example scenario a) of the RadarScenes dataset [29]
and its corresponding radar point cloud data in the bird’s eye view.
The annotated ground truth data is shown in b), while the model
prediction for object classes and bounding boxes is given in c).

are dependent on an external light source limiting their us-
ability in the dark [38]. As a result of these limitations, re-
search has focused on integrating radio detection and rang-
ing (radar) sensors into perception systems.

Even if radar data is mostly unaffected by adverse en-
vironmental conditions [38], the detection quality of radar-
based systems cannot yet compete with state-of-the-art im-
age or lidar-based perception methods [6]. While there are
several reasons for this discrepancy, the two major chal-
lenges of radar-based perception are the limited availability
of annotated radar data, and the sparsity of radar point cloud
data [26,35,39].

Leveraging the sparse information available, a graph
neural network (GNN) is proposed that will not just utilize
the information encoded in the points but also the relation-
ships between the points. As shown in Fig. 1, an object is

182



characterized by multiple radar points, which is why the re-
lationship between the points is important to identify and
differentiate between objects. In addition, GNNs can op-
erate on unstructured and unordered input data, eliminating
the need for data discretization (voxelization) and its associ-
ated loss of information [33]. Therefore, all the information
of sparse radar point clouds can be used without losing their
structural information.

To counteract the limited data availability, a general ap-
proach for incorporating invariances into the perception
pipeline is proposed. Building upon the success of transla-
tion invariant convolution operations, a method is proposed
for creating a translation and rotation invariant perception
pipeline, leading to better generalization and improved per-
ception quality.

The proposed method was evaluated on the RadarScenes
dataset [29] and outperforms all previous methods for
bounding box prediction as well as semantic segmentation.
In summary, the contributions of this paper are:

* A novel GNN model for radar-based multi-class object
detection and semantic segmentation.

* A general approach for transformation invariant object
detection and semantic segmentation.

* A new state of the art for object detection and semantic
segmentation on the RadarScenes dataset.

2. Related Work

State-of-the-art radar-based object detection methods
rely on deep neural networks (DNN) to detect objects within
the provided radar point clouds. Even if radar data can also
be processed with more conventional methods [25, 28, 31]
and object detection can be performed at different data ab-
straction levels [16, 20, 23], DNNs applied to radar point
clouds achieve the best results.

2.1. Radar Datasets

The performance of data-driven perception methods is to
a great extend dependent on the underlying dataset. There-
fore, the selection of an appropriate dataset is essential
for successful model training and meaningful evaluation.
However, since most popular perception datasets, such as
KITTI [10] or the Waymo Open Dataset [34], do not in-
clude annotated radar data, special emphasis is placed on
radar-oriented datasets.

Of these, the Dense [3], PixSet [7] and Zendar [17]
datasets provide annotated two-dimensional radar data, but
the spatial resolution of the deployed radar sensors as well
as the extend of the dataset is comparatively small. In con-
trast, the Oxford Radar RobotCar [1], MulRan [14] and
RADIATE [32] datasets utilize high resolution spinning

radar sensors which are not representative of currently de-
ployed automotive radar sensors. The nuScenes [6] dataset
includes radar data, but multiple authors [9, 19, 29, 39]
have criticized the radar data quality of the nuScenes
dataset because of its sparsity, limited feature resolution
and errors within the radar domain. In consequence, the
RadarScenes [29] dataset is chosen for this work.

The RadarScenes [29] dataset includes point-wise anno-
tated radar data of moving objects assigned to eleven differ-
ent categories. The dataset comprises the data of four series
production automotive radar sensors and contains more than
four hours of driving data. The radar points are represented
by their spatial coordinates (, y), target velocities (v, vy),
radar cross section (rcs) and a timestamp (). Currently,
most comparative results for radar-based perception are re-
ported based on the RadarScenes dataset, even if it does
not provide ground truth bounding boxes and only consid-
ers moving objects for ground truth annotations.

2.2. Point Cloud Object Detection

The approaches used to detect objects within point
clouds, using deep neural networks, can be divided into
three major groups: point-based, grid-based and graph-
based methods. In addition to these three general concepts,
hybrid methods can be designed by combining different ap-
proaches.

