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Abstract

Regular object detection methods output rectangle bound-

ing boxes, which are unable to accurately describe the ac-

tual object shapes. Instance segmentation methods output

pixel-level labels, which are computationally expensive for

real-time applications. Therefore, a polygon representation

is needed to achieve precise shape alignment, while retain-

ing low computation cost. We develop a novel Deformable

Polar Polygon Object Detection method (DPPD) to detect

objects in polygon shapes. In particular, our network pre-

dicts, for each object, a sparse set of flexible vertices to

construct the polygon, where each vertex is represented by

a pair of angle and distance in the Polar coordinate system.

To enable training, both ground truth and predicted poly-

gons are densely resampled to have the same number of ver-

tices with equal-spaced raypoints. The resampling operation

is fully differentable, allowing gradient back-propagation.

Sparse polygon predicton ensures high-speed runtime infer-

ence while dense resampling allows the network to learn

object shapes with high precision. The polygon detection

head is established on top of an anchor-free and NMS-free

network architecture. DPPD has been demonstrated suc-

cessfully in various object detection tasks for autonomous

driving such as traffic-sign, crosswalk, vehicle and pedes-

trian objects.

1. Introduction

Object detection, as one of the most popular computer

vision tasks, typically predicts objects in rectangle bounding

boxes. Boxes are able to describe locations and sizes, but

not object shapes. Fig. 1 shows an example of crosswalk

detection for autonomous driving, where precise crosswalk

regions are needed. This can be achieved by an instance

segmentation method which outputs a pixel-wise mask per

object. However, pixel-level post-processing is computation-

ally expensive, thus not suitable for real-time applications.

Alternatively, a method that detects objects as polygons

is a better choice because 1) polygons can capture object

shapes with high accuracy, and 2) a detection network can

Figure 1. For crosswalk detection, polygon shapes are in green;

bounding boxes are in red. It is clear that bounding boxes are unable

to represent the crosswalk regions well as compared to polygons.

Figure 2. Example of approximating ground truth polygons (green)

using polar polygons (red) with fixed angular bins. Notice that 64

rays is still insufficient to capture the actual crosswalk regions.

be run much faster than a segmentation network plus post-

processing. Unfortunately, polygon detection is more com-

plex than box detection in the variant numbers of vertices

of arbitrary shapes. This creates difficulties when training a

network to predict a fixed number of vertices. A common

solution (e.g., as done in previous methods such as Polar-

Mask [25]) is that ground truth polygons are represented in

Polar coordinates and approximated by a vector of distance

values and a (fixed) vector of evenly-spacing angular values.

The task becomes training a network to regress, for each ob-

ject, a radius vector, together with the predefined uniformly

emitted rays decoded back to polygon. A clear limitation of

this method is that the quality of ground truth labels (and

thus the quality of prediction) is bounded by the number of

rays. Fig 2 shows that even with 64 rays, crosswalk regions

are not well captured. Increasing the numbers of rays will

increase the computational cost significantly.

In this work, we propose a novel Deformable Polar Poly-

gon Object Detection method, namely DPPD. Unlike Polar-
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Figure 3. An illustration of the deformable polygon shape learning process. The target shape is in blue, and the predicted shape with 24

vertices is in red. From iteration step 1 to 200 to 500, the predicted shape is converging close to the target.

Mask, our network predicts a small set of flexible polygon

vertices directly, where each vertex has two degrees of free-

dom in Polar coordinates, i.e., radius and angle. Intuitively,

starting from an initialized polygon, the network will deform

it until it aligns well with the ground truth polygon (see Fig.

3). A question arises is how to compare and compute loss be-

tween ground truth and prediction where they are different in

the number of vertices. Our idea is to densely resample both

ground truth and prediction with a certain number of rays.

We could resample as many rays as the memory allows. It’s

worth emphasizing that the resampling process only happens

at the loss computation, thus does not affect the inference

runtime, and that the resampling operation is differentiable,

allowing gradient based optimization.

Note that DPPD is designed for polygon shape regression,

and it is applicable for any successful object detection archi-

tecture. In this work, we establish a high-speed, single-shot,

anchor-free, NMS-free detection network structure based on

set prediction [20, 27] and build DPPD on top of it. This

simple architecture escalates both training effectiveness and

inference efficiency.

