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Abstract

Sensor fusion of camera-based sensors and LiDAR is
widely used in autonomous systems with the premise of in-
creased robustness. Contrarily, due to their overlapping
functional principles, they also share many risk factors that
may result in degraded operation. This work applies the
risk analysis method Hazard and Operability study (HA-
ZOP) to LiDAR sensors and connects it with an existing
camera-based HAZOP. This systematic approach leads to
a structured listing of potential sources of data quality re-
duction in LiDAR data. Many risk factors identified for
camera-based systems (e.g. transparency or reflections) can
be correlated to degradation in the corresponding LiDAR
data. To validate our findings, the public dataset A2D2
is analyzed for such co-occurring camera-LiDAR risk fac-
tors. Additionally, experiments under controlled laboratory
conditions are performed to quantify the impact of various
identified risks. Our HAZOP results are released publicly
and are intended to improve the design and usage of sen-
sor systems as well as training and test datasets for safer
autonomous systems.

1. Introduction

Autonomous driving systems rely on camera data for de-
tection, navigation, and other safety-relevant tasks. An on-
going discussion is the benefit of additional sensor modali-
ties to increase robustness and prevent dangerous situations
due to corrupted camera data. LiDAR sensors are gaining
popularity as they can provide reliable depth data in harsh
conditions. These systems measure the time of flight by
emitting a laser pulse and detecting its reflection. The cor-
respondence problem is solved by emitter beam encoders.
Distances can be calculated from the measured time which
is then aggregated into 3D point clouds. Both cameras and
LiDAR sensors share many similarities as both rely on light
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and interactions of objects with light. This poses a diffi-
cult question: are LiDAR sensors susceptible to the same
influences which may already corrupt camera data? If so,
then simply adding an additional LiDAR sensor to increase
robustness of a computer vision task might not work as
planned.

While several models for data reconstruction, object de-
tection, object tracking and precision positioning using Li-
DAR data were presented in last years [7, 21, 27, 35, 37–
39, 41], little work has been dedicated to analyzing the risk
factors and their impact on the acquired data.

This work shows a systematic approach toward identify-
ing potential performance-reducing conditions (called haz-
ards) which may impact both camera and LiDAR output
quality at the same time. Risk factors for LiDAR sensors
used for autonomous driving are analyzed by applying the
well-established risk analysis method HAZOP [20] to Li-
DAR sensors and connecting it with an existing camera-
based CV-HAZOP [44]. In the context of this document,
risks and hazards are to be understood as in ISO 21448:2022
Safety of intended functionality [17], as insufficiencies of
the performance of electronic elements in the system.

Section 2 revisits previous works regarding LiDAR
data quality and joint autonomous driving LiDAR/Camera
datasets. The main contributions of this work (summarized
in Section 7) are:

• A novel model of a generic LiDAR system (Section 3),

Figure 1. LiDAR-HAZOP generic system model. Boxes repre-
sent locations, solid lines signal/noise transfer by light, and dashed
lines transfer by digital data. Bold font indicates change compared
to the existing CV-HAZOP model.
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• The first published HAZOP analysis including LiDAR
sensor (Section 4) resulting in a list of 136 combined
camera and LiDAR hazards.

• Two independent LiDAR hazards evaluation methods:
First, by analyzing the A2D2 dataset for instances
where both camera and LIDAR data fail (Section 5)
and second, by conducting controlled laboratory ex-
periments testing for specific hazards with quantifiable
impact (Section 6).

Figure 2. Examples from A2D2 data [12]. Top: frame
20181016082154 with strong overexposure on left building, Mid-
dle: frame 20181204135952 where fog blocks most of the point
cloud, Bottom: frame 20180823750 with low albedo traffic signs.
Each example shows a camera image with LiDAR depth superim-
posed and the top view of the corresponding point cloud.

2. State-of-the-Art
LiDAR sensors have seen a rise in popularity in the field

of autonomous driving, due to lower prices, power con-
sumption, compact designs, and improved data quality.