Point-based approaches operate on the input point clouds
directly, without the need for any preceding data trans-
formations. Therefore, all information and the structural
integrity of the point cloud is preserved. Ultilizing this
method, Schumann et al. [27] performed a semantic seg-
mentation on a proprietary radar dataset and later extended
their approach to develop an instance segmentation model
for radar data [26]. Building upon this, Nobis et al. [19]
developed a point-based recurrent neural network (RNN)
to realize semantic segmentation on nuScenes radar data.
Nevertheless, point-based approaches cannot consider indi-
vidual relationships between points, even if the structure of
local groups can be taken into account [33].

Grid-based methods map the point clouds to a struc-
tured grid representation by a discretization (voxelization)
of the underlying space. Based on this data structure, con-
ventional convolutional neural networks (CNN) can be ap-
plied to accomplish different computer vision tasks. Us-
ing this approach, Schumann et al. [30] developed an au-
toencoder network to perform a semantic segmentation on
radar point clouds, originating from a proprietary dataset.
Scheiner et al. [26] applied a YOLOv3 [24] detector to a
bird’s-eye view (BEV) grid representation of radar point
clouds and achieved state-of-the-art object detection results
on the RadarScenes [29] dataset. However, the preceding
data transformation leads to a loss of information and a
sparse data representation.
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Graph-based methods construct a graph from the input
point cloud to operate on and can be categorized into convo-
lutional [15], attentional [37] and message passing [| | ] neu-
ral network types [4]. For graph neural networks, the points
are used as nodes within the graph, preserving the struc-
tural information of the point cloud, and the relationships
between the points are modeled as edges in the graph [5].
This methods was first used by Shi and Rajkumar [33] to
implement a GNN for object detection on lidar point clouds.
So far, GNNs have only been used once by Svenningsson et
al. [35] to realize a graph-based object detection on radar
point clouds. However, their method was limited to a graph
convolutional layer formulation, the effects of invariances
where not investigated and their approach was limited to the
detection of cars within the nuScenes dataset. Therefore,
to the best of our knowledge, GNNs have never previously
been used to accomplish a multi-class object detection task
on radar point cloud data.

Additionally, hybrid methods can be used to combine
several of the above mentioned techniques. Scheiner et
al. [26] compared multiple different hybrid methods on
the RadarScenes [29] dataset and most recently, Palffy er
al. [21] evaluated a hybrid model architecture on the newly
published View-of-Delft [21] dataset. However, most hy-
brid methods [21,26,36] rely on a grid-based approach for
the final object detection and are therefore subject to similar
disadvantages, as mentioned above.

2.3. Transformation Invariance

The great successes of convolutional neural networks
over their predecessors was mainly justified by the trans-
lation invariant property of the convolution operation [12,
pp. 335-339]. A function is considered translation invari-
ant if its output remains unchanged after a translation of its
inputs [5].

Achieving an invariant object detection model is of great
interest because the model should be robust to unseen
scenarios, where objects can occur in different locations.
Moreover, the model should also be applicable to sensors
mounted in different positions. To accomplish this property,
the following three methods have been used in the literature:
data augmentation, invariant data representation and invari-
ant model architectures.

Data augmentation is used to extend the training dataset
by modified (e.g. translated or rotated) copies of the original
data and relies on the model learning the aspired invariances
during the training process [2]. This technique is commonly
used to support the generalization of the model and is ap-
plied in many of the above mentioned methods [26,27,35].
However, this method does not ensure an invariant model
after the training process.

Invariant data representation describes the restriction of
the input features to those that are invariant to certain trans-

formations [18, p. 23 ff.]. In the Euclidean space, for exam-
ple, distance is an invariant quantity, which is unaffected by
all rigid transformations [18, p. 12]. Only representing the
data by such quantities results in an overall invariant data
representation. However, limiting the input data to invari-
ant features results in a loss of global context (e.g. absolute
vs. relative coordinates).

Invariant model architectures are designed in such a way
that the output of the model remains unchanged regardless
of a transformation applied to the model input. Such an
invariant model architecture was used by Svenningsson et
al. [35] to design a translation invariant GNN for radar-
based object detection. However, incorporating invariances
in the model architecture restricts the architectural design
to certain (mathematically symmetric) operations [22] and
makes the investigation of the effects of different invari-
ances complicated.

