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Abstract

We generate synthetic data in order to target improve-
ment on specific rare classes in LiDAR segmentation
without regressing performance on the existing, plentiful
classes. While using auxiliary data to improve performance
on a domain is not new with respect to classification, there is
limited research on targeting specific classes with this tech-
nique. It is currently unclear how to extend those methods
to work well on more complicated but realistic use cases for
autonomous driving such as LiDAR segmentation.

By upsampling specific classes in the auxiliary domain,
mixing data between domains, and splitting representation
building and fine-tuning, we are able to see impressive im-
provements on a targeted rare class without losing perfor-
mance on the other classes. On the popular autonomous
driving benchmark nuScenes, we use this procedure to im-
prove performance on the rare class of cyclists by 18%,
resulting in the best Cylinder3D model on the LiDAR seg-
mentation benchmark. We also show that these techniques
extend to other classes (debris) and other tasks (LiDAR ob-
ject detection), giving strong evidence that this methodology
generalizes well to other autonomous perception tasks.

1. Introduction

Training highly performant perception models for a par-
ticular domain is a necessity for many real-world applica-
tions of machine learning, such as autonomous vehicles.
While these models have improved significantly in the past
several years of research, unfortunately, they still require a
significant amount of data for each class and can struggle to
perform well on rare classes. In particular, most real-world
datasets are significantly long-tailed, which presents chal-
lenges for perception model training for two reasons. First,
perception models require large amounts of data to gener-
alize well. Second, standard perception models will tend to
focus on classes that have more representation.

Figure 1. Using the Log Mod 60 Synthetic nuScenes dataset to
improve performance on bicycles for nuScenes LiDAR segmenta-
tion with the data and training strategy proposed in this study.

There are many techniques that have been developed to
deal with long-tailed datasets, whether it is by changing the
model’s loss function, re-balancing the data, or modifying
the architecture [24] [19] [8]. In this work, we focus on us-
ing auxiliary data of the same class from a different domain
in order to improve performance on the rare class (e.g., col-
lecting more data or using data from a different dataset that
has examples of that class). Unfortunately, the auxiliary
data often has an implicit domain gap between the target
domain and the auxiliary domain (e.g., if we used data from
KITTI [14] to improve performance on a rare nuScenes [6]
class). These domain gaps may even be entirely unknown
– perhaps the sensors, environments, or actors have imper-
ceptibly changed during the collection of a second dataset,
to the point where we may not even know that there was
a domain gap at all. This domain gap can make the auxil-
iary data far less useful, and in some cases, deteriorate the
original model performance.

As seen in [2], naively training on a combined dataset
of the two domains does not improve performance on rare
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classes. More advanced techniques are needed in order to
make use of auxiliary datasets. While there has been some
work on this topic in the classification setting [3] [11], it
is unclear how one would modify those techniques to work
on real-world perception tasks for autonomous driving like
LiDAR semantic segmentation, which presents some task-
specific challenges. For example, semantic segmentation
data often consists of multiple classes (and often not just
the rare class), as well as potentially larger domain gaps
compared to classification due to increased reliance of the
models on context and background [23]. To the best of our
knowledge, we are the first to explore this setting for tasks
other than image classification.

Our contributions are fourfold:

• We demonstrate a method to target rare classes by gen-
erating an auxiliary synthetic dataset based on the orig-
inal labeled data, and then modifying that synthetic
dataset in order to improve performance on specific
classes of interest.

• We develop a training procedure that uses auxiliary
data to improve rare classes for LiDAR segmentation.
Further, we show how to extend recent work in group-
invariant learning for classification to domain adapta-
tion in LiDAR segmentation, and show that these tech-
niques generalize to different classes and tasks.

• We improve the performance of the best Cylinder3D
model significantly on the nuScenes-lidarseg bench-
mark with these techniques, improving the mean in-
tersection over union score (mIOU) by 13 points on
the bicycle class.

• We show that training with this auxiliary data as well
as only 50% of the nuScenes dataset achieves the same
performance as the baseline model, showing that the
auxiliary data can act as a reasonable replacement for
a large proportion of real data.