Amann et al. [1] pointed out that the main sources of
inaccuracy in laser range finders are noise-generated tim-
ing jitter, speckle noise, drift, non-linearity, and timing er-
rors. Lichti et al. [23, 24] list typical mechanical, elec-
trical, and calibration errors for terrestrial laser scanners.
Yang and Wang [42] addressed the problem of mirror reflec-
tion using LiDAR information and they summarised how
surface properties affect the amount of light reflected, ab-
sorbed, and transmitted. Petit and Shladover [31] analyzed
the threats on autonomous vehicles and described possible

attacks as well as relevant security hazards for autonomous
fleets. Using 3D LiDAR data, Rachman presented a frame-
work for multi-object detection and multi-object tracking
on urban environments [34]. Goodin et al. [14] developed
a model for the performance degradation of LiDAR sen-
sors under rain conditions in ADAS applications. Li and
Ibanez-Guzman [22] reviewed the SotA of automotive Li-
DAR technologies and related algorithms. Henley et al. [15]
discuss multi-beam LiDAR to handle specular surfaces.

Yulong et al. [5] specialize in adversarial sensor attacks
with specialized signal spoofing. Their recent work [4] in-
cludes an overview of potentially malicious attacks against
LiDAR sensors. They used a custom-made photodiode re-
ceiver with a delay circuit and attack laser to replay the orig-
inal emitter signal and thus confuse LiDAR systems result-
ing in artificial points in the 3D data. In a second setup,
signals with an intensity below the minimum operational
threshold are spoofed, so that they get filtered out and create
deliberate gaps in the point cloud. Their work is investigat-
ing potential security risks deliberately created by malicious
attackers, while the hazard analysis in this work focuses on
safety hazards during regular operation.

CV-HAZOP [44, 45] applies HAZOP (Hazard and Op-
erability Analysis) [20], a procedure devised by the safety
community to validate complex systems, to camera-based
sensors. It is designed to systematically search and identify
difficult, performance-decreasing situations and aspects.
The main steps of the risk analysis are: (i) model the system,
(ii) partition the model into subcomponents (i.e. locations),
(iii) find appropriate parameters for each location which
describe its configuration, (iv) define useful guide words,
(v) try to find meanings for each guide word/parameter
combination, and derive consequences as well as hazards
from each meaning. It provides a public referenceable
list [10] of entries representing visually challenging hazards
applicable to computer vision tasks.

Multiple datasets were released to the scientific commu-
nity in last years containing both camera and LiDAR data
intended for autonomous vehicles [3,6, 8, 11, 12,16, 19, 28–
30, 32, 33, 36, 40]1. Section 5 is evaluating potential perfor-
mance degradation affecting both camera and LiDAR data
from the Audi Autonomous Driving Dataset (A2D2) [12].
This was chosen as it includes visually challenging situa-
tions with diverse scenery and weather conditions (exam-
ples in Figure 2).

This paper differs from the aforementioned work by an-
alyzing safety risk factors of LiDAR sensors, applying the
risk analysis HAZOP [20] to LiDAR sensors, and connect-
ing it with an existing camera-based HAZOP [44]. To the
best knowledge of the authors, there is no published work
considering a LiDAR system as a whole identifying the
risks on a generic level.

1See supplemental for a detailed specification survey on these datasets
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3. Model

The foundation for the following risk analysis is a model
of the system to be analyzed. The generic model intro-
duced in [44] is used as a template for the LiDAR-HAZOP.
Two changes transform the generic CV-HAZOP model into
a generic LiDAR model (depicted in Figure 1):

• New location Emitter: The laser emitter is an im-
portant component in every LiDAR sensor. The CV-
HAZOP’s Light Sources (L.S.) location is split into two
locations for the LiDAR-HAZOP: Light Sources and
Emitter. CV-HAZOP L.S. entries refer to both pas-
sive (e.g. sun, street lights) and active light sources
(e.g. projectors, laser lines). Thus a mapping of either
L.S. or Emitter can be easily achieved: passive L.S. en-
tries map to the LiDAR-HAZOP L.S. location, active
L.S. entries to the Emitter location. Both new locations
are described using the parameters of the same original
CV-HAZOP L.S. location.