3. RadarGNN

This section describes the proposed RadarGNN model
for radar-based object detection and semantic segmentation.
The object detection pipeline is shown in Fig. 2 and con-
sists of four major steps: data preparation, graph construc-
tion, the graph neural network and the detection heads. The
main idea behind this method is the achievement of trans-
formation invariances not by using the model architecture
itself but by creating an invariant data representation. To
achieve this, three things are required: transformation in-
variant bounding boxes, a graph construction method for in-
variant input features and a generalization of the GNN layer
to consider edge features.

3.1. Data Preparation

The purpose of the data preparation is to create a simi-
lar database to that used in previous research and to enable
the training of a translation and rotation invariant perception
model. This step is important for preserving the compara-
bility of the results and affects not just the model inputs but
also the target value determination.

The preparation of the RadarScenes data is based on the
implementation of Scheiner et al. [26], who serves as a
benchmark for this study. Using this approach, the model
input is given by an accumulation of radar point clouds
within a time period of 500 ms. The resulting point cloud
is then cropped to an area of 100 m times 100 m in front of
the vehicle’s rear axis, as shown in [26, Fig. 2]. Since the
RadarScenes dataset does not include ground truth bound-
ing boxes, they are created as minimum enclosing rectan-
gles in bird’s-eye view, including all points belonging to the
same instance. Furthermore, the original eleven instance
categories are mapped to five major object classes and fi-
nally, the overall dataset is split into training (64 %), valida-
tion (16 %) and test (20 %) sets.
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Data Preparation

Graph Construction
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GNN Detection Head

Figure 2. Model overview from point cloud processing on the left, through graph construction and GNN feature extraction, up to the object

detection and semantic segmentation on the right.

The investigation of the effects of different invariances
on the detection quality of the model requires different
bounding box definitions. The existing absolute bounding
box definition can be used to train a non-invariant base-
line model. An absolute bounding box is defined as a tuple
(z,y,w,!,0) consisting of the box center coordinates z, y,
the box dimensions w, [ and the yaw angle 6.

The training of a translation invariant model requires a
translation invariant bounding box definition. To achieve
this, the bounding box is no longer defined by its abso-
lute center coordinates but by the relative position to its
associated radar point py. Therefore, a translation invari-
ant bounding box is given by a tuple (dzx, dy, w,l, ), with
a relative translation dx, dy between the box center and the
radar point py it belongs to.

The bounding box definition for the training of a trans-
lation and rotation invariant model requires the addition
of a second reference point p,,,. On this basis, a transla-
tion and rotation invariant bounding box is defined as tuple
(d,p,w,l,0,,). Here, the distance d is the distance be-
tween the reference point py and the bounding box center.
The angle ¢ represents the angle between the vector from
the reference point pg to its nearest neighbor p,,, and the
vector to the bounding box center. Finally, the angle 6,,,
corresponds to the angle between the directional vector of
the bounding box and the vector from the reference point
po to its nearest neighbor p,,,. A graphical representation
of the translation and rotation invariant bounding box defi-
nition is given in Fig. 3.

3.2. Graph Construction

The graph construction module transforms the initial
radar point cloud into a graph representation and ensures a
transformation invariant input data representation. The pro-
posed method comprises of three major steps: the node fea-
ture transformation, the edge generation and a matrix trans-
formation.

The node feature transformation maps the original point
cloud P, formally defined as finite set P of n € N vec-
tors p; € R? withi = 1,...,n, to a set of nodes V =
{19, ey Un|v € R¥}. During this transformation process,
the number of points is preserved while the features are

transformed. This is important to ensure the invariance of
the data representation, while preserving the structure of the
original point cloud. The key functionality, however, is the
selection of the node features, which determines the invari-
ances of the data representation.

In the non-invariant baseline configuration, the nodes are
defined by their absolute spatial coordinates (z, y), their ve-
locity vectors (vz, vy), the values of the radar cross sec-
tion rcs and the associated timestamps ¢. To achieve a
translation invariant data representation, the absolute spa-
tial coordinates are omitted and the encoding of the struc-
tural information is subject to the edge generation. Accom-
plishing a translation and rotation invariant representation
further requires the reduction of the velocity information to
the Euclidean norm of the velocity vector v. In addition, all
nodes hold the information about the connectivity degree ¢
(the number of associated edges). This process shows that
the achievement of certain invariances results in a loss of
global context, where the edge generation is an attempt at
compensating for this.

