
TorchSparse++: Efficient Point Cloud Engine

Haotian Tang1,∗ Shang Yang1,2,∗ Zhijian Liu1,∗

Ke Hong2 Zhongming Yu4 Xiuyu Li5 Guohao Dai3 Yu Wang2 Song Han1

1MIT 2Tsinghua University 3Shanghai Jiao Tong University 4UCSD 5UC Berkeley

https://torchsparse.mit.edu

Abstract

Point cloud computation has become an increasingly
more important workload for autonomous driving and other
applications. Unlike dense 2D computation, point cloud
convolution has sparse and irregular computation pat-
terns and thus requires dedicated inference system support
with specialized high-performance kernels. While existing
point cloud deep learning libraries have developed differ-
ent dataflows for convolution on point clouds, they assume
a single dataflow throughout the execution of the entire
model. In this work, we systematically analyze and improve
existing dataflows. Our resulting system, TorchSparse++,
achieves 2.9×, 3.3×, 2.2× and 1.8× measured end-to-end
speedup on an NVIDIA A100 GPU over the state-of-the-art
MinkowskiEngine, SpConv 1.2, TorchSparse and SpConv v2
in inference respectively. Furthermore, TorchSparse++ is
the only system to date that supports all necessary primitives
for 3D segmentation, detection, and reconstruction work-
loads in autonomous driving. Code is publicly released at
https://github.com/mit-han-lab/torchsparse.

1. Introduction
3D point cloud has become increasingly accessible over

the past few years thanks to the widely available 3D sen-
sors, including LiDAR scanners and depth cameras, making
it a popular data representation in many real-world scenar-
ios such as autonomous driving. It is of great importance
to optimize the inference for point cloud models as these
applications usually target real-time performance.

3D point clouds are sparse, rendering regular dense convo-
lution inapplicable. Sparse convolution [12, 16] extends the
definition of regular convolution by only conducting compu-
tation for non-zero features. It is arguably the most important
building block for almost all state-of-the-art 3D perception
models (e.g. 3D semantic segmentation [10, 24, 36], 3D ob-

∗ indicates equal contributions. Contact: kentang@mit.edu.

3D Detection (Waymo)

3D Segmentation (SemKITTI)

(b) Predicted Semantic Label(a) Input Sparse Tensor

(c) RGB image

Figure 1: Semantic Scene Completion on SemanticKITTI Dataset.

Semantic segmentation and scene com-
pletion of 3D point clouds are usually
studied separately [2, 3], but with the
emergence of large-scale datasets such as
ScanNet [4] and SemanticKITTI [1], re-
searchers have discovered a deep inter-
twining of an object’s semantics with its
underlying geometry, and since, have be-
gun exploiting this with the joint learn-
ing of semantic segmentation and scene
completion to boost model performance
[5]. For instance, speculating that an ob-
ject occluded by vehicles and surrounded
by leaves is a trunk simplifies the task of inferring it’s shape. Conversely, inferring the shape of a
pole-like object forms a prior on it’s semantic class being a trunk rather than a wall. While previous
semantic scene completion methods built on dense 2D or 3D convolutional layers have done well
in small-scale indoor environments, they have struggled to maintain their accuracy and efficiency
in outdoor environments for several reasons. For one, dense 2D convolutional methods that thrived
in the feature rich 2D image space are no longer sufficient when tackling large and sparse LiDAR
scans that contain far fewer geometric and semantic descriptors. Furthermore, the dense 3D convo-
lution becomes extremely wasteful in terms of computation and memory since the majority of the
3D volume of interest is in fact empty. Thereby, our main contributions are listed as the following:
(a) a sparse tensor based neural network architecture that efficiently learns features from sparse 3D
point cloud data and jointly solves the coupled scene completion and semantic segmentation prob-
lem; (b) a novel geometric-aware 3D tensor segmentation loss; (c) a multi-view fusion and semantic
post-processing strategy addressing the challenges of distant or occluded regions and small-sized
objects. Given a single sparse point cloud frame, our model predicts a dense 3D occupancy cuboid
with semantic labels assigned to each voxel cell (as shown in Fig. 1), generating rich information of
the 3D environment that is not contained in the original input such as gaps between LiDAR scans,
occluded regions and future scenes.

In order to effectively complete occluded voxel regions from LiDAR scans, we focus on exploiting
the geometrical relationship of the 3D points both locally and globally. In this work, we utilize
point-wise normal vectors as a geometrical feature encoding to guide our model in filling the gaps
according to the object’s local surface convexity. We also leverage a LiDAR-based flipped Truncated
Signed Distance Function (fTSDF [5]) computed from a spherical range image as a spatial encoding
to differentiate free, occupied and occluded space of a scene. As for future scenes, because these
regions are far from the vehicle and are primarily road or other forms of terrain, we propose a 2D
variant of the sparse semantic scene completion network to support the construction of the 3D scene
via multi-view fusion with Bird’s Eye View (BEV) semantic map predictions. To tackle sparsity, we
leveraged the Minkowski Engine [6], an auto-differentiation library for sparse tensors to build our 2D
and 3D semantic scene completion network. We have also adopted a combined geometric inspired
semantic segmentation loss to improve the accuracy of semantic label predictions. Since our network
is trained in a complex real-world autonomous driving dataset with 20 classes of dynamic and static
objects, and the input data is simply a voxelized LiDAR point cloud appended with geometrical and
spatial feature encodings, our model can be deployed on-the-go with various LiDAR sensors. We
demonstrate this by applying our method to unseen real-world voxel data, which yields reasonable
qualitative results. Our experiments show that our model outperforms all baseline methods by a large
margin, with exceptional performance in the prediction of small, under-represented class categories
such as bicycles, pedestrians, traffic signs and more.

2 Related Works

We review the related works across four major areas: volume reconstruction, point cloud segmenta-
tion, semantic scene completion, and multi-view fusion.

Volume Reconstruction. There are several approaches to inferring complete volumetric occupancy
of shapes and scenes from partial or sparse geometric data. Efficient methods based on object
symmetry [7, 8] and plane fitting [9] apply for small non-complex completion tasks. In larger

2

(b) Predicted Semantic Label(a) Input Sparse Tensor

(c) RGB image

Figure 1: Semantic Scene Completion on SemanticKITTI Dataset.