• Registration parameters: Registration of single dis-
tance measurements into a coherent coordinate system
forms an important aspect of all LiDAR systems. Two
new parameters are added to the receiver location2: lo-
cal and global registration.

The local registration joins individual distance mea-
surements of one laser sweep resulting in a sensor co-
ordinate system. This is typically done using internal
signals (e.g. time-based and angle encoders) and is
shared between encoders on the emitter and receiver
end. Emitter parts that help local registration are still
represented at the Emitter location to improve func-
tional hierarchy within the risk analysis.

The global registration joins multiple sweeps into one
global coordinate system. It typically uses inputs from
external forces and signals (e.g. IMU, GNSS).

All remaining locations and parameters of the original
CV-HAZOP are reused in the LiDAR-HAZOP. All existing
CV-HAZOP entries can be mapped to the LiDAR-HAZOP
hierarchy and vice-versa (excluding Registration parame-
ters). This parity is a crucial feature to allow reuse and
cross-references between both risk analyses.

4. Risk Analysis

The execution of the LiDAR HAZOP risk analysis
follows the steps of CV-HAZOP: experts interpret each
parameter/guide-word combination to assign meaning in
the context of LiDAR data generation.

2The CV-HAZOP location Observer is named Receiver for easier read-
ability.

The existing stereo vision HAZOP result list [43] is used
as a baseline due to the likeliness of their output data: stereo
vision creates depth maps and LiDAR point clouds. The
camera-based HAZOP entries are used as an additional in-
spiration to identify potentially connected hazards for Li-
DAR data.

LiDAR hazards identified by individual experts are col-
lected and discussed to create a joint uniform result. In total
five experts created a result list with 136 unique entries for
LIDAR hazards, each linked to a pre-existing stereo vision
hazard. Table 1 shows an exemplary reduced excerpt of the
result list3.

5. Dataset Evaluation
This section showcases a practical application using

LiDAR-HAZOP entries to find critical cases. The exist-
ing dataset A2D2 containing automotive scenes with both
camera and LiDAR data is examined in a qualitative analy-
sis. Frames containing a visual hazard (i.e. safety-relevant
degradation of camera images) are detected using classifier
networks. For each identified frame the corresponding point
cloud is manually checked for signs of degradation in the
LiDAR data. This should highlight cases where both sensor
modalities fail. The same procedure can be applied to other
existing datasets or during the creation of new datasets.

5.1. Visual Hazard Detection

Automatic visual hazard detection based on image clas-
sifiers allows for a quick reduction of potential hazard
frames [46]. The existing classifiers are based on the Wild-
dash 2 dataset hazard labels and are identical to the ones
presented in the dataset paper. From these ten hazard de-
tectors in [46], only some are applicable for the mixed-data
analysis on A2D2. The following hazards have been disre-
garded:

• image blur, compression artifacts, lens distortion, and
interior reflections (screen) are characteristics of the
camera sensor itself (or the mounting position thereof).

• motion blur is characteristic of moving objects and ar-
tifacts associated with registration. Both factors are
relevant and significantly reduce the quality and use-
fulness of the point cloud data in the analyzed datasets
in basically every frame (see subsection 5.2). A frame-
by-frame analysis is thus not necessary.

• road coverage and intra-class variations are relevant
for specific semantic scene understanding. A similar
connected case for point cloud data is possible but re-
quires out-of-distribution examples both in image and
3D data at the same time (which are missing in A2D2).

3See supplemental for the full list
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Table 1. Examples from LiDAR HAZOP shortened for brevity. HID: hazard identifier, GW: guide word

HID Location GW Parameter Stereo Entry LiDAR Entry

125 Light
Sources

More Intensity Directly lit object is overexposed Bright light source saturates sensor, sig-
nal is lost.

e141 Emitter Less Beam Only a small part of the scene is suffi-
ciently lit.

Emitter fingers are too far apart and
therefore missing crucial details.