2. Related Work
Improving rare classes: Most work in domain adapta-

tion is focused on improving all classes in the target do-
main [30]. There is significantly less work oriented towards
improving specific classes with data from a different do-
main. [3] does this for classification by adding syntheti-
cally generated examples of rare classes into the training
set and using domain adaptive methods such as DANN [20]
and CORAL [28] in order to improve performance on a
subclass of deer; however, their discussion is focused on
classification. [8] utilizes a method similar method to ours,
which generates and augments the existing dataset with hy-
brid points; however, their method does not extend well to
higher-dimensional problems in computer vision. Further,

in our method, we generate an entirely new dataset and mix
data from our new domain and the target domain. [7] pur-
sues a similar method called Partial Domain Adaptation.
They try to take a large-scale source domain and improve
performance on a smaller-scale target domain. Our setting
is a slight generalization from this, as we assume that we
have labeled data from the target domain for all classes,
even if it is only rare classes for some of them. To the best
of our knowledge, there are no examples of using auxiliary
data to target a specific rare class for LiDAR segmentation.
Domain Adaptation and Generalization: There has been
significant amounts of work in this field. Our setting is clos-
est to unsupervised domain adaptation [31] [25] [34], where
there are no labels in the target domain. In contrast, we as-
sume we have lots of data in the target domain for some
classes but very little for specific rare classes. This is partic-
ularly important as recent work has found that many unsu-
pervised domain adaptation methods are completely outper-
formed by training with ordinary supervised learning meth-
ods with fewer than 70 images from the target domain [26].
Improving performance when there is little real data in the
target domain is thus highly valuable. It is unclear whether
data from one domain can be used to improve performance
in this few-shot single-class case. [13] attempts to use tar-
geted augmentations that rely on prior knowledge to deter-
mine exactly which variations the model should be robust
to; however, it is unclear how one would generalize these
techniques to non-classification datasets.
Group Invariant Learning: There has been a recent focus
on training models that have strong performance across all
subgroups of the data, e.g. ensuring that performance on
aerial waterbirds is the same as land waterbirds [27], even
when there is a spurious correlation in the training dataset.
Our work is similar in that we have two subgroups (do-
mains), but we are interested in the case where we have
very little data in one subgroup and are using the other sub-
group to improve performance on the first subgroup. Our
work can be considered as an attempt at adding a differ-
ent group to the training set along with performing group
invariant learning in order to improve performance on the
original domain. To the best of our knowledge, we are the
first to extend these group-invariant techniques to 3D per-
ception tasks for autonomous driving.

3. Methodology
We walk through both the data generation as well as the

training process that we use in order to target performance
on rare classes. For the remainder of this study, we will
focus on the nuScenes LiDAR segmentation task and target
the rare class of bicycles.

nuScenes is a large-scale autonomous driving dataset by
Motional collected from real-world drive logs in Boston and
Singapore with camera, LiDAR, and radar sensors. The
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dataset contains multiple public benchmarks such as Li-
DAR segmentation [12] and LiDAR object detection, with
full annotations. NuScenes contains 5.5 hours of data, in-
cluding over 78 million labeled LiDAR points and over a
million cuboids of real-world objects. Annotations range
from dynamic actors such as cars and motorcycles to static
obstacles such as vegetation and driveable surfaces. Since
nuScenes was collected in the real world, it suffers from
class imbalances in its data distribution, which makes it a
prime target dataset for our work. In this study, we will
focus on the bicycle class as an example of a rare class that
we will target. As seen in Figure 3, bicycles have an im-
balance of over 1,000:1 with respect to the other classes in
LiDAR segmentation points.

We show our main methodology for improving the bicy-
cle class in Figure 4 and dive into each component in the
following sections.

3.1. Generating Auxiliary Datasets

Determining the right auxiliary dataset is challenging.
In order to train on two datasets jointly, the datasets need
to be similar enough to avoid negative transfer from train-
ing on them together. Unfortunately, this can be difficult
since few datasets share the exact same class taxonomy, la-
beling procedures, and annotations. For example, the Se-
manticKITTI [4] dataset has significantly different annota-
tions and annotation guidance than the nuScenes dataset. In
order to use information from SemanticKITTI to improve
performance on nuScenes, one needs to either treat these
datasets as entirely separate and use different loss functions
or use one of them as a source domain for pre-training be-
fore training on the target domain. To address this problem,
we generate our own auxiliary datasets to improve perfor-
mance on nuScenes.