The edge generation encodes relationships between
points in the form of edges and edge features. The set of
edges can be formally defined as £ C {(u,v)|(u,v) €
V2, u # v}, where every edge ¢ € & can be associated
with an edge feature vector e : £ + R%. The final Graph
is then defined by the tuple of nodes and edges G = (V, £).

The edges of the graph are created by a k-nearest neigh-
bors algorithm, where the number of neighbors k is deter-
mined empathically and represents a trade-off between per-
formance and computational resources. As a result, every
node of the graph is connected to its twenty nearest neigh-
bors.

The edge features are generated in consideration of the
desired invariances and with the aim of encoding relation-
ship information between points. However, for the non-
invariant baseline configuration, no edge features are gen-
erated but all information is contained within the node fea-
tures. The translation invariant data representation requires
the neglection of the absolute coordinates, instead the po-
sition relative to the neighboring points dz and dy is en-
coded in the edge features to preserve the spatial informa-
tion. To create a rotation and translation invariant data rep-
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Figure 3. Definition of the translation and rotation invariant
bounding box in regard to the radar point po and the reference
point pnr. The box is defined by its extend (w, 1), position (d, )
and orientation (6,,,,) in the bird’s-eye view.

Invariance Node features Edge features
- Ty Y, Vg, Uy, TCS, T, C -
Trans. Vg, Uy, TCS, t,C dx, dy
Trans. and rot. v, rcs,t,c d, VYo, Yu

Table 1. Set of node and edge features of the graph for different
transformation invariant data representations.

resentation, an enhanced set of point-pair features, inspired
by Drost et al. [8], is generated. This set consists of the Eu-
clidean distance d between the two points, the relative angle
1) between their velocity vectors and the individual angles
between the velocity vector of the points and their connect-
ing line, ,, and +,. An overview of the various node and
edge features for the different data representations is pre-
sented in Tab. 1.

The matrix transformation maps the previously gener-
ated graph to a more easily processable matrix data rep-
resentation. Therefore, the graph G is mapped to a tuple
consisting of an adjacency matrix A, a node feature ma-
trix X and an edge feature matrix E. The resulting tuple
(A, X, E) represents the actual input of the subsequently
defined neural network.

3.3. Graph Neural Network Architecture

The graph neural network consists of two major compo-
nents and is responsible for the generation of an expressive
feature representation for the connected detection heads.
The two components are the initial feature embedding and
the GNN layers themselves.

The initial feature embedding creates a high-dimensional
non-contextual feature representation from the low-
dimensional node and edge features. Therefore, a shared
multilayer perceptron (MLP) with four layers is used for
node feature embedding and one with three layers for edge
feature embedding.

A major contribution of this paper is the generalization
of the previously proposed graph neural network layer of
Svenningsson et al. [35], which is based on Shi et al. [33].

Their graph convolutional layer function

Wt = ¢(h), ®uen;, &(zy — zu,hl)) +hL, (D)

updates the node features h,, of node v by adding the results
of the update function ( to the input node features hf, of
the current layer /. The update values are determined by an
aggregation @ over the node’s neighborhood A, and imple-
mented as a max pooling over the neighbor node features hfl
weighted by their relative position x,, — x,,. However, this
layer formulation does not allow feature dimension changes
across GNN layers and only achieves a translational invari-
ance.

To overcome these limitations we propose a more gen-
eral message passing neural network (MPNN) layer formu-
lation instead of the graph convolutional (GC) layer for-
mulation of Svenningsson et al. [35]. To achieve this, two
major changes are made to the update function in Eq. (1).
Firstly, the current node features hiL are introduced in the
embedding function ¢ to allow dimensional changes across
GNN layers. Secondly, the possibility of using arbitrary
edge features is introduced instead of only using the rel-
ative position between neighboring nodes. Therefore, the
achievement of certain invariances is subject to the edge and
node feature generation rather than the layer formulation it-
self, which allows the analysis of different invariances with-
out changing the network architecture. The resulting update
function ( is given by

b = C(hy, Suen, £y, hyse),) @
where the new node features hlfl of node v after layer [ are
a function of the original node features hly and an aggrega-
tion @ over the neighborhood N,,. In this process, the ag-
gregation is conducted over the embedding & of the sender
node features hf,, the receiver node features hz and the fea-
tures of the edge efau connecting them. To obtain a permu-
tation invariant network architecture, the update function ¢
and the embedding function ¢ are implemented as shared
MLPs, and the aggregation function determines the maxi-
mum of the embedded features - similar to [22].