449 Object Less Texture Two objects on epipolar lines have very
little texture thus allowing a mismatch

Signal is canceled by an object’s surface
(e.g. Helmholtz resonator)

476 Object No Reflectance Object appears to have neither texture
nor shading due to its low albedo

Object with very low albedo is not re-
turning signal becoming invisible

478 Object More Reflectance Object has shiny material that creates
mirror-like reflections

Mirroring parts of an object creates dis-
torted response.

489 Object Where
else

Reflectance Not applicable Retro-reflectors create glare effect
which surrounds object with copies.

502 Object More Transparency Highly transparent object is invisible Scenery behind transparent object is
measured

729 Objects Part
of

Transparency Object has transparent parts showing a
different object

Transparent parts of object is mixed
with background object

883 Reciever
Optics

Part
of

Viewing po-
sition

Near objects are out of focus Object is missed due to neglecting the
minimal working distance

This leaves three potential combined hazard categories:
overexposure, particles, and underexposure. The hazard de-
tector is applied on the 41k A2D2 frames with semantic
ground truth and reduces the manual search space drasti-
cally: only 3455 frames have to be checked (see Table 2).

5.2. Typical Degradation of LiDAR Data

The A2D2 dataset supplies camera images and a consol-
idated and cleaned point cloud for the respective moment
the camera image was taken. Sensor sweeps have to be in-
tegrated over time. Therefore, ego-motion as well as move-
ment of traffic participants potentially introduce errors. Be-
fore publishing A2D2, its creators performed filter opera-
tions and pre-processing steps to the raw data. During anno-
tation, these additional sources of error had to be accounted
for by checking previous and next frames and observing the
quality of data surrounding the potential hazard location.
Inconclusive frames were discussed by multiple annotators
and among disagreement, the severity of the potential haz-
ard was lowered.

5.3. Evaluation

A simple GUI is used to show a camera image with su-
perimposed LiDAR data and additionally a 3D point cloud
viewer of the same scene. Each of the 3455 frames that con-
tain automatically detected potential hazards is then manu-

ally checked for degradation visible in the point cloud (ei-
ther missing data or false phantom data). This results in one
of four possible labels: no visual hazard present in camera
data (detector failed); LiDAR severity none (no degrada-
tion); low (potential degradation but small scope/impact);
high (strong degradation). Figure 2 shows examples of
frames annotated with high severity for each hazard. Ta-
ble 2 summarizes the results for all three hazards. In gen-
eral, the visual hazard detection worked very well creating
only minimal additional overhead due to false positives. A
large portion of camera overexposure hazards are caused
by bright (overexposed) sky without the sun in direct view.
The affected overexposed pixels can thus not contribute to
the point cloud. This explains the large number of over-
exposure frames with no LiDAR data corruption (severity
none). Many examples for particles manifested due to water
spray kicked up by cars driving on wet highway roads. The
point clouds are missing data for both the water, the road,
and vehicles. Thus reducing the quality of the full scene
and resulting in a fair number of high severity annotations.
A2D2 only contains well-lit daylight scenes so underexpo-
sure camera hazards are only caused by dark objects. Most
are moving cars where data quality is hard to attribute (see
5.2). Such unclear entries were annotated with low sever-
ity. However, multiple static dark objects (e.g. black signs)
creating gaps in the LiDAR data could also be identified.
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Table 2. Results of joint hazard analysis for A2D2. Frames pre-
selected using automatic hazard detection in the camera image.
Severity is manually annotated per frame and hazard.

Hazard Total No Vis. None Low High

overexp. 2691 1 2462 224 4

particles 639 16 197 245 181

underexp. 125 31 42 38 14

6. Experiments

In addition to the LiDAR-HAZOP and its evaluation on
A2D2, a subset of hazards is selected for replication in a
small-scale, indoor laboratory setup. Subsequently, a quan-
titative analysis is performed, with the aim of determining
the effect of the selected hazards on the LiDAR measure-
ment quality. To this end, the corresponding point cloud
recordings are evaluated using four different performance
metrics.

6.1. Selection of hazards

In a laboratory environment, several test objects were se-
lected (see Figure 3), each designed to induce at least one
of the selected hazards of Table 1:

• Reflective material: HID 478 and 489 are repli-
cated using several highly reflective materials includ-
ing retro-reflective foils (b), cat-eye reflectors (b) and
a reflective white box made of PVC (c).