The main contributions of this work can be summarized

as follows: 1) We propose a novel polygon detection method

to detect objects with arbitrary shapes. Our method avoids

a trade-off decision between network computation cost and

polygon accuracy as in PolarMask; 2) a method to decode a

regression vector into a valid polygon (e.g., vertices are in

counter-clockwise order), a batching processing algorithm to

resample sparse polygons to dense polygons with a minimum

cost; 3) Inspired by the latest object detection development,

we design a highly efficient single-stage, anchor-free and

NMS-free polygon detection architecture; 4) Our proposed

polygon detector surpasses previous polygon detection meth-

ods in both speed and accuracy when tested on autonomous

driving perception tasks such as crosswalk, road sign, vehicle

and pedestrian detection.

2. Related Work

Object Detection. Object detection has been evoluted

from two-stage or one-stage anchor-based detectors [15,

16, 19], to anchor-free and NMS-free detectors [6, 23, 28],

transformer-based detectors [3], and other variations [1,9,14,

17, 18]. In general, an object detector includes three major

components: a backbone of series of convolutional blocks, a

neck of multi-resolution feature pyramids [13], and a de-

tection head. The detection head is usually divided into

a classification head and a bounding box regression head.

Our detection method follows the anchor-free, NMS-free ap-

proach, but the box regression head is replaced by a polygon

regression head to predict object locations and boundaries.

Instance Segmentation. Instance segmentation produces

pixel-level class-ids and object-ids. Mask R-CNN [8] intro-

duces a detect-then-segment approach to breakdown this

problem into two sequential sub-tasks. To overcome the

expensive two-stage processing, YOLOACT [2] and its ex-

tended methods [4, 22, 24] construct a parallel assembling

framework, by generating a set of prototype masks and pre-

dicting per-instance mask coefficients. However, regardless

of model variations, the per-pixel segmentation mask output

is always a huge burden for downstream real-time applica-

tions.

Polygon Detection. A series of work, such as ExtremeNet

[29], ESE-Seg [26], PolarMask [25], and FourierNet [21],

try to parameterize the contour of an object mask into fixed-

length coefficients, given different decomposition bases.

These methods predict the center of each object and the

contour shape with respect to that center. PolarMask is the

one closest to our method, which is built on top of FCOS [23]

and utilizes depth-variant rays at constant angle intervals.

Similarly, PolyYOLO [10] adopts the YOLOv3 [18] architec-

ture, and modifies the perpendicular grid into circular sectors

to detect polar coordinates of polygon vertices. Each circular

sector is responsible to produce 1 or 0 vertex. The draw-

back of these methods is that the shape alignment quality is

heavily bottlenecked by the pre-defined ray bases. Increas-

ing the number of rays is possible to improve the quality,

but meanwhile downgrading the speed performance. In con-

trast, our method is less dependent on the number of vertices.

We found that as small as 12 vertices is sufficient to model

variety of object shapes.
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Figure 4. Overall network architecture and training pipeline. We establish a classification head and a regression head to generate N candidates.

The N candidates are matched with M groundtruths, resulting in M pairs of prediction-target assignments. Based on the assignment, we

compute positive classification and regression losses.

Active Contour Model (ACM). In the classical computer

vision area, the active contour model [11] has been used

to describe object shape boundaries. The main idea is to

minimize an dedicated internal and external energy functions.

The external term is to control the contour shape fitting, and

the internal term is to control the deformation continuity.

Our DPPD is inspired by the ACM. The training loss jointly

minimizes the shape fitting error between ground truth and

prediction polygons and polygon smoothness.

3. Method

In this section, we first introduce the overall set prediction

network architecture. We then describe the polygon detection

head. And lastly, we discuss the training strategies.

3.1. Object Detection as Set Prediction

We adopt an anchor-free and NMS-free set prediction

approach for our DPPD object detector due to its simplic-

ity and efficiency. The network predicts a set of N candi-

dates (N ≫ M number of ground truth objects). The N

candidates are matched with M ground truth labels using

a Hungarian matching algorithm, resulting in M pairs of

prediction-target assignments. Classification and regression

losses from these matches are computed to supervise the

training. For unmatched candidates, only classification loss

is computed.