The resulting feature space of these layers forms the
foundation for the subsequent detection heads to accom-
plish the desired perception tasks.

3.4. Object Detection and Semantic Segmentation

The proposed RadarGNN model not only performs ob-
ject detection but also semantic segmentation on the given
radar point cloud. This multi-task learning approach is real-
ized by a distinct feature extraction module and individual
detection heads, which could also be extended to support
additional perception tasks. For our purpose, a semantic
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Method Split  APpea  APgp APy APy  APwc  mAPT
PointPillars [26] val. 112 225 388 542 537 36.1
YOLOV3 [26] val. 344 557 574 702 619 55.9
RadarGNN (ours) val. 340 583 666 72.0 70.1 60.2
RadarGNN (ours) test 33.1 548 620 704 62.0 56.5

Table 2. Object detection results on the RadarScenes dataset for the translation invariant model configuration. The first three rows are
evaluated on the validation (val.) set, while the bottom row is evaluated on the test set. The detection quality is given by the average
precision (AP) values for the pedestrian (ped), pedestrian group (grp), two-wheeler (tw), car and large vehicle (trk) class with an IOU
threshold of 0.3. The mAP represents the mean average precision over all five classes. All benchmark results can be found in [26, Tab. 3].

segmentation and object detection (bounding box predic-
tion) head is used.

The semantic segmentation head consists of a shared
MLP, with a final softmax activation function and predicts a
confidence score for each class. The final class for every in-
dividual point is then determined by the highest confidence
score among all classes.

The object detection head is realized by a shared MLP
with two consecutive layers and a linear activation function
in order not to restrict the output space. The module predicts
a bounding box for every point within the given point cloud,
which is why a number of suppression schemes have to be
applied to receive the final output. Firstly, a background re-
moval is applied to remove all bounding boxes associated
with the background class. Secondly, a non-maximum sup-
pression (NMS) is used to remove all overlapping bounding
boxes and keep only the one with the highest confidence
score. Thirdly, a class-specific threshold is applied to dis-
card all remaining bounding boxes below a certain confi-
dence. Finally, the absolute bounding box representation is
restored.

The overall model is trained with a combined loss func-
tion, consisting of multiple task-specific loss functions. The
semantic segmentation branch uses a class-weighted cross-
entropy loss function Lg, Whereas the object detection
branch utilizes a Huber loss function Ly, [13] with a delta
value of one. Additionally, an L2 regularization term Ly, is
introduced to prevent the model from overfitting [35]. The
overall loss function is given by

L= O@Cseg + ﬁ‘cobj + ’Yﬁreg 3

where the weights = 1, 8 = 0.5and v = 5 x 107
balance between the different loss terms.

4. Experimental Results

The RadarGNN model is evaluated on the RadarScenes
dataset and the obtained results are compared to the current
state of the art in radar-based object detection and seman-
tic segmentation. In addition, a detailed analysis of the ef-
fects of different invariances on the model’s performance is

given. All experiments are conducted on a dedicated bench-
mark server and within a containerized environment to keep
the evaluation environment constant.

4.1. Object Detection

The object detection quality of the RadarGNN model is
measured by the mean average precision (mAP) value as
defined in [26] and with an intersection over union (IOU)
threshold of 0.3. In addition, the class-specific average pre-
cision (AP) values are reported for the pedestrian (ped),
pedestrian group (grp), two-wheeler (tw), car and large ve-
hicle (trk) classes. The RadarGNN method achieves a mAP
value of 60.2 % on the RadarScenes validation set, as shown
in Tab. 2. The highest AP values are achieved for the two-
wheeler, car and large vehicle classes, while the lowest AP
value is reported on the pedestrian class. To put that into
perspective, the results are compared to the current state of
the art on the RadarScenes dataset.