• Low albedo material: Surfaces with very low albedo,
i.e. black, matte objects, have little to no reflectance.
To assess this hazardous effect (HID 476) on LiDAR
measurements, several low albedo surfaces were pre-
pared: Black 3.0 paint [2] (d), regular black acrylic
spray (d), and also a foil (b).

• Transparent material: A variety of documented haz-
ards is related to transparent objects (e.g.: HID 502,
HID 729) which are considered to cause confusion in
distance measurements. To this end, a cylindrical glass
carafe (e), as well as an acrylic glass object (f), are
used.

• Overexposure: The last investigated hazard (HID 125)
concerns the overexposure of the scene by an addi-
tional light source. Thus, an array of IR light sources
(g) were added to the scene. Commercially only
850nm and 940nm lamps are available so a mixture
was used to potentially affect the LiDAR’s 905nm sig-
nal (see Figure 8).

6.2. Experimental setup

The hardware setup for the laboratory experiments is
depicted in Figure 6. It comprises a low-cost automotive
LiDAR Livox Mid-100 (released 2019) which is specif-
ically designed for applications like autonomous driving
and robot navigation with a maximum range of 260m. The
Mid-100 consists of three Mid-40 elements, but for the
experiments, only the central sensor is used. The detailed
technical specifications can be found in [25]. Additionally,
an industrial ethernet camera is mounted on the test rig to
color the LiDAR point cloud with RGB data. Both sensors
are extrinsically calibrated using the approach presented
in [9]. The setup is completed by a high-precision linear
stage, which is used for accurate movement of the sensor
setup in the direction of the test object. The LiDAR-to-
object distance was empirically set around 2.5m, after
an initial investigation of the minimum working distance
of the sensor. The specified distance according to the
manual is 1m, however, our experiments show significant
artifacts up to a distance of 2.2m (see Figure 5). To avoid
background thermal or optical noise caused by artificial
light or incident sunlight, the measurements were carried
out in a dark room, additionally covered with thermal
curtains. Moreover, the test objects were placed on a table
wrapped with a matte tablecloth, to reduce disturbances
caused by reflections.

6.3. Methodology

The Livox Mid-40 has already been investigated in re-
cent research with a focus on temporal stability in [18] and
accuracy in general in [13]. In comparison, our work is
not a designated analysis of the limits of a specific LiDAR
model but aims to identify hazards to LiDAR systems in
general. The term system hereby refers to a grey box model
of all the hardware as well as the software components, as it
is not possible, with reasonable effort, to exactly determine
the influence of every sub-component for itself.
Each HAZOP scenario was recorded as a point cloud, uti-
lizing the Livox ROS driver from [26]. The integration time
for each measurement was set to 8 seconds. Thereby, it was
ensured that despite the Lissajous-like scanning pattern of
the Mid-40 (described in [25]), every region of the test ob-
ject was represented by a sufficient amount of points for the
following processing steps. Moreover, the resulting point
cloud was uniformly resampled using a voxel grid represen-
tation with a voxel size of 2mm, with the aim of eliminating
the angular dependency of the point density caused by the
scanning pattern.
The concept of the analysis is based on three regions of in-
terest (ROI). Figure 7 shows the selected ROIs for an ex-
emplary scenario. The red area represents the actual ob-
ject surface, represented by the plane P , where the points
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Figure 3. Selection of test objects prepared for LiDAR-HAZOP.
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Figure 4. Visualization of results with visible degradation of point cloud data. Two images per visualization: front view LiDAR reflectance,
camera data mapped to point cloud (T)op or (S)ide view. Upper corner shows experiment ID & test object (see Table 3 and Figure 3).

would lie in an ideal scanning scenario. The green cuboid
Vt is formed to include all points that can be related to a
measurement in the object’s direction. These include e.g.:
points that lie behind the measured surface in the case of
transparent objects. Finally, the blue volume Vi contains
the surface inlier points and is defined as

Vi = {p|p ∈ Vt ∧ dp ≤ 4 ∗ stdref}, (1)

where dp is the distance of point p to plane P distances and
stdref represents their standard deviation.