Fig. 4 depicts the high-level network architecture and

training pipeline. Followed by the network backbone and

feature pyramid is a classification head and a regression head.

The regression head predicts polygon origins (i.e., object

center) and vertices (i.e., radial distance and polar angles).

One grid cell in the feature map is responsible for detecting

one polygon candidate.

3.2. Polygon Regression

3.2.1 Polar Representation

In the polar coordinates, each polygon is represented as one

origin (object center) and k pairs of radial distances and

polar angles. Distances and angles are defined w.r.t the ob-

ject center. The network will output a (2 + 2 ∗ k)-vector,

where 2 values are for the polygon origin and 2 ∗ k values

are for k vertices. The contouring vertices, in the polar rep-

resentation, are convenient to be organized a clockwise or

counterclockwise order.

3.2.2 Polygon Decoding

The decoding process parses a regression output vector

[f0, f1, ..., f2∗k+2] to the corresponding polygon origin co-

ordinates, radial distances, and polar angles, denoting as

[ox, oy, r0, ..., rk−1, a0, ..., ak−1].
Polygon origin In the fully convolutional set prediction

framework, every grid cell at the feature map yields a candi-

date. To get the accurate location, we predict offsets w.r.t. the

grid cell position. Formally, the polygon origin is decoded

as:
{

ox = gx + sx ∗ σ(f0)

oy = gy + sy ∗ σ(f1)
(1)

where (ox, oy) denote the polygon origin coordinates;

(gx, gy) denote the grid cell coordinates; (sx, sy) denote

the grid cell size; σ is a sigmoid activation function.

Radial distances The next k regression outputs

(f2, ..., fk+2) are dedicated for k radial distances. The de-

coding function is:

ri = µ ∗ efi , i ∈ [2, k + 2] (2)

where µ is a prior knowledge of the radius scale. We apply

an exponential activation to ensure the decoded radius is
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always positive.

Polar angles The last k output channels

(fk+2, ..., f2∗k+2) are responsible for the k polar an-

gles. We predict angle deltas between adjacent vertices, and

then decode using cumulative sum before normalizing them

into [0, 2π] range:

ai = 2π ∗

∑i

j=k+2
efj

∑2∗k+2

j=k+2
efj

, i ∈ [k + 2, 2 ∗ k + 2] (3)

It can be seen clearly that unlike the previous methods

such as PolarMask [25], which predefined polar angles (e.g.,

by shooting uniform rays from 0 to 360 degrees), our method

predicts both polar angles and radial distances. This allows

the network to deform the initial polygons as much as needed

to match the ground truth polygons. In contrast, previous

methods find difficulties to fit well the ground truth shapes

unless a dense number of rays (e.g., 360) is used.

Note that the angle decoder also differentiates DPPD

against Poly-YOLO [10]. Poly-YOLO splits the polar coor-

dinates into circular sectors where each sector is responsible

for either 1 (exist) or 0 (non-exist) vertex. This design is un-

able to discriminate clustered vertices that fall into the same

sector. Instead, DPPD predicts angle deltas, which could be

small and large to handle arbitrary intervals.

3.3. Training

3.3.1 Ground Truths

Objects are often annotated using polygons. However, there

is no consistent way to enforce all the objects having the

same number of vertices and vertex distributions along the

boundaries. Therefore, it is less reasonable to train a network

to predict polygons with a fixed number of vertices and by

directly comparing ground truth and predicted vertices as

often done in the box regression problem.

Instead, we propose a simple method to tackle this is-

sue, in which both ground truth and prediction polygons

are resampled to have the same number of points, namely

raypoints. Bear in mind that this resampling process only

happens during training, thus does not hinder inference la-

tency. This simple idea seems overlooked in the past mainly

because the resampling operation might be not efficient, and

not differentiable for SGD based training. Below we will

describe two resampling methods which are both efficient

and differentiable.

3.3.2 Polygon Resampling

Given a polygon with k vertices, we want to upsample it

with m (m > k) raypoints along equally distributed po-

lar angles. This resampling process is a geometry problem,

i.e., to find intersections between k boundary segments and

(a) Triangle approach. (b) Vector approach.