Since all previous results for rotated bounding boxes are
only reported on the validation set and the source code of
none of the comparison models is publicly available, the
RadarGNN model is compared to the literature values ac-
complished on the validation set. However, the results of
our model are also reported on the independent test set in
the bottom row of Tab. 2.

The RadarGNN model achieves state-of-the-art results
on the RadarScenes dataset and outperforms all previous
object detection methods, as shown in Tab. 2. Our graph-
based architecture achieves the highest mean average pre-
cision (mAP) value and outperforms the hybrid PointPillars
as well as the grid-based YOLOv3 method of Scheiner et
al. [26].

The increased object detection quality has multiple
causes, although the utilization of point relationships and
the preservation of the structural information are of partic-
ular importance. Investigations demonstrated that a higher
connectivity (number of edges) results in a better object de-
tection score, but consequently in an increase in compu-
tational resources. In addition, the results of Scheiner et
al. [26] indicate that the detection quality of the grid-based
approach is limited in respect of the yaw angle prediction
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Method Fi 1
PointPillars [26] 47.6
YOLOV3 [26] 53.0
LSTM [31] 59.7
PointNet++ [27] 74.3
Recurrent PointNet++ [30] 75.0
RadarGNN (ours) 77.1

Table 3. Semantic segmentation results on the RadarScenes test
set, given by the macro-averaged F1 score.

because of the discretization and associated loss of struc-
tural information, which are not observed with the graph-
based approach. Nevertheless, the previous YOLOV3 [26]
method achieves better results for the pedestrian (ped) class,
which is characterized by having very few radar points. Ad-
ditionally, the introduced invariances greatly influence the
detection quality, which is discussed below in Sec. 4.3.

To provide more context to these results, the RadarGNN
model is also benchmarked in the official nuScenes de-
tection challenge and achieves a nuScenes detection score
(NDS) of 0.059. The proposed method, therefore, outper-
forms the comparison model of Svenningsson et al. [35],
which achieved an NDS of 0.034 and has currently the
second highest score among all radar-only object detection
methods. However, it must be noted that our model was not
designed for 3D object detection on the nuScenes dataset
but rather for the bird’s-eye view (BEV) object detection on
the RadarScenes dataset.

4.2. Semantic Segmentation

In addition to the object detection quality, the seman-
tic segmentation quality of the proposed multi-task neu-
ral network is evaluated on the RadarScenes dataset and
compared to the current state of the art. The segmenta-
tion quality is measured by the macro-averaged F1 score,
where the RadarGNN model achieves a score of 77.1 % on
the RadarScenes test dataset, as shown in Tab. 3.

The proposed method outperforms all previous radar-
based multi-task learning approaches and even the ded-
icated semantic segmentation models of Schumann et
al. [30]. As shown in Fig. 4, the model is able to differ-
entiate between the different classes, while the highest con-
fusion exists between the pedestrian (ped) and pedestrian
group (grp) classes. This result indicates the potential of the
graph-based approach for additional computer vision appli-
cations on radar point clouds.

On the nuScenes dataset a macro-averaged F1 score
of 19.6 % can be achieved on the validation set, which
represents the first reported semantic segmentation result
with the official nuScenes configuration. Although Nobis
et al. [19] developed a semantic segmentation method on
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Figure 4. Confusion matrix of the semantic segmentation results
on the RadarScenes test set. The matrix represents the ground
truth values in contrast to the model prediction for the five objects
classes and the background (bg) class.

nuScenes radar data, they used a simplified class configura-
tion and achieved a macro-averaged F1 score of 22.8 %. Us-
ing the exact same class configuration as Nobis et al. [19],
our model achieves a macro-averaged F1 score of 39.4 %.

4.3. Transformation Invariances

The proposed approach to transformation invariance al-
lows a detailed analysis of the effects of different invari-
ances on the perception performance. The conducted study
compares the object detection and semantic segmentation
quality of three models with a non-invariant, translation in-
variant as well as translation and rotation invariant configu-
ration.

For the object detection task, the highest mAP value of
56.5 % can be achieved by the translation invariant config-
uration, as shown in Tab. 4. Hence, the non-invariant as
well as the translation and rotation invariant configuration
accomplished a lower detection score of 19.4 % and 19.6 %,
respectively.