2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m2.3m 2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m2.2m 2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m2.1m 2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m2.0m 1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m1.9m 1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m1.8m

Figure 5. Analysis of Mid-40 reasonable minimum working dis-
tance. Artifacts on the flat surface occur for distances ≤ 2.2m.

6.4. Selection of performance metrics

To enable both qualitative and quantitative evaluation of
the investigated hazards, four performance metrics are se-
lected. Absolute metrics are not expressive for comparing
the results among the test objects due to differences in size
or shape. To this end, a surface with supposedly no haz-

Figure 6. Laboratory setup for LiDAR-HAZOP experiments.
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Figure 7. ROIs for the test scenarios: The object surface plane P
(red), the inlier bounding box Vi (blue) and a volume for points
that lie in the direction of the test object Vt (green).

ardous effects (see Figure 3 (a)) is used as a reference for
normalizing the results. The following indicators are se-
lected for the analysis:

• Normalized Point Density: To assess the influence of
a certain hazard on the point density, the number of
points n within a specified volume Vt (green in Fig-
ure 7) in the test scenario is related to a volume of the
same size in the reference scenario nref . It is calcu-
lated as

ρ̂ =
n/Vt

nref/Vt
=

n

nref
. (2)

• Outlier Ratio: is constituted by the number of points
that lie in Vt but not in Vi, divided by the total amount
of points in Vt.

• Offset: the average distance of points inside Vt with
respect to the surface plane P .

• Standard Deviation of the point-to-plane distance of
object points around the object surface P

6.5. Results

Hazards selected in Section 6.1 are now evaluated
using the proposed metrics. Figure 4 visualizes the results
summarized in Table 3. Multiple scenarios with reflective
material are evaluated for HID 478/489. Retro-reflectors
show problematic cavities at an incident angle of 90◦ (ID1)
for all three segments and a low point density value of
0.1. The 45◦ setup (ID2) results in a much more dense
point cloud but pose a significant offset of 1.5cm and an
outlier ratio of 75%. The reflective PVC box (ID3) also
shows distinct holes in the measured surface, resulting in a
normalized point density of 0.7.
Scenarios ID4/ID5 represent a composition of both re-
flective and transparent surfaces (discussed in HID 729).

Both glass and acrylic glass have optical characteristics
that lead to light passing through as well as being re-
flected at a certain angle. The results for the glass carafe
(ID4) are comprised of a combination of wrong distance
measurements especially at the round edges as well as mea-
surements of the wall that lies behind the actual test object,
as the offset of 1.7m indicates. The reflected intensity is
also noticeably lower compared to the neighboring regions,
which can be attributed to the refractive characteristics of
the glass. The same applies to the results of the empty
acrylic glass stand (ID5). Compared to the accurately
detected acrylic glass stand containing a sheet of paper
(ID6), most of the surface is not detected and only some
parts of the wall behind are registered. This suggests that
the combination of multiple layers of acrylic glass and the
corresponding sequence of refraction and reflection of light
causes the problematic measurements.
The underexposure scenarios comprising low albedo sur-
faces, described in HID 476, are investigated in scenarios
with ID7-10. By mere visual analysis, the surfaces appear
very similar, however, the differences in reflected intensity
is quite distinct. In addition, the measured distances vary
between the surfaces. In the case of the black paint (ID7),
which is the bottom left surface, the offset is around 2.2cm,
which exceeds the specified range precision of the sensor
model. In comparison, the results for the black spray (ID8)
at an orthogonal incident angle are very similar to the
reference surface. Nevertheless, at an incident angle of 45
degrees, the outlier ratio of 53% and standard deviation
of 2.2cm imply rather problematic measurements, which
indicates that the surface (ID10) has a specular component.
This is not the case for the black paint (ID9), which
underlines the diffuse properties of the material.
The last investigated hazard is overexposure caused by
background/additional light sources (HID 125). In order
to verify our test setup, the power spectral density of the
LiDAR’s emitter and the IR light source array (f) are
measured using a spectrometer (see Figure 8). This shows
that the array can deliver more than four times the power of
the LiDAR emitter at 905nm. Despite that, in the conducted
experiments (ID11), the point cloud was not noticeably
influenced by lighting the test object (a) with the array. As
a follow-up experiment (ID12), the array was positioned
directly opposite the LiDAR. Here, gaps appear in the point
cloud data and reflectivity is lowered as soon as the array
is activated (see Figure 9). For evaluations, two reference
planes are chosen: one plane for the wooden back-plate
(12A) and one plane encompassing the infrared LED
elements (12B). For both, (12A) and (12B) the regions
in close proximity to the IR lamps of the array are barely
reconstructed, whereas the background gets influenced to a
smaller extent.
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Table 3. Results for laboratory LiDAR-HAZOP experiments. Bold data indicate insufficient or hazardous performance. The corresponding
thresholds for acceptable performance, shown in the table header, are either empirically set or derived from the sensor specifications.