Semantic segmentation and scene com-
pletion of 3D point clouds are usually
studied separately [2, 3], but with the
emergence of large-scale datasets such as
ScanNet [4] and SemanticKITTI [1], re-
searchers have discovered a deep inter-
twining of an object’s semantics with its
underlying geometry, and since, have be-
gun exploiting this with the joint learn-
ing of semantic segmentation and scene
completion to boost model performance
[5]. For instance, speculating that an ob-
ject occluded by vehicles and surrounded
by leaves is a trunk simplifies the task of inferring it’s shape. Conversely, inferring the shape of a
pole-like object forms a prior on it’s semantic class being a trunk rather than a wall. While previous
semantic scene completion methods built on dense 2D or 3D convolutional layers have done well
in small-scale indoor environments, they have struggled to maintain their accuracy and efficiency
in outdoor environments for several reasons. For one, dense 2D convolutional methods that thrived
in the feature rich 2D image space are no longer sufficient when tackling large and sparse LiDAR
scans that contain far fewer geometric and semantic descriptors. Furthermore, the dense 3D convo-
lution becomes extremely wasteful in terms of computation and memory since the majority of the
3D volume of interest is in fact empty. Thereby, our main contributions are listed as the following:
(a) a sparse tensor based neural network architecture that efficiently learns features from sparse 3D
point cloud data and jointly solves the coupled scene completion and semantic segmentation prob-
lem; (b) a novel geometric-aware 3D tensor segmentation loss; (c) a multi-view fusion and semantic
post-processing strategy addressing the challenges of distant or occluded regions and small-sized
objects. Given a single sparse point cloud frame, our model predicts a dense 3D occupancy cuboid
with semantic labels assigned to each voxel cell (as shown in Fig. 1), generating rich information of
the 3D environment that is not contained in the original input such as gaps between LiDAR scans,
occluded regions and future scenes.

In order to effectively complete occluded voxel regions from LiDAR scans, we focus on exploiting
the geometrical relationship of the 3D points both locally and globally. In this work, we utilize
point-wise normal vectors as a geometrical feature encoding to guide our model in filling the gaps
according to the object’s local surface convexity. We also leverage a LiDAR-based flipped Truncated
Signed Distance Function (fTSDF [5]) computed from a spherical range image as a spatial encoding
to differentiate free, occupied and occluded space of a scene. As for future scenes, because these
regions are far from the vehicle and are primarily road or other forms of terrain, we propose a 2D
variant of the sparse semantic scene completion network to support the construction of the 3D scene
via multi-view fusion with Bird’s Eye View (BEV) semantic map predictions. To tackle sparsity, we
leveraged the Minkowski Engine [6], an auto-differentiation library for sparse tensors to build our 2D
and 3D semantic scene completion network. We have also adopted a combined geometric inspired
semantic segmentation loss to improve the accuracy of semantic label predictions. Since our network
is trained in a complex real-world autonomous driving dataset with 20 classes of dynamic and static
objects, and the input data is simply a voxelized LiDAR point cloud appended with geometrical and
spatial feature encodings, our model can be deployed on-the-go with various LiDAR sensors. We
demonstrate this by applying our method to unseen real-world voxel data, which yields reasonable
qualitative results. Our experiments show that our model outperforms all baseline methods by a large
margin, with exceptional performance in the prediction of small, under-represented class categories
such as bicycles, pedestrians, traffic signs and more.

2 Related Works

We review the related works across four major areas: volume reconstruction, point cloud segmenta-
tion, semantic scene completion, and multi-view fusion.

Volume Reconstruction. There are several approaches to inferring complete volumetric occupancy
of shapes and scenes from partial or sparse geometric data. Efficient methods based on object
symmetry [7, 8] and plane fitting [9] apply for small non-complex completion tasks. In larger

2

3D Reconstruction (SemKITTI)
Waymo | Confidential & Proprietary

Figure 6. Visualization of 3D auto labels on the Waymo Open Dataset val set (best viewed in color with zoom in). Object points are
colored by object types with blue for static vehicles, red for moving vehicles and orange for pedestrians. Boxes are colored as: green for
true positive detections, red for false positives and cyan for ground truth boxes in the cases of false negatives.

transform segmentation iterative tta Acc@0.7/0.8

- - - - 78.82 / 50.90
X - - - 81.35 / 54.76
X X - - 81.37 / 55.67

X X X - 82.02 / 56.77
X X X X 82.28 / 56.92

Table 6. Ablation studies of the static auto labeling model. Met-
rics are the box accuracy at 3D IoU=0.7 and IoU=0.8 for vehicles
in the Waymo Open Dataset val set.

Method Acc@0.7/0.8

Align & refine 83.33 / 60.69
Points only 83.79 / 61.95
Box sequence only 83.13 / 58.96

Points and box sequence joint 85.67 / 65.77
Table 7. Comparing with alternative designs of dynamic object
auto labeling. Metrics are box accuracy with 3D IoU thresholds
0.7 and 0.8 for vehicles on the Waymo Open Dataset val set.

Effects of temporal context sizes for object auto labeling
Table 8 studies how the context frame sizes influence the
box prediction accuracy. We also compare with our single-
frame (S-MVF++) and multi-frame detectors (M-MVF++)
to show extra gains the object auto labeling can bring. We
can clearly see that using large temporal contexts improves
the performance while using the entire object track (the last
row) leads to the best performance. Note that for the static
object model, we use the detector box with the highest score
for the initial coordinate transform, which gives our auto
labeling an advantage over frame-based method.

5.6. Qualitative Analysis

In Fig. 6, we visualize the auto labels for two represen-
tative scenes in autonomous driving: driving on a road with
parked cars, and passing a busy intersection. Our model
is able to accurately recognize vehicles and pedestrians in

Method Context frames
static dynamic

Acc@0.7/0.8 Acc@0.7/0.8

S-MVF++ [�0, +0] 67.17 / 36.61 80.07 / 57.71
M-MVF++ [�4, +0] 73.96 / 43.56 82.21 / 59.52

3DAL

[�0, +0] 78.13 / 50.30 80.65 / 57.97
[�2, +2] 79.60 / 52.52 84.34 / 63.60
[�5, +5] 80.48 / 55.02 85.10 / 64.51

all 82.28 / 56.92 85.67 / 65.77
Table 8. Effects of temporal context sizes for object auto label-
ing. Metrics are the box accuracy at 3D IoU=0.7, 0.8 for vehicles
in the WOD val set. Dynamic vehicles have a higher accuracy
because they are closer to the sensor than static ones.

challenging cases with occlusions and very few points. The
busy intersection scene also shows a few failure cases in-
cluding false negatives of pedestrians in rare poses (sitting),
false negatives of severely occluded objects and false pos-
itive for objects with similar geometry to cars. Those hard
cases can potentially be solved with added camera informa-
tion with multi-modal learning.

6. Conclusion

In this work we have introduced 3D Auto Labeling, a
state-of-the-art offboard 3D object detection solution using
point cloud sequences as input. The pipeline leverages the
long-term temporal data of objects in the 3D scene. Key
to our success are our object-centric formulation, powerful
offboard multi-frame detector and novel object auto label-
ing models. Evaluated on the Waymo Open Dataset, our so-
lution has shown significant gains over prior art onboard 3D
detectors, especially with high standard metrics. A human
label study has further shown the high quality of the auto
labels reaching comparable performance as experienced hu-
mans. Moreover, the semi-supervised learning experiments
have demonstrated the usefulness of the auto labels for stu-
dent training in cases of low-label and unseen domains.

8

point-wise annotations for 50 classes from which 9 are se-
lected for evaluation. Another recently used large dataset
for autonomous driving [57], but with fewer classes, is not
publicly available.