We use the Applied Intuition Synthetic Datasets soft-
ware [1] to generate and modify a synthetic recreation of
the nuScenes training dataset. First, we generate a syn-
thetic copy of the nuScenes LiDAR segmentation training
dataset, matching actor placements and behaviors with the
real nuScenes dataset. An example of this is shown in Fig-
ure 2. This allows us to ensure that the same annotation spec
and behaviors are in the auxiliary dataset, removing any po-
tential domain gaps that could occur due to actor behavior
and placement. The key advantage of building a dataset in
simulation is the ability to modify it to target specific classes
that we wish to improve on. In order to focus on improve-
ment for bicycles specifically, we upsample bicycles in the
synthetic recreation by replacing a proportion of car assets
with bicycle assets. We expect that replacing cars with bikes
will have a smaller domain gap than randomly placing bikes
in the scene placement is more likely to be realistic. Due to
the large number of cars in the real dataset, we do not expect
this replacement to harm performance.

(a) A real nuScenes LiDAR scan

(b) A synthetic recreation of the LiDAR scan
above

(c) A modified synthetic recreation of the first
LiDAR scan with cyclists replacing cars

Figure 2. Example LiDAR scans and annotations from the gener-
ated synthetic data for nuScenes scene 103.

Figure 3. LiDAR segmentation class counts (log-scale) for the
original nuScenes dataset and the Log Mod 30 Synthetic nuScenes
dataset. Note the trade-off between cars and bicycles in the syn-
thetic dataset.
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During the upsampling process, we use six different bi-
cycle assets to replace examples of cars and perform domain
randomization [29] [9] on the asset dimensions and LiDAR
sensor noise floor to increase the diversity of the auxiliary
synthetic nuScenes dataset. To determine the effect of this
replacement, we generate three datasets with varying per-
centages of cars replaced (30%, 60%, and 90%). Figure
3 shows the class distributions of the dataset with 30% re-
placement. We call these datasets Log Mod Datasets, as
we are taking the real drive logs and modifying them to
have more bicycles. We use these datasets as well as the
unmodified synthetic nuScenes as the auxiliary datasets in
the remainder of this study.

3.2. Training Strategy

Once we have our auxiliary dataset, we must determine
the right way to train with it. The naive thing to do is to
train on a combination of the two domains. We can either
combine all of the data together or join the portions from the
auxiliary domain that contain the underrepresented classes.
This setting has been studied for classification in [2], show-
ing that when the target domain contains no examples of
the underrepresented class, joint training (even with domain
adaptation) fails significantly worse than when using the
auxiliary domain and ignoring the target domain entirely.

In Figure 5, we confirm that these results continue to
hold even in the segmentation case and that adding auxil-
iary data does not significantly improve the performance on
rare classes in the target domain. While we do see some
improvement on the bicycle class, the domain gap is large
enough that the model struggles to make significant gains
on the class of interest. To mitigate this issue, we make
several changes to the loss function and training strategy in
order to make better use of the auxiliary data.

Inspired by recent work in image classification that sep-
arates the representation and classification stage of a model
to deal with class imbalance and subgroup performance [16]
[17], we consider this problem in two stages. First, we train
with the auxiliary domain in order to build strong repre-
sentations of the bicycle class. Second, we fine-tune this
pre-trained model on the target domain only to remove any
spurious features from the auxiliary domain. We follow
recent research showing that fine-tuning can distort pre-
trained features [18] and follow the process of first training
the head only (linear probe), and then fine-tuning the whole
representation in order to focus the final layers on the target
domain’s task. This procedure is very similar to other meth-
ods such as [16] and [17], which freeze the representation in
order to perform well on imbalanced data, and we hypoth-
esize that combining these results will allow the models to
get the best use out of the auxiliary domain.