ID HID Description Incident
angle [deg]

Norm. point
density (>0.9)

Outlier ra-
tio (<0.1)

Offset [m]
(<0.01)

Std. dev. [m]
(<0.01)

1 489 Retro-reflectors 90.0 0.10 0.12 -0.003 0.007

2 489 Retro-reflectors 45.0 0.89 0.75 -0.015 0.005

3 478 Reflective box 90.0 0.70 0.01 -0.002 0.004

4 502 Round glass pitcher 90.0 0.23 0.99 1.699 0.639

5 502 Empty Plexiglass stand 74.5 0.05 1.00 1.849 0.455

6 729 Plexiglass stand 74.5 1.00 0.00 0.001 0.012

7 476 Black paint 90.0 1.00 0.91 -0.022 0.007

8 476 Black spray 90.0 1.00 0.00 0.002 0.003

9 476 Black paint 45.0 1.00 0.43 -0.010 0.007

10 476 Black spray 45.0 1.00 0.53 0.005 0.022

11 125 Overexposure 90.0 1.00 0.00 0.000 0.003

12A 125 Overexposure direct 0.91 0.11 0.001 0.007

12B 125 Overexposure direct 0.57 0.47 -0.005 0.022
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Figure 8. Spectrometer data for overexposure experiments show-
ing Power Spectral Density (PSD) per wavelength.

ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g)ID12(g) offoffoffoffoffoffoffoffoffoffoffoffoffoffoffoffoff ononononononononononononononononon offoffoffoffoffoffoffoffoffoffoffoffoffoffoffoffoff ononononononononononononononononon

Figure 9. Visualization of results for overexposure experiment
(ID12A&B). Camera image with infrared light sources (test ob-
ject (f)) turned off/on and corresponding point cloud data. Red
indicates high- whereas blue indicates low reflectivity. The left-
most visualization shows clear degradation of 3D data emanating
outwards from the individual infrared light sources.

7. Conclusion

This work represents the first joint LiDAR and camera
risk analysis identifying situations and aspects capable of
degrading data from both sensors at the same time. The
existing CV-HAZOP is used as a blueprint for the novel Li-
DAR HAZOP model and inspiration for the systematic risk
analysis. This process results in 136 novel hazard entries.
The A2D2 dataset is used to evaluate the identified risks in
an autonomous driving scenario. First, the camera images
are classified by a hazard detector to identify potential haz-
ard frames. Then, experts categorize associated LiDAR data
quality based on the presence of hazards. This process iden-
tified multiple scenes for each of the three identified hazards
in A2D2 data. Additionally, laboratory experiments are de-
signed to replicate hazards out of LiDAR HAZOP entries.
The measured point cloud data clearly shows degradation of
data quality in presence of the described hazards. Both eval-
uations show that the theoretic hazards identified during the
risk analysis indeed reduce data quality in real-world situa-
tions. Autonomous systems that rely on camera data cannot
expect to solve robustness issues completely just by adding
LiDAR sensors to the mix. The publicly available LiDAR
HAZOP list allows for quick checking of common sources
affecting the two sensor modalities, both during system de-
sign, data-based training, and evaluations.
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