The Virtual KITTI dataset [17] provides synthetically
generated sequential images with depth information and
dense pixel-wise annotation. The depth information can
also be used to generate point clouds. However, these point
clouds do not show the same characteristics as a real rotat-
ing LiDAR, including defects like reflections and outliers.

In contrast to these datasets, our dataset combines a large
amount of labeled points, a large variety of classes, and se-
quential scans generated by a commonly employed sensor
used in autonomous driving, which is distinct from all pub-
licly available datasets, also shown in Table 1.

3. The SemanticKITTI Dataset
Our dataset is based on the odometry dataset of the

KITTI Vision Benchmark [19] showing inner city traffic,
residential areas, but also highway scenes and countryside
roads around Karlsruhe, Germany. The original odome-
try dataset consists of 22 sequences, splitting sequences
00 to 10 as training set, and 11 to 21 as test set. For con-
sistency with the original benchmark, we adopt the same
division for our training and test set. Moreover, we do not
interfere with the original odometry benchmark by provid-
ing labels only for the training data. Overall, we provide
23 201 full 3D scans for training and 20 351 for testing,
which makes it by a wide margin the largest dataset pub-
licly available.

We decided to use the KITTI dataset as a basis for our la-
beling effort, since it allowed us to exploit one of the largest
available collections of raw point cloud data captured with a
car. We furthermore expect that there are also potential syn-
ergies between our annotations and the existing benchmarks
and this will enable the investigation and evaluation of ad-
ditional research directions, such as the usage of semantics
for laser-based odometry estimation.

Compared to other datasets (cf. Table 1), we provide
labels for sequential point clouds generated with a com-
monly used automotive LiDAR, i.e., the Velodyne HDL-
64E. Other publicly available datasets, like Paris-Lille-3D
[47] or Wachtberg [6], also use such sensors, but only pro-
vide the aggregated point cloud of the whole acquired se-
quence or some individual scans of the whole sequence,
respectively. Since we provide the individual scans of the
whole sequence, one can also investigate how aggregating
multiple consecutive scans influences the performance of
the semantic segmentation and use the information to rec-
ognize moving objects.

We annotated 28 classes, where we ensured a large over-
lap of classes with the Mapillary Vistas dataset [39] and
Cityscapes dataset [10] and made modifications where nec-

road sidewalk car

buildingterrainvegetation
other-object
trunk

other-structure

parking pole

Figure 2: Single scan (top) and multiple superimposed
scans with labels (bottom). Also shown is a moving car
in the center of the image resulting in a trace of points.

essary to account for the sparsity and vertical field-of-view.
More specifically, we do not distinguish between persons
riding a vehicle and the vehicle, but label the vehicle and
the person as either bicyclist or motorcyclist.

We furthermore distinguished between moving and non-
moving vehicles and humans, i.e., vehicles or humans gets
the corresponding moving class if they moved in some scan
while observing them, as shown in the lower part of Fig-
ure 2. All annotated classes are listed in Figure 3 and a more
detailed discussion and definition of the different classes
can be found in the supplementary material. In summary,
we have 28 classes, where 6 classes are assigned the at-
tribute moving or non-moving, and one outlier class is in-
cluded for erroneous laser measurements caused by reflec-
tions or other effects.

The dataset is publicly available through a benchmark
website and we provide only the training set with ground
truth labels and perform the test set evaluation online. We
furthermore will also limit the number of possible test set
evaluations to prevent overfitting to the test set [55].

3.1. Labeling Process

To make the labeling of point cloud sequences practi-
cal, we superimpose multiple scans above each other, which
conversely allows us to label multiple scans consistently. To
this end, we first register and loop close the sequences using
an off-the-shelf laser-based SLAM system [5]. This step
is needed as the provided information of the inertial nav-
igation system (INS) often results in map inconsistencies,
i.e., streets that are revisited after some time have differ-

3

Gather-GEMM-Scatter

Implicit GEMM

Fetch-on-Demand

To
rc

hS
pa

rs
e+

+
A

PI
s

Optimized Dataflows

Blazingly fast CUDA backend Easy-to-use PyTorch-like frontend+ = TorchSparse++

Figure 1. TorchSparse++ is a high-performance GPU library
that provides highly-optimized dataflows for convolution on point
clouds. It provides state-of-the-art inference and training perfor-
mance for all driving-related applications (e.g. 3D semantic seg-
mentation, object detection and scene reconstruction). Scenes
source: [2, 9, 27].

ject detection [1,6,8,15,40,42,44,46], 3D reconstruction [9],
multi-sensor fusion [7, 20, 23], end-to-end navigation [22]).
Despite achieving dominant performance, the irregular na-
ture of sparse convolution makes it harder to be processed
on general-purpose hardware (e.g. GPU) as it lacks official
vendor library support. Dedicated inference engines with
specialized high-performance kernels are required, which
poses significant difficulties. As a result, many industrial
autonomous driving solutions still prefer pillar-based solu-
tions [19], which flatten LiDAR points and process them
with a 2D CNN. However, these approaches cannot take full
advantage of 3D geometry and could be very slow when
generalizing to perception ranges in real applications (e.g.
>500m on the highway).

Several pioneering implementations of sparse convo-
lution have adopted different dataflows for this opera-
tor. For instance, SparseConvNet [16] and SpConv [40]
use the vanilla gather-GEMM-scatter dataflow, while
MinkowskiEngine [12] proposes the fetch-on-demand
dataflow. TorchSparse [35] optimizes the gather-scatter
paradigm by fusing memory operations and grouping com-
putations adaptively into batches to improve device utiliza-
tion. Recently, SpConv v2 [39, 40] has adapted the implicit
GEMM dataflow for dense convolution to the sparse domain,

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

202

achieving state-of-the-art performance on real-world work-
loads. However, all these libraries assume a single dataflow
throughout the execution of the entire model, which lim-
its the design space for kernel optimization, such as tiling
parameters.

In this work, we present an in-depth analysis of existing
dataflows. Based on our analysis, we identify significant
room for optimization, even for well-engineered kernels
tuned at the PTX assembly level in SpConv v2 [39, 40]. As
an example, we could improve the balance between com-
putation regularity and overhead, increase parallelism, and
optimize kernel selection based on input characteristics.

We also extend the opset of existing inference engines
to support all necessary primitives for auto-driving re-
lated applications, including 3D semantic segmentation,
object detection, and scene reconstruction. Our system,
TorchSparse++, has been evaluated on seven representative
models across three benchmark datasets, achieving end-to-
end speedups of 2.9×, 3.3×, 2.2×, and 1.8× on an NVIDIA
A100 GPU, outperforming state-of-the-art systems such as
MinkowskiEngine, SpConv 1.2, TorchSparse, and SpConv
v2. Code is released at https://github.com/mit-han-
lab/torchsparse.

2. Library
The goal of TorchSparse++ is to provide efficient system

implementation for existing point cloud deep learning work-
loads in autonomous driving and allow the users to easily
extend its support for emerging operators. To achieve this
goal, we abstract point clouds as sparse tensors.