Extending this method from classification to segmenta-
tion is non-trivial due to a number of factors:

• Will this method work on a semantic segmentation task
where features consist of multiple classes across the
whole image, as opposed to classification where fea-
tures are associated with a single class?

• How well do these techniques address domain gaps in
the initial pre-training, since none of the existing re-
search does the representation-building with multiple
domains?

• How do we deal with the fact that we cannot provide
a balanced reweighting dataset as in [17], due to the
fact that segmentation datasets consist of already im-
balanced data?

We explore these issues in the following sections.

3.3. Building Strong Representations

We employ a number of strategies to improve the repre-
sentation capability of the models with the auxiliary data.
The natural approach is to train on the two datasets together
and use the representation built with this. However, we have
seen in Figure 5 that this does not perform well.

To mitigate this, we use mixing strategies, specifically
PolarMix [32] for the LiDAR segmentation task. These
have been empirically shown to improve performance on
unsupervised domain adaptation for LiDAR segmentation
as well as 2D object detection and semantic segmentation
[35] [22]. We hypothesize that these methods work by
building stronger and less distinguishable domain represen-
tations during the training process, which allows the mod-
els to see the auxiliary rare classes in many different target
domain contexts. [15] uses a similar technique in order to
bridge the domain gap between different LiDAR sensors,
which further bolsters that conclusion. Since we assume
that we have at least some data in the target domain of the
rare class, we do not expect to run into the same problems
as [2], where using Mixup between domains that shared
no classes did not improve performance. Following [16]
and [17], we do not make any modifications to the loss func-
tions or the training process during the joint training of the
two datasets, as they find that traditional empirical risk min-
imization is sufficient to build good representations.

3.4. Fine-tuning the Representation

Following [18], we perform a strategy of linear probing
and then fully fine-tuning (LP-FT) in order to fine-tune the
representation. First, we freeze the representation and train
just the head of the model. For segmentation, this is a sim-
ple task as the representation is all but the last layer. We
fine-tune the model on the target dataset only and use the
auxiliary dataset only for the joint representation-building.
This ensures that the final model does not hold on to irrel-
evant information from the auxiliary domain and helps ad-
dress any potential negative transfer from the domain gap.
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Figure 4. Our proposed methodology to target rare classes for nuScenes LiDAR segmentation.

Figure 5. Rare class performance on LiDAR segmentation after
naive joint training with the auxiliary datasets. Note that joint
training does not significantly improve performance on the rare
class, even though bicycles are upsampled.

Since we have a rare class, we would like to use a strat-
egy like Deep Feature Reweighting (DFR) [17] in order
to make the most of the strong representation. However,
this requires a held-out balanced reweighting dataset which
we cannot receive in the segmentation case due to its in-
herent imbalance. Instead, we train with a class-weighted
loss function (where the class counts are based on the tar-
get dataset) in order to focus training on the rare class dur-
ing the fine-tuning process. While there are other methods
of dealing with the imbalance, we find a straightforward
modification to the loss function to be a first easy choice
to use. We find that using this modified imbalance strat-
egy still improves performance and is very easy to adapt to

the object detection and segmentation use case, compared
to DFR, which uses a balanced reweighting dataset. We use
this class-imbalanced loss for both the head retraining as
well as the full fine-tuning.

Figure 4 summarizes our training strategy. We do a
three-step approach. First, we generate an auxiliary dataset
of our original target domain dataset and modify it to up-
sample the class we wish to target. Then, we pre-train the
model on both the auxiliary and the original dataset with a
mixing strategy designed to encourage shared strong repre-
sentations. Finally, we perform linear probing and train the
head of the model, before fine-tuning our model, with both
of these final training steps happening on the target data and
using a class-weighted imbalanced loss.

4. Experimental Setup
4.1. Training Details

For the LiDAR segmentation experiments, we use the
popular Cylinder3D architecture and codebase [36]. We fol-
low their settings and train models for 40 epochs at a learn-
ing rate of 0.001 with cosine decay. Note that this means
that models which jointly train on the synthetic and real data
will see the same amount of real data as models which train
on real data only. We use AdamW [21] as the optimizer for
all experiments. We use a sum of the Lovász-Softmax [5]
as well as cross-entropy (in some cases weighted during the
imbalance experiments) in order to train the model. For all
experiments, we have a batch size of 6 and use two Nvidia
A5000 GPU’s.