This result could be caused by both the restriction of the
input features as well as the differences in the bounding box
description (as described in Sec. 3). For this reason, a com-
plementary study, with a translation and rotation invariant
bounding box definition for all three configurations, was
conducted. The result of this study shows that the more
complex bounding box definition leads to an overall lower
detection quality but the general trend remains the same.
Within this study the non-invariant and translation invari-
ant methods achieved a mAP of 16.4 % and 20.8 %, respec-
tively. Consequently, the input feature restriction can be
identified as the root cause of the reduced detection qual-
ity. In summary, translation invariance increases the detec-
tion quality but the additional rotation invariance, and the
accompanying restriction of the input features, negatively
affects the detection quality.
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Invariance mAP F,
- 19.4 68.1
Translation 565 771
Translation and rotation 19.6 76.5

Table 4. Object detection and semantic segmentation results for
different invariances on the RadarScenes test set, given by the
mean average precision (mAP) and macro-averaged F1 score.

Similar to the object detection task, the highest semantic
segmentation score of 77.1 % can be achieved by the trans-
lation invariant configuration, as shown in Tab. 4. The non-
invariant configuration achieved a macro-averaged F1 score
of 68.2 % and the translation and rotation invariant config-
uration achieved 76.5 %, respectively.

The smaller differences between the semantic segmen-
tation results, in comparison to the object detection results,
can be explained by two reasons. Firstly, the bounding box
description has no influence on the results, since semantic
segmentation requires no bounding boxes. Secondly, direc-
tional information (which is lost with the addition of rota-
tional invariance) is less relevant for point-wise classifica-
tion than it is for the prediction of the bounding box orien-
tation.

However, the object detection and semantic segmenta-
tion tasks are not independent but coupled by a combined
loss function Eq. (3) and model training. Therefore, the
segmentation quality is affected by the object detection per-
formance and vice versa. Since the differences between the
segmentation results are small, we conducted a complemen-
tary study to further analyze the effects of invariances on
the segmentation quality. Within this study, the segmen-
tation branch was trained independently by setting 8 = 0.
As a result, the non-invariant model achieved an F1 score of
60.5 %, the translation invariant model achieved 66.5 % and
the translation and rotation invariant configuration achieved
68.2 %. Consequently, the assumption is made that further
invariances increase the segmentation quality and justify the
necessary restriction of the input features.

To provide evidence to the claim that the introduction of
transformation invariances counteract the effects of limited
data availability, we studied the model performance during
a reduction of the training data. For this experiment we
gradually reduced the amount of training data sequences,
but kept the test set constant and monitored the model per-
formance for the three different levels of invariance. The re-
sult shows that transformation invariant models are less af-
fected by a limited data availability and the addition of fur-
ther invariances contribute positively to this effect as shown
in Fig. 5.

As a result, the analysis indicates that certain percep-
tion tasks benefit differently from specific transformation
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Figure 5. Performance of the RadarGNN model for different in-
variance levels over the number of training sequences. The perfor-
mance is normalized to the baseline performance.

invariances. Where semantic segmentation improves with
the addition of further invariances, the highest object de-
tection score can be achieved by the translation invariant
configuration. Furthermore, additional transformation in-
variances improve the ability of the model to handle limited
data availability.

5. Conclusion

In this paper, we present a graph neural network for both
multi-class object detection and semantic segmentation on
radar point cloud data. The proposed RadarGNN model
uses a generalized message passing neural network layer to
consider edge features within its update function and to al-
low dimensional changes in the GNN. Furthermore, a more
generalized approach to achieve transformation invariance
is proposed by the creation of an invariant data representa-
tion rather than an invariant model architecture. This mod-
ification allows the analysis of different invariances with-
out changing the model architecture itself and is transfer-
able to different applications. However, since an invariant
data representation always involves a restriction of the input
features, a distinct set of point-pair features is proposed to
compensate for this during the edge feature generation. The
proposed RadarGNN model achieves state-of-the-art results
on the RadarScenes dataset for both radar-based object de-
tection and semantic segmentation. In addition, the effects
of different invariances on the object detection and seman-
tic segmentation quality is investigated. The incorporation
of a sensor fusion concept or the transfer to different sensor
modalities is subject to future research.
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