2.1. Overview

A point cloud sparse tensor can be defined as an un-
ordered set of points with features: {(pj ,xj)}. pj is the
quantized coordinates for the jth point in the D-dimensional
space ZD, and xj is its C-dimensional feature vector in RC .
In autonomous driving applications, we have D = 3, corre-
sponding to 3D points from the LiDAR sensors. Coordinate
quantization is done through p = ⌊p(raw)

i /v⌋, where v is the
voxel size vector. Unique operation is further applied to all
quantized coordinates. For example, in CenterPoint [44], the
point clouds on Waymo [33] are quantized using v = [0.1m,
0.1m, 0.15m]. This means that we will only keep one point
within each 0.1m×0.1m×0.15m grid.

Sparse Convolution In autonomous driving applications,
the most important computation primitive in point cloud
deep learning is sparse convolution [12, 16, 40]. Follow-
ing the notations in [35], we define the D-dimensional
neighborhood with kernel size K as ∆D(K) (e.g. ∆2(5)
= {−2,−1, 0, 1, 2}2 and ∆3(3) = {−1, 0, 1}3). The for-
ward form of sparse convolution (Figure 2) on the kth output

Q0

Q1 Q2

Q3

Q4

Q5

P0

P1 P2

P3

P4

P5
Input Weight

W-1,-1 W-1,0 W-1,1

W0,-1 W0,0 W0,1

W1,-1 W1,0 W1,1

Output

xout1 = xin0 w−1,−1 + xin1 w0,0 + xin2 w0,1 + xin3 w1,0

xout4 = xin4 w0,0 + xin5 w1,1

Figure 2. Sparse convolution (Equation 1) on ∆2(3): computation
is performed only on nonzero inputs.

point is defined as:

xout
k =

∑
δ∈∆D(K)

∑
j

1[pj = sqk + δ] (xin
j ·Wδ), (1)

where pj ∈ P in, qk ∈ P out, 1[·] is a binary indicator, s is
the stride and Wδ ∈ RCin×Cout corresponds to the weight
matrix for kernel offset δ ∈ ∆D(K). Sparse convolution
is closely connected to different convolutional primitives
on point clouds. For example, PointNet++ [26] (used by
PointRCNN [32], PV-RCNN [30,31], 3D-SSD [41]) replaces
the cubical neighborhood in Equation 1 with the k-nearest
neighbor and performs reduction using max pooling instead
of summation.

Other Functions TorchSparse++ leverages PyTorch’s el-
ementwise deep learning primitives, such as normalization
layers and activation functions, since these non-spatial lay-
ers do not require dedicated sparsity support. Additionally,
we have implemented the sparse counterpart of pooling lay-
ers. In contrast to conventional dense workloads, where the
mapping between logical coordinates and physical storage
location is straightforward (e.g., on an H ×W image, pixel
(h,w) is stored at memory location hW +w), such mapping
does not hold for sparse point clouds. To address this issue,
we provide a parallel hashtable abstraction in TorchSparse++,
which supports fast coordinate-to-memory location queries.

2.2. APIs and Integration

APIs. TorchSparse++ offers easy-to-use and PyTorch-like
APIs, depicted in Figure 3 and Figure 4. Both module and
functional implementations are provided for all sparse
point cloud operators. To construct a sparse convolutional
network for point clouds, only a conversion from PyTorch’s
nn.Conv3d, nn.BatchNorm3d, and nn.ReLU to our spnn
counterpart is required, as shown in Figure 3. Unlike other
libraries, users do not need to specify any additional fields
at module initialization time in TorchSparse++. For exam-
ple, SpConv requires an indice key field during convolu-
tion class initialization to help the system exploit map reuse

203

Import libraries
from torch import nn
import torchsparse.nn as spnn
from torchsparse import SparseTensor
Tensor construction
tensor = SparseTensor(
 feats, coords
).cuda()
Neural network definition
net = nn.Sequential(
 spnn.Conv3d(
 IC, OC, kernel_size=3,
 stride=2, padding=1
),
 spnn.BatchNorm(OC),
 spnn.ReLU(True),
 spnn.Conv3d(
 OC, OC, kernel_size=[1, 3, 1],
 stride=1, padding=[0, 1, 0]
)
).cuda()

Inference
out = net(tensor)
To PyTorch dense tensor
out_dense = out.dense()
Training
out_dense.backward(top_grad)

mmdet3d Integration
from mmcv.cnn.bricks.registry import *
from mmcv.cnn import build_conv_layer
CONV_LAYERS._register_module(
 spnn.Conv3d, “SparseConv3d”,
 force=True
)
conv_layer = build_conv_layer(
 dict(type=“SparseConv3d”),
 IC, OC, kernel_size, stride=stride,
 padding=padding, bias=False
)
Equivalent to spnn.Conv3d(IC, OC, …)

Figure 3. TorchSparse++ offers user-friendly, PyTorch-like inter-
faces that allow seamless support of both training and inference. It
can also be easily integrated into open-source frameworks such as
mmdet3d [13] with less than 10 lines of code.
def forward(self, x):
 identity = x.features

 out = self.conv1(x)
 out = out.replace_feature(self.bn1(out.features))
 out = out.replace_feature(self.relu(out.features))

 out = self.conv2(out)
 out = out.replace_feature(self.bn2(out.features))

 if self.downsample is not None:
 identity = self.downsample(x)

 out = out.replace_feature(out.features + identity)
 out = out.replace_feature(self.relu(out.features))

 return out

def forward(self, x):
 identity = x

 out = self.relu(self.bn1(self.conv1(x)))
 out = self.relu(self.bn2(self.conv2(out)))

 if self.downsample is not None:
 identity = self.downsample(x)

 out = out + identity
 out = self.relu(out)

 return out

Left: SpConv implementation
Right: TorchSparse++ implementation

Figure 4. TorchSparse++ offers a much more intuitive implemen-
tation for a residual block composed of sparse convolution layers
compared with SpConv [39, 40].

opportunities. However, this is done automatically in the
TorchSparse++ frontend without any user annotation. We
also provide exactly the same forward and backward im-
plementation conventions as PyTorch. As in Figure 4, it is
much more intuitive in TorchSparse++ to implement a sparse
residual block compared with SpConv. Furthermore, when
integrated into existing frameworks such as mmdet3d [13],
who provides existing implementations for the residual block
(and many other Conv2d-based blocks) for images, one only
needs to override its member modules with spnn equivalence
(e.g. replacing nn.ReLU with spnn.ReLU) and does not even
need to write the forward function. Our API design greatly
simplifies the development of point cloud models.