For object detection, we use the Centerpoint [33] archi-
tecture through mmdetection3D [10]. Our model jointly
trains on 100 epochs for pre-training and then fine-tunes for
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a further 50 epochs. The learning rate is cyclic between
5e−5 and 5e−4 every 20 epochs. We have a batch size of 16
and train with eight Nvidia Tesla v100s.

We use the official nuScenes training and validation
splits for both the segmentation and the detection tasks. For
all cases, we generate the auxiliary domain by creating a
synthetic copy of only the nuScenes training splits. Our
validation dataset is always the official nuScenes valida-
tion split with no additions or modifications. Models train
from scratch, without any pre-trained weights from other
datasets.

4.2. Evaluation

We are purely interested in the performance improve-
ment on rare classes due to the auxiliary domain, but the
techniques we are using (such as fine-tuning, linear probing,
etc.) may also improve the performance of the target-only
baseline model. Thus, in order to perform a fair evaluation,
we perform the exact same experiments and training strate-
gies with a model that has only seen the target domain data
and does not have access to any auxiliary data.

We report performance on the specific class we are inter-
ested in (i.e., bicycles), as well as an aggregate metric over
all of the classes to ensure that improvements in the targeted
class do not cause regressions on the other classes. We use
the nuScenes validation dataset for all of our results. For
semantic segmentation we use the mIOU metric. For object
detection, we use the nuScenes detection score (NDS) [6].

5. Experiments

5.1. Representation Building

First, we conduct a series of experiments that test the
efficacy of the mixing strategy and whether or not using
the auxiliary domain actually helps in building a good rep-
resentation. We train two different LiDAR segmentation
models for each auxiliary dataset, and three models with no
auxiliary dataset. The first model trains normally on all of
the data, with standard data augmentations such as flipping,
translation, and rotation of the LiDAR point clouds. The
second model adds PolarMix data augmentation during the
joint training process. All other experimental details such
as architecture, epochs, etc. remain the same.

Figure 6 shows the result of the joint training procedure
with and without PolarMix for the best dataset. While Po-
larMix improves both the real-only model and the models
with auxiliary data, it disproportionately improves the per-
formance when using data from a different domain. This
is evidence that the existence of a different domain, espe-
cially where we have upsampled the number of a rare class,
improves the representation capabilities of that class signif-
icantly.

Figure 6. Performance of joint training with the Log Mod 30 Syn-
thetic nuScenes dataset with and without PolarMix data augmen-
tation in the representation building. Note that PolarMix improves
the joint models much more than it improves the real models.

5.2. Fine-tuning Performance

Once we have built good representations, we perform
the LP-FT strategy with the nuScenes dataset to focus the
models on the target domain. For the linear probing in
Cylinder3D, we freeze all layers except for the final layer
of the last MLP. For both the linear probing and the full
fine-tuning, we use weights based off of the square root of
the class counts in order to determine the class weights for
the weighted cross-entropy. We do not change the Lovász-
Softmax portion of the loss. We keep the learning rate
schedule and the weight decay constant from pre-training
and train each stage of the LP-FT process for 40 epochs be-
fore picking the model that has the lowest validation loss.

The result of these experiments is shown in Table 1.
First, we find that up to a certain point, increasing the pro-
portion of the rare, upsampled class improves performance
on the rare class significantly. However, when we reach
90% of cars replaced with bikes in the auxiliary dataset,
we find that improvement sharply decreases. This is likely
because the model has so little signal from the auxiliary
dataset that we are simply experiencing negative transfer,
and the performance degrades to not having any auxiliary
data at all.