Figure 5. O is the polygon center, A and B are two adjacent vertices,

O⃗R is one ray emitted from O. The goal is to find the intersection

point P between the segment AB and ray O⃗R. Refer to Sec. 3.3.2

for detailed derivation.

m rays. To simplify the computation, we assume the poly-

gon is translated to its origin at (0, 0). In polar coordinates,

since rays are uniformly emitted with the same angle inter-

val, the resampling output only consists a m dimensional

radial distance vector [r0, r1, ..., rm−1]. We provide two ap-

proaches to tackle this problem, triangle approach and vector

approach.

Triangle Approach. In Fig. 5a, let A and B be two ad-

jacent vertices and O be the origin. The task is to find the

intersection point P between segment AB and ray O⃗R. The

norm | · | notation is used for the segment length. Deriving

from the triangle similarity between △ACP and △BDP :

w =
|AP |

|BP |
=

|AC|

|BD|
=

|OA| sin(α)

|OB| sin(β)
. (4)

we compute a length ratio w between |AP | and |AB|.
Then the point P coordinates are calculated as:

(Px, Py) = (
Ax + wBx

1 + w
,
Ay + wBy

1 + w
). (5)

The coordinates of O, A, B and their segment lengths are

known from the decoding outputs. O⃗R is one of the m equal-

spaced resampling rays. Given a list of polygon vertices with

their sorted polar angles, we can easily find, for each ray, a

pair of neighboring vertices A, B via linear search so that

the ray locates between O⃗A and O⃗B.

Vector Approach. In Fig. 5b, for each known segment

AB and ray O⃗R, let define the following 4 vectors:



















v⃗1 = (O⃗Rx, O⃗Ry)

v⃗2 = (Bx −Ax, By −Ay)

v⃗3 = (−O⃗Ry, O⃗Rx)

v⃗4 = (Ox −Ax, Oy −Ay)

(6)

Since P is the intersection point by O⃗R and AB, we
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formulate the vector representation of O⃗P and A⃗P :

{

O⃗P = O + t1v⃗1, t1 ∈ [0,∞)

A⃗P = A+ t2v⃗2, t2 ∈ [0, 1]
(7)

where t1 and t2 are the fractional scale of units along O⃗R

and A⃗B. Finding the intersection is to solve t1 and t2 from

Eq. (7). We constrain t1 ∈ [0,∞) to ensure P is along the

positive direction of ray O⃗R, and t2 ∈ [0, 1] to ensure P is

inside segment AB. The mathematical solution is:











t1 =
|v⃗2 × v⃗4|

v⃗2 · v⃗3

t2 =
v⃗4 · v⃗3
v⃗2 · v⃗3

(8)

where the operator · is the dot product and × is the cross

product. Suppose v⃗1 is decomposed into [v1x, v1y], combin-

ing Eq. (7), the coordinates of P is written as:

(Px, Py) = (Ox + t1v1x, Oy + t1v1y). (9)

Note that the triangle approach assumes vertices have

been ordered ascendingly. For predictions, we decode polar

angles in counter-clockwise order, which naturally satisfies

the assumption. However, for ground truth encoding, this is

not guaranteed for concave shapes. Therefore, the triangle

approach is only used for prediction decoding. On the other

hand, the vector approach has no requirements on the ver-

tex order, and it works for both convex and concave shapes.

However, the cross-product calculation expense much mem-

ory in the practical implementation, therefor vector approach

is only used for ground truth encoding.

3.3.3 Polygon Regression Losses

A common way to measure the loss between two shapes

is based on their intersection-over-union (IoU). For general

polygons, there is no exact closed-form solution. Fortunately,

with the polar representation and the above resampling strat-

egy, computing losses between ground truth and prediction

polygons becomes easier. Formally, the polygon shape re-

gression loss Lreg is a weighted sum of three components:

polygon origin loss Lo, polar IoU loss Liou and internal

smoothness loss Lsm:

Lreg = w1Lo + w2Liou + w3Lsm (10)

Polygon origin loss. The origin loss Lo measures the dif-

ference between two polygons’ centers. We employ smooth-

l1 loss (ls1) for the absolute distance error. Also the losses are

normalized by the ground truth size. Formally, let [x̂o, ŷo]

be the ground truth center, [ŵ, ĥ] be the polygon width and

height, [xo, yo] be the prediction center, the origin loss is

computed as:

Lo =
ls1(ox, ôx)

ŵ
+

ls1(oy, ôy)

ĥ
(11)

Polar IoU loss. The polar IoU loss Liou measures shape

difference between the two polygons regardless of their lo-

cations. Let [r̂0, r̂1, ..., r̂m−1] and [r0, r1, ..., rm−1] be the

ground truth and prediction radial distances respectively, the

polar IoU loss is computed as:

Liou = log

∑m−1

i=0
max(ri, r̂i)

∑m−1

i=0
min(ri, r̂i)

(12)

Smoothness loss. The smoothness loss is added to reduce

the shape oscillation, similar to the internal energy of the

classical active contour model [11]. Let [r0, r1, ..., rm−1] be

the prediction radial distances, d1r and d2r be the 1st and

2nd ordered differences, the smoothness loss is computed as:

Lsm =

∑m−1

i=1
d1ri

m− 1
+

∑m−1

i=1
d2ri

m− 1
(13)

4. Experiment

We conduct experiments using two datasets: our in-house

autonomous driving dataset, and the public Cityscapes [5]

dataset. Since one major application of the polygon detector

is for autonomous driving perception, we use our in-house

dataset for the primary investigation. We focus on road-sign

and crosswalk detections where accurate object boundaries

are important for subsequent tasks such as localization, sign

recognition. We examine the effectiveness of polygon detec-

tors against bounding box detectors, and thoroughly compare

DPPD with PolarMask [25] in terms of both accuracy and

speed performance. To further demonstrate the generic effec-

tiveness, we benchmark DPPD results on Cityscapes, which

covers more dynamic instances like vehicles and pedestrians.

We also explore ablation studies for the model design.

4.1. DPPD on Internal Datasets

The in-house dataset statistics for road sign and crosswalk

are summarized in Table 1, where all labels are given as

polygon vertices. In this experiment, we establish DPPD

polygon head on top of a FPN augmented AlexNet network

backbone. The number of channels for different CNN blocks

are 32, 128, 256, 512 respectively. The input image size is

960× 480. The feature maps at stride 8 and 32 are used for

the crosswalk and road-sign tasks separately.

4.1.1 Polygon vs Bounding Box

We first demonstrate the polygon detector is substitute for

the bounding box detector. Typically, road signs are detected
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Figure 6. Two examples to visualize bounding box (left) and DPPD polygon (right) detections on traffic-signs. The polygon detector is better

to capture the object shape.

Table 1. Number of instances for traffic-sign and crosswalk polygon

detection datasets.

Task Training Evaluation

Road sign 377.4K 39.6K

Crosswalk 260.2K 36.1K

as bounding boxes. To swap it with a polygon model, we

ensure that the new polygon model has non-negative effects

on both detection accuracy and inference latency.

In this experiment, we set the number of predictable ver-

tices k = 12, and the number of resampling rays m = 180.

To compare the polygon against the box model, we convert

polygons to their envelop bounding boxes, and evaluate both

detectors based on the box metrics. Results are listed in Ta-

ble 2. It shows that the polygon model is on-par with the box

model with a very slight regression, although the polygon

model was not trained to detect boxes. Nevertheless, the

polygon model produces tighter alignments to the objects,

which are qualitatively visualized in Fig. 6.

The speed performance is device-dependent. We measure

the runtime inference latency (in ms) when the model is

deployed to TensorRT and run in FP16 precision on two

hardware platforms: 2080 Titan GPU, and NVIDIA DRIVE

Orin chip. The polygon detector runs 0.09ms slower on

GPU, while 0.13ms faster on the chip. We consider the

inference time is comparable on both platforms. This is

expected because only the last regression layer is changed,

whereas the change of regression channels is minor w.r.t. the

total number of model parameters.

4.1.2 DPPD vs PolarMask

Next we emphasize the benefits of DPPD against the state-

of-the-art polygon detectors. We pick PolarMask as our

competitor, and use the crosswalk detection task for this

experiment. In DPPD, we set the number of prediction ver-

tices k = 36, and the number of resampling rays m = 360.