Integration. It is easy to integrate TorchSparse++ into
existing algorithm frameworks and open-source reposi-
tories. For example, as in Figure 3, frameworks like
mmdet3d [13] often provide registries to support build-
ing modules from a configuration dictionary. Registering
operators in TorchSparse++ is as simple as registering a
Conv2d layer to these frameworks. Users can simply mod-
ify the type field in the configuration dictionary passed
to build conv layer from Conv2d to SparseConv3d to
switch between the two layer types. All other layer pa-
rameters, such as input and output channels, kernel size,

Gather GEMM BMM Scatter

MM W

GG
MM W

G
MM W

G
MM W

G
MM W

G
MM W

G
MM W

G
MM W

Gather GEMMGather Scatter ScatterGEMM Scatter …

…

(a) Vanilla weight-stationary

(b) Optimized weight-stationary (TorchSparse)

(d) Implicit GEMM

MM S

G G G G G
MM S MM S MM S MM S MM S

G

(c) Fetch-on-Demand

…

……

Figure 5. Waterfall diagram for different dataflows for sparse
convolution on GPU: weight-stationary dataflows (a, b) are easier
to implement and maintain but they do not overlap memory access
with computation. Both fetch-on-demand and implicit GEMM
dataflows require custom MMA routines but are able to hide the
memory access time with pipelining.

stride, padding, and bias, retain their equivalent mean-
ings to their PyTorch 2D counterpart. We provide an
example of open-source integration of TorchSparse++ in
https://github.com/mit-han-lab/bevfusion, where
our system serves as the backend for the LiDAR backbone
in a multi-modality 3D perception model [23].

It is also extremely simple to implement new 3D deep
learning models from scratch using TorchSparse++. We
provide another example, available at https://github.
com/mit-han-lab/spvnas, which demonstrates how our
system can be applied to a complex 3D semantic seg-
mentation model [36]. This model features custom vox-
elization/devoxelization operators and supports neural ar-
chitecture search. Other existing implementations such as
MinkowskiEngine and SpConv v2 could not provide such
flexibility to support this model.

3. Implementation
Although most functions in TorchSparse++ are imple-

mented straightforwardly, efficiently mapping the sparse
convolution operator onto GPUs poses a nontrivial challenge.
In this section, we describe three alternative implementations
for sparse convolution that we have developed to address this
challenge. Our approaches significantly improve upon ex-
isting implementations by introducing tensor core intrinsics,
enhancing computation regularity and parallelism.

3.1. Gather-GEMM-Scatter Dataflow

Overview. A gather-GEMM-scatter [16, 40] implementa-
tion of sparse convolution (Figure 6) will finish all compu-
tation for one weight Wδ before moving on to the other.
It has an outmost host loop over KD kernel offsets. For
each offset δ, we first calculate all pairs Mδ = {(pj , qk)}
such that pj = sqk + δ. As is shown in Figure 5a, we
then group all input features {xin

j } together, resulting in a

204

xi/o0 xin1xin0 xin2 xin3xin1

xi/o2

xin3

xi/o3
xi/o4

xin5xin4

xi/o5

W-1,-1 W-1,0 W-1,1 W0,-1 W0,0 W0,1 W1,-1 W1,0 W1,1

↓
xout1
xout5

xin1

xout3

↓
xin2

xout3

↓ ↓
xout2

xi/o1
xout1 xout2 xout1

xout0
xout4

↓ ↓ ↓
↓

Figure 6. Illustration of the gather-GEMM-scatter dataflow for
Figure 2 workload: we first gather input features according to Mδ

for each weight δ, then perform GEMM or batched GEMM, and
finally scatter the results back to output locations given in Mδ .

|Mδ| × C in matrix in DRAM, and multiply it with weight
Wδ ∈ RCin×Cout , finally we scatter the results back to out-
put positions {xout

k } according to Mδ. For example, since
p0 = 1 × q1 + (−1,−1), p4 = 1 × q5 + (−1,−1), we
group features xin

0 ,x
in
4 together, multiply them by W−1,−1

and scatter back to outputs xout
1 ,xout

5 .

Advantages. The gather-GEMM-scatter dataflow has
small and controllable computation overhead, and is thus
suitable for devices with limited computation capability. It
is also easy to implement and maintain. After feature gather-
ing, the main computation for each offset δ is simply dense
matrix multiplication, and can be delegated to existing ven-
dor libraries such as cuBLAS and cuDNN. As such, only the
data movement operations (i.e. scatter and gather) need to
be implemented and optimized in CUDA.

3.2. Fetch-on-Demand Dataflow

Overview. The gather-GEMM-scatter implementation re-
quires three separate CUDA kernel calls in each host
loop iteration over δ. An alternative fetch-on-demand
dataflow [12, 17] merges the gather, matrix multiplication
and scatter kernel calls into a single CUDA kernel. Instead
of materializing the |Mδ| × Cin gather buffer in DRAM, it
fetches {xin

j |(pj , qk) ∈ Mδ} on demand into the L1 shared
memory, performs matrix multiplication in the on-chip stor-
age and directly scatters the partial sums (resided in the reg-
ister file) to corresponding outputs {xout

k |(pj , qk) ∈ Mδ}
without first instantiating them in a DRAM scatter buffer.

Advantages. The fetch-on-demand dataflow enjoys simi-
lar benefit of low redundant computation to gather-GEMM-
scatter. Despite not being able to exploit perfect reuse oppor-
tunities in both gathering and scattering as [35], it overlaps
the computation with memory access operations. It also
saves DRAM writes to large gather/scatter buffers. Thus, it
is faster than a vanilla gather-scatter dataflow (Figure 5a).

xin1
xin3

xin5

xin0
xin0 xin1 xin2

xin1 xin2 xin3
xin1 xin2 xin3

xin4
xin4 xin5

xout0
xout1
xout2
xout3
xout4
xout5

W-1,-1 W-1,0 W-1,1 W0,-1 W0,0 W0,1 W1,-1 W1,0 W1,1

xin3

xin1

xin5

Figure 7. Illustration of the vanilla implicit GEMM dataflow for Fig-
ure 2 workload: each green grid corresponds to a Cin-dimensional
input feature and blue grids correspond to redundant computation.
The input feature matrix is not stored in DRAM. We assume that
each thread block contains 3 threads (3 rows).

0 0 0 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0
0 0 0 1 1 0 1 0 0
0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0

xout0
xout1
xout2
xout3
xout4
xout5

W-1,-1 W-1,0 W-1,1 W0,-1 W0,0 W0,1 W1,-1 W1,0 W1,1

17
282
52
208
17
272

1st

6th

3rd

4th

2nd

5th

(a) Bitmask in SpConv v2.

xin0 xin1

xin0 xin1 xin2 xin3

xin1 xin2 xin3
xin1 xin2 xin3

xin4 xin5

xin4 xin5

xout0
xout4
xout2
xout3
xout5
xout1

W-1,-1 W-1,0 W-1,1 W0,-1 W0,0 W0,1 W1,-1 W1,0 W1,1

(b) Sorting reduces redundant computation in SpConv v2.

Figure 8. SpConv v2 sorts the input bitmasks and reorders the
computation accordingly. White grids correspond to skipped zero
computation. As a result, redundant computation is reduced from
38 MACs (Figure 7) to 14 MACs for the example in Figure 2. For
simplicity, we do not visualize mask splitting in SpConv v2. Each
thread block has 3 threads.