Note that this technique also increases the performance
of the nuScenes-only trained model, providing a mIoU ben-
efit of 1.2 points and improving the bike score by 5 points.
However, the best-performing model with auxiliary data
further increases the bicycle score by 8 points of mIoU.
It even improves performance on the other classes as the
overall mIoU improves by 1.6 points. We attribute this to
the general addition of synthetic examples of those classes,
even if we did not target those classes specifically. To
the best of our knowledge, this is now the best-performing
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Table 1. LiDAR segmentation performance with our methodology on the nuScenes validation dataset.
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Real Baseline 76.5 40.4 92.3 87.0 46.3 79.2 77.0 65.6 62.1 81.0 96.3 74.3 73.8 74.0 88.1 86.6 75.0
Real PolarMix LP-FT 76.6 45.4 93.5 87.3 52.3 82.7 77.2 68.2 66.8 76.7 96.5 70.7 74.2 74.2 89.4 87.3 76.2

Joint PolarMix LP-FT 0 76.7 48.9 93.1 90.2 53.1 87.0 80.7 65.3 66.6 85.0 96.5 72.4 75.2 75.2 89.4 87.8 76.7
Joint PolarMix LP-FT 30 76.9 52.2 93.4 90.4 54.9 86.0 81.5 67.9 67.2 85.0 96.6 71.4 74.4 74.6 89.5 87.9 78.1
Joint PolarMix LP-FT 60 76.5 53.5 93.3 88.0 52.4 85.4 82.1 67.9 64.9 84.2 96.7 71.3 75.5 75.6 89.2 87.8 77.8
Joint PolarMix LP-FT 90 77.0 51.4 94.6 87.7 54.5 86.4 78.4 65.1 70.7 84.6 96.7 72.0 75.9 75.5 89.2 88.0 77.2

Cylinder3D model on the nuScenes dataset, with perfor-
mance matching newer and much more complicated archi-
tectures and training strategies.

To study the effect of each individual component of the
training strategy, we show the results of an ablation study
in Table 2. From this, we can see that, while performance
on the real data improves with these techniques (LP-FT,
square-root sampled weighted cross entropy, PolarMix), the
benefits of the auxiliary dataset are disproportionately im-
proved by these same techniques. While the model that
trained only on the target domain improves the performance
on the bicycle class by 5 points, using the auxiliary domain
further improves the model by another 8 points on bicycles.
Secondly, we can see that all three of these techniques pro-
vide modest improvements to model performance, and can
be used independently of each other. This is particularly
useful information, as some techniques may be unable to
be used depending on the exact use case for model training.
For example, it is much more difficult to determine which
layers to freeze for more complicated object detection ar-
chitectures such as Centerpoint [33].

Table 2. LiDAR segmentation ablations with Log Mod 60 syn-
thetic training on the nuScenes validation dataset.

Strategy Bicycle mIOU Overall mIOU

Joint Training 41.2 74.8
w/ Fine-tuning 43.5 74.6
w/ Imbalance 47.6 76.6

w/ Linear Probing 48.9 76.7
w/ PolarMix 53.5 77.8

5.3. Ablating Real Data

In order to determine how effective the auxiliary domain
is with less data from the original target domain, we run ex-
periments ablating the amount of target domain data avail-
able. Specifically, we train models that have 50% and 100%
of the original target domain data. We compare those re-
sults with models trained with our methodology on the aux-
iliary domain and these ablated datasets. In all cases, we use

Table 3. LiDAR segmentation ablations with real data only on
the nuScenes validation dataset.

Strategy Bicycle mIOU Overall mIOU

Target-only Training 40.4 75.0
w/ Fine-tuning 40.4 75.0
w/ Imbalance 43.8 75.8

w/ Linear Probing 44.2 76.1
w/ PolarMix 45.4 76.2

the same auxiliary domain dataset — the 60% log-modified
dataset that performed best in the earlier experiments. The
results of this experiment on the nuScenes LiDAR segmen-
tation benchmark are shown in Figure 1. We find that as the
amount of target domain data decreases, the impact of the
auxiliary domain becomes more and more significant. For
example, we find that using only 50% of the target domain
data with all of the auxiliary domain data is sufficient to re-
cover the full performance of training on all 100% of the
target domain data.

5.4. Other Tasks: Object Detection

To show that we can target rare classes in settings out-
side of LiDAR segmentation, we use the Centerpoint [33]
model to train LiDAR object detection algorithms on the
same nuScenes datasets. We perform the same procedure
where we simply train jointly on the two datasets and then
fine-tune on the target domain only, and compare the perfor-
mance with each of these auxiliary datasets to the baseline
performance of training only with the nuScenes data. For
this procedure, we use the class-imbalanced loss but do not
add any freezing or mixing strategies. Determining exactly
which layers to freeze and extending PolarMix to work well
in a LiDAR object detection scenario is left to future work.
However, we find that the results significantly improve even
with a portion of our methodology in use. In Table 4, we
see a similar story as to LiDAR segmentation. The same
dataset that performed best for bicycles (Log Mod 60) also
performs best for object detection. We get modest improve-
ments on the overall NDS score with significant improve-
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ments on the bicycle class specifically.

Table 4. LiDAR object detection performance on the nuScenes
validation dataset with different synthetic datasets.

Model Bicycle AP Overall NDS

Real Baseline 42.0 63.2
Log Mod 0 44.8 64.3
Log Mod 30 47.0 64.9
Log Mod 60 48.6 64.5
Log Mod 90 47.9 64.4

5.5. Other Classes: Debris

To validate that this methodology works on other classes
as well, we use the highly challenging debris class in
nuScenes, which is even more imbalanced than the bicy-
cle class. This class is not part of the official benchmarks,
since the class does not have enough data to perform well
on. Indeed, the baseline model training on only nuScenes
data achieves only 5 points mIoU. We perform the same
strategy, replacing real traffic cones with various synthetic
debris assets including trash bags, fallen signs, and con-
struction materials in order to generate our auxiliary debris
dataset. While using the auxiliary domain does not improve
the debris class to something usable for autonomous driv-
ing, we find that the performance on the debris class almost
doubles, as shown in Figure 7.

Figure 7. Performance of our methodology with a Log Mod 60
generated dataset on the debris class for LiDAR segmentation.
Performance almost doubles with the addition of synthetic data.

6. Conclusion
While domain adaptation and class-imbalanced learning

has been increasingly popular, there is little work using dif-
ferent domains to improve performance on a specific rare

class in a target dataset. Further, most of the results that
currently exist show these techniques for classification only,
and it is unclear how well these methods may extend to
object detection and segmentation. We show that straight-
forward modifications of new techniques in group-invariant
learning can improve performance on rare classes, specifi-
cally in the LiDAR segmentation case. We significantly im-
prove the best Cylinder3D model on the nuScenes LiDAR
segmentation validation dataset and show that these tech-
niques are even more effective when there is limited real
data. Further, we show how to target specific rare classes
by modifying synthetic datasets and slightly changing the
loss function. This methodology works on other tasks, such
as object detection, and improves performance significantly
even without any of the extra techniques we have used on
segmentation.

While our results are promising, there is still a significant
amount of limitations in our study. First, we have shown
results on a limited amount of datasets. It is unclear how
well they will generalize to different domain shifts, such as
SemanticKITTI to KITTI. Second, we have focused on the
domain where the classes are rare but exist in the dataset.
We do not consider the case where there is no target domain
data of the rare class present. Finally, we have specifically
tested the car-to-bicycle replacement strategy in this work.
Future work could explore which classes offer a good re-
placement, and whether we can upsample the amount of a
rare class without replacing existing classes, even though
this would not allow us to match behaviors effectively. This
is a particularly challenging case as it precludes the fine-
tuning strategy we use here and will likely require more
advanced domain adaptation. Finally, we have tested our
methods purely on the LiDAR tasks for segmentation and
object detection. Future work would be needed to validate
these results on 2D datasets.

These limitations provide ample opportunity for future
work. Other future research includes identifying better
ways to generate the auxiliary domain, using auxiliary do-
mains from other real datasets, constructing more advanced
fine-tuning methods to improve rare classes, determining
how to integrate more advanced partial domain adaptation
methods, and using partially labeled data from the target
domain.

Even with these limitations, we find the results of this
study to be very relevant to constructing strong perception
algorithms for autonomous driving. With this work, we
have shown concrete evidence that new research in classifi-
cation can be extended to real-world perception tasks, and
that we can use simulated domains to target specific rare
classes in these domains.
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