3.3. Implicit GEMM Dataflow

Overview. A very recent advance in sparse convolution
inference, SpConv v2 [39, 40], takes an alternative approach
of implicit GEMM computation, which is originally de-
signed for dense convolution on images in CUTLASS [18],
cuDNN [11] and has been implemented in PointAcc [21],
a specialized accelerator for point cloud workloads. As in
Figure 7, the sparse convolution workload in Figure 2 is
equivalent to a dense GEMM C = AM×K ×BK×N with
M = Nout (number of output points), N = Cout,K =
|∆D(K)|Cin. We visualize matrix A in Figure 7, where we
have Nout × |∆D(K)| grids and each grid corresponds to

205

SK-M (1x) SK-M (0.5x) NS-M (3f) NS-M (1f) NS-C (10f) WM-C (3f) WM-C (1f) Geomean

1.001.001.001.001.001.001.001.00
0.810.810.810.75

0.63
0.790.87

1.03

SpConv 2.2.3 TorchSparse++

O
rin

Figure 9. TorchSparse++ is 1.24× faster on average and up to
1.57× more efficient than SpConv 2.2.3 on resource-constrained
NVIDIA Jetson Orin. All workloads run at >18 FPS, which is
significantly faster than the LiDAR frequency.

Cin channels. Grids in green corresponds to input features.
For example, output point q1 has four neighbors: p0 (with
w−1,−1), p1 (with w0,0), p2 (with w0,1) and p3 (with w1,0)
so the second row in Figure 7 has four green entries. Im-
plicit GEMM means that instead of explicitly writing A into
DRAM in an im2col [11] manner, we load tiles of A into
the on-chip SRAM on the fly. Indices in A are mapped to
locations in the input feature map according to neighborhood
relationships.

SpConv v2: Sorted Implicit GEMM. In the Figure 7
example, we assume that each warp has three threads, and
each thread performs calculation on one output point. A
vanilla implicit GEMM implementation performs 0×0 com-
putation for positions without corresponding neighbors. As
such, there are 16 effective MACs and 38 wasted MACs in
Figure 7. In real-world workloads, the amount of redundant
computation ranges from 30% to 300% of effective MACs.

Therefore, Yan et al. [39, 40] proposed SpConv v2 to
reduce the proportion of wasted computation. As in Fig-
ure 8a, a bitmask is first calculated for each output point. It
indicates whether a specific neighbor of each output point
exists. The bitmask is then converted to a decimal number
and sorted. As such, in Figure 8b, the redundant MACs is
reduced from 38 to 14. Experiments on real-world LiDAR
scans show that sorting the bitmask can typically bring about
a 1.3× to 2.0× reduction in redundant computation. To fur-
ther reduce wasted MACs, Yan et al. split the bitmask into
two trunks and sort these two bitmasks separately. A SplitK
reduction [18] followed by output reordering is performed
to get the final results.

Advantages. An implicit GEMM dataflow does not
require scattering since its writeback stage is output-
stationary. Input feature gathering and matrix multiplication-
accumulation (MMA) operations can also be pipelined be-
cause they are implemented in a single CUDA kernel. Con-
sequently, as shown in Figure 5d, the ideal runtime of an
output-stationary kernel is max(time gather, time mma+
time wb), as opposed to time gather + time mma +
time scatter in a gather-GEMM-scatter dataflow.

4. Evaluation
4.1. Setup

We build our TorchSparse++ on top of TorchSparse [35]
and compare it with four state-of-the-art sparse con-
volution libraries MinkowskiEngine 0.5.4 [12], SpConv
1.2.1 [40], TorchSparse [35] (gather-GEMM-scatter) and
SpConv 2.2.3 [40] (sorted implicit GEMM). All systems
except SpConv 1.2.1 are integrated into PyTorch 1.12.0 with
CUDA 11.7 and cuDNN 8.4.1. SpConv 1.2.1 is incompatible
with PyTorch 1.12.0 so we use PyTorch 1.9.0 instead.

We follow TorchSparse [35] to evaluate all systems
on seven representative 3D deep learning workloads:
MinkUNet [12] (0.5×/1× width) on SemanticKITTI [2],
MinkUNet (1 or 3 frames) on nuScenes-LiDARSeg [3], Cen-
terPoint [44] (10 frames) on nuScenes detection and Cen-
terPoint (1 or 3 frames) on Waymo Open Dataset [33]. For
detection workloads (CenterPoint), we only evaluate the
runtime of SparseConv layers.

4.2. Inference Speedup

We compare our results with the baseline design
MinkowskiEngine, SpConv 1.2.1, TorchSparse and SpConv
2.2.3 in Figure 10. All evaluations are done in unit batch
size. TorchSparse++ outperforms baseline systems consis-
tently on Tesla A100, RTX 3090, RTX 2080Ti and GTX
1080Ti. It achieves 2.9-3.7×, 3.2-3.3×, 2.0-2.2× and 1.4-
1.8× measured end-to-end speedup over the state-of-the-
art MinkowskiEngine, SpConv 1.2.1, TorchSparse and Sp-
Conv 2.2.3, respectively on Ampere GPUs and is 1.2-1.6×
faster than SpConv 2.2.3 on Turing and Pascal GPUs. In
Figure 9, we also compare TorchSparse++ with SpConv
2.2.3 on NVIDIA Jetson Orin, an edge GPU platform
widely deployed on real-world autonomous vehicles. Our
TorchSparse++ is 1.24× faster than SpConv 2.2.3, while
achieving up to 1.57× speedup on nuScenes (with 32-beam
LiDAR scans). Notably, recent advances in point cloud trans-
formers [25, 34, 37] often claim superior accuracy-latency
tradeoffs over sparse convolutional backbones implemented
with the SpConv 2.2.3 backend. With the much faster
TorchSparse++ backend, we argue that sparse convolutional
networks are still very competitive in runtime.

5. Related Work
Point Cloud Inference Engines. Researchers have exten-
sively developed efficient inference engines for sparse con-
volution. SpConv [40] proposes grid-based map search and
the gather-GEMM-scatter dataflow. SparseConvNet [16]
proposes hashmap-based map search and is later signifi-
cantly improved (in latency) by MinkowskiEngine, which
also introduces a new fetch-on-demand dataflow that excels
at small workloads and allows generalized sparse convo-
lution on >3D point clouds and on arbitrary coordinates.

206

SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f) NS-MinkUNet (1f) NS-CenterPoint (10f) WM-CenterPoint (3f) WM-CenterPoint (1f) Geomean

1.001.001.001.001.001.001.001.00

0.55
0.660.71

0.60
0.460.440.46

0.61
0.450.460.450.52

0.420.440.40
0.50

0.300.340.320.37
0.260.270.280.28 0.340.280.250.32

0.460.390.43
0.29

MinkowskiEngine SpConv 1.2.1 (FP16) TorchSparse (FP16) SpConv 2.2.3 (FP16) TorchSparse++ (FP16)

SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f) NS-MinkUNet (1f) NS-CenterPoint (10f) WM-CenterPoint (3f) WM-CenterPoint (1f) Geomean

1.001.001.001.001.001.001.001.00

0.73
0.850.91

0.69
0.560.650.59

0.97

0.510.500.490.530.460.540.44
0.62

0.310.320.310.320.280.310.250.34 0.270.180.180.22

0.48
0.360.280.27

Te
sl

a
A

10
0

R
TX

 3
09

0

SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f) NS-MinkUNet (1f) NS-CenterPoint (10f) WM-CenterPoint (3f) WM-CenterPoint (1f) Geomean

1.001.001.001.001.001.001.001.00

0.600.670.64
0.530.540.550.56

0.72

0.440.390.410.440.480.480.430.49
0.290.300.330.310.260.270.250.33 0.290.200.180.26

0.50
0.370.35

0.25

SK-MinkUNet (1.0x) SK-MinkUNet (0.5x) NS-MinkUNet (3f) NS-MinkUNet (1f) NS-CenterPoint (10f) WM-CenterPoint (3f) WM-CenterPoint (1f) Geomean

1.001.001.001.001.001.001.001.00
0.85

0.740.730.76
1.000.970.900.90

0.67
0.490.470.54

1.00
0.88

0.63
0.85

0.50
0.360.350.40

0.680.65
0.52

0.66
0.53

0.310.290.34

1.06
0.83

0.660.66

MinkowskiEngine SpConv 1.2.1 (FP32) TorchSparse (FP32) SpConv 2.2.3 (FP32) TorchSparse++ (FP32)

R
TX

 2
08

0T
i

G
TX

 1
08

0T
i

Figure 10. TorchSparse++ significantly outperforms existing point cloud inference engines in both 3D object detection and LiDAR
segmentation benchmarks. It achieves 1.36-1.81× geomean speedup over state-of-the-art SpConv 2.2.3 and is 1.96-2.20× faster than
TorchSparse on GPUs with the NVIDIA Ampere architecture. Furthermore, TorchSparse++ is 1.2-1.6× faster than SpConv 2.2.3 on Turing
and Pascal architectures.

TorchSparse [35] pushes the performance of gather-GEMM-
scatter by fusing memory operations together and adaptively
grouping computation into batches. It also implements a
GPU hash table and accelerates map search by exploiting
kernel fusion and symmetry. More recently, SpConv v2 [40]
switches to the sorted implicit GEMM workflow, inspired by
CUTLASS [18]. It entirely rewrites CUTLASS for sparse
workload and achieves remarkable speedup; however, it is
engineering-expensive and hard to maintain. All the existing
dataflows are further optimized in this work.

Tensor Program Optimization. TorchSparse++ is a sys-
tem mainly constructed from hand-written CUDA kernels,
but it can still benefit from recent advances in tensor pro-
gram compilation and optimization. The pioneering research
TVM [4] provides graph-level and operator-level abstrac-
tions for deep learning workloads based on the essence
of Halide [28]. AutoTVM [5] proposes a learning-based,
template-guided search framework to automatically discover
the optimal mapping of a fixed-shape tensor program onto
the target hardware. Nimble [29] and DietCode [45] are
compilers based on TVM that can generate tensor programs
with dynamic-shape workloads, but they are still tailored
for dense workloads (e.g. transformers with variable length
input sequences) and cannot deal with the sparsity in point
clouds. More recently, TensorIR [14] proposes a new inter-
mediate representation for tensor programs and allows easier
tensorization of accelerator primitives. SparseTIR [43] fur-
ther extends TensorIR to support sparse workloads. Bolt [38]

combines fully-automatically generated kernels [4] with
hand-written subroutines [18] via graph matching, achieving
the best of both worlds. We expect that TorchSparse++ could
further benefit from the recent progress in tensor program
compilation and optimizations.

6. Conclusion

We introduce TorchSparse++, a high-performance GPU
computation library designed for deep learning on point
clouds. TorchSparse++ supports all primitives required for
3D semantic segmentation, object detection, and scene re-
construction workloads in autonomous driving. We conduct
a holistic analysis of existing dataflows for point cloud con-
volution and further improved each dataflow to increase
parallelism and balance control flow overhead and com-
putation regularity. As a result, TorchSparse++ achieves
impressive speedups, with 1.8-3.3× faster inference com-
pared to state-of-the-art MinkowskEngine, SpConv v1/v2,
and TorchSparse on seven real-world perception workloads.
We hope that TorchSparse++ will facilitate research in 3D
scene understanding for self-driving vehicles.

Acknowledgement. We would like to thank Yan Yan and
Bohan Hou for helpful discussions. This work was supported
by National Science Foundation, MIT-IBM Watson AI Lab,
NVIDIA, Hyundai and Ford. Zhijian Liu was partially sup-
ported by the Qualcomm Innovation Fellowship.

207

References
[1] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun

Chen, Hongbo Fu, and Chiew-Lan Tai. TransFusion: Ro-
bust LiDAR-Camera Fusion for 3D Object Detection with
Transformers. In CVPR, 2022. 1

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Juergen Gall. Se-
manticKITTI: A Dataset for Semantic Scene Understanding
of LiDAR Sequences. In IEEE/CVF International Conference
on Computer Vision (ICCV), 2019. 1, 5

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gian-
carlo Baldan, and Oscar Beijbom. nuScenes: A Multimodal
Dataset for Autonomous Driving. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.
5

[4] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2018. 6

[5] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind Kr-
ishnamurthy. Learning to Optimize Tensor Programs. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2018. 6

[6] Xuesong Chen, Shaoshuai Shi, Benjin Zhu, Ka Chun Cheung,
Hang Xu, and Hongsheng Li. MPPNet: Multi-Frame Fea-
ture Intertwining with Proxy Points for 3D Temporal Object
Detection. In ECCV, 2022. 1

[7] Yukang Chen, Yanwei Li, Xiangyu Zhang, Jian Sun, and
Jiaya Jia. Focal Sparse Convolutional Networks for 3D Object
Detection. In CVPR, 2022. 1

[8] Yukang Chen, Jianhui Liu, Xiaojuan Qi, Xiangyu Zhang, Jian
Sun, and Jiaya Jia. Scaling up Kernels in 3D CNNs. In CVPR,
2023. 1

[9] Ran Cheng, Christopher Agia, Yuan Ren, Xinhai Li, and
Bingbing Liu. S3CNet: A Sparse Semantic Scene Completion
Network for LiDAR Point Clouds. In CoRL, 2020. 1

[10] Ran Cheng, Ryan Razani, Ehsan Taghavi, Enxu Li, and Bing-
bing Liu. (AF)2-S3Net: Attentive Feature Fusion with Adap-
tive Feature Selection for Sparse Semantic Segmentation Net-
work. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021. 1

[11] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shel-
hamer. cuDNN: Efficient Primitives for Deep Learning. In
Advances in Neural Information Systems (NeurIPS) Work-
shops, 2014. 4, 5

[12] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
Spatio-Temporal ConvNets: Minkowski Convolutional Neu-
ral Networks. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 1, 2, 4, 5

[13] MMDetection3D Contributors. MMDetection3D: OpenMM-
Lab next-generation platform for general 3D object detection.

https://github.com/open-mmlab/mmdetection3d, 2020.
3

[14] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru
Shao, Ruihang Lai, Zihao Ye, Lianmin Zheng, Cody Hao Yu,
Yong Yu, and Tianqi Chen. TensorIR: An Abstraction for
Automatic Tensorized Program Optimization. In ASPLOS,
2023. 6

[15] Runzhou Ge, Zhuangzhuang Ding, Yihan Hu, Wenxin Shao,
Li Huang, Kun Li, and Qiang Liu. 1st Place Solutions to the
Real-time 3D Detection and the Most Efficient Model of the
Waymo Open Dataset Challenge 2021. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2021. 1

[16] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3D Semantic Segmentation With Submanifold
Sparse Convolutional Networks. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
1, 2, 3, 5

[17] Ke Hong, Zhongming Yu, Guohao Dai, Xinhao Yang, Yaoxiu
Lian, Zehao Liu, Ningyi Xu, and Yu Wang. Exploiting Hard-
ware Utilization and Adaptive Dataflow for Efficient Sparse
Convolution in 3D Point Clouds. In Sixth Conference on
Machine Learning and Systems (MLSys), 2023. 4

[18] Andrew Kerr, Haicheng Wu, Manish Gupta, Dustyn Blasig,
Pradeep Ramini, et al. CUTLASS: CUDA Template Li-
brary for Linear Algebra Subroutines. https://github.
com/NVIDIA/CUTLASS, 2022. 4, 5, 6

[19] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
and Jiong Yang. PointPillars: Fast Encoders for Object De-
tection from Point Clouds. In CVPR, 2019. 1

[20] Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian Sun,
and Jiaya Jia. Unifying Voxel-based Representation with
Transformer for 3D Object Detection. In NeurIPS, 2022. 1

[21] Yujun Lin, Zhekai Zhang, Haotian Tang, Hanrui Wang, and
Song Han. PointAcc: Efficient Point Cloud Accelerator. In
54th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2021. 4

[22] Zhijian Liu, Alexander Amini, Sibo Zhu, Sertac Karaman,
Song Han, and Daniela Rus. Efficient and Robust LiDAR-
Based End-to-End Navigation. In IEEE International Confer-
ence on Robotics and Automation (ICRA), 2021. 1

[23] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang,
Huizi Mao, Daniela Rus, and Song Han. BEVFusion: Multi-
Task Multi-Sensor Fusion with Unified Bird’s-Eye View Rep-
resentation. In IEEE International Conference on Robotics
and Automation (ICRA), 2023. 1, 3

[24] Zhijian Liu, Haotian Tang, Shengyu Zhao, Kevin Shao, and
Song Han. PVNAS: 3D Neural Architecture Search with
Point-Voxel Convolution. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 2021. 1

[25] Zhijian Liu, Xinyu Yang, Haotian Tang, Shang Yang, and
Song Han. FlatFormer: Flattened Window Attention for
Efficient Point Cloud Transformer. In CVPR, 2023. 5

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep Hierarchical Feature Learning
on Point Sets in a Metric Space. In Advances in Neural
Information Processing Systems (NeurIPS), 2017. 2

208

[27] Charles R Qi, Yin Zhou, Mahyar Najibi, Pei Sun, Khoa Vo,
Boyang Deng, and Dragomir Anguelov. Offboard 3d object
detection from point cloud sequences. In CVPR, 2021. 1

[28] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams,
Sylvain Paris, Fredo Durand, and Saman Amarasinghe.
Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In
PLDI, 2013. 6

[29] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong
Wu, Mu Li, Vin Sharma, Zachary Tatlock, and Yida Wang.
Nimble: Efficiently Compiling Dynamic Neural Networks
for Model Inference. In MLSys, 2021. 6

[30] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jian-
ping Shi, Xiaogang Wang, and Hongsheng Li. PV-RCNN:
Point-Voxel Feature Set Abstraction for 3D Object Detection.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

[31] Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu
Guo, Jinaping Shi, Xiaogang Wang, and Hongsheng Li. PV-
RCNN++: Point-Voxel Feature Set Abstraction With Lo-
cal Vector Representation for 3D Object Detection. arXiv
preprint arXiv:2102.00463, 2021. 2

[32] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. PointR-
CNN: 3D Object Proposal Generation and Detection From
Point Cloud. In CVPR, 2019. 2

[33] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Et-
tinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.
Scalability in Perception for Autonomous Driving: Waymo
Open Dataset. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 2, 5

[34] Pei Sun, Mingxing Tan, Weiyue Wang, Chenxi Liu, Fei Xia,
Zhaoqi Leng, and Dragomir Anguelov. SWFormer: Sparse
Window Transformer for 3D Object Detection in Point Clouds.
In ECCV, 2022. 5

[35] Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song
Han. TorchSparse: Efficient Point Cloud Inference Engine. In
Fifth Conference on Machine Learning and Systems (MLSys),
2022. 1, 2, 4, 5, 6

[36] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin,
Hanrui Wang, and Song Han. Searching Efficient 3D Archi-
tectures with Sparse Point-Voxel Convolution. In European
Conference on Computer Vision (ECCV), 2020. 1, 3

[37] Haiyang Wang, Chen Shi, Shaoshuai Shi, Meng Lei, Sen
Wang, Di He, Bernet Schiele, and Liwei Wang. DSVT: Dy-
namic Sparse Voxel Transformer with Rotated Sets. In CVPR,
2023. 5

[38] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang
Chen, and Yibo Zhu. Bolt: Bridging the Gap between Auto-
tuners and Hardware-native Performance. In MLSys, 2022.
6

[39] Yan Yan. SpConv. https://github.com/traveller59/
spconv, 2022. 1, 2, 3, 4, 5

[40] Yan Yan, Yuxing Mao, and Bo Li. SECOND: Sparsely Em-
bedded Convolutional Detection. Sensors, 2018. 1, 2, 3, 4, 5,
6

[41] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3DSSD:
Point-Based 3D Single Stage Object Detector. CVPR, 2020.
2

[42] Dongqiangzi Ye, Weijia Chen, Zixiang Zhou, Yufei Xie, Yu
Wang, Panqu Wang, and Hassan Foroosh. LidarMultiNet:
Unifying LiDAR Semantic Segmentation, 3D Object De-
tection, and Panoptic Segmentation in a Single Multi-task
Network. arXiv, 2022. 1

[43] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis
Ceze. SparseTIR: Composable Abstractions for Sparse Com-
pilation in Deep Learning. In ASPLOS, 2023. 6

[44] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-
based 3D Object Detection and Tracking. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2021. 1, 2, 5

[45] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen,
Joshua Fromm, Yizhi Liu, Yida Wang, Luis Ceze, Tianqi
Chen, and Gennady Pekhimenko. DietCode: Automatic Op-
timization for Dynamic Tensor Programs. In MLSys, 2022.
6

[46] Zixiang Zhou, Xiangchen Zhao, Yu Wang, Panqu Wang, and
Hassan Foroosh. CenterFormer: Center-based Transformer
for 3D Object Detection. In ECCV, 2022. 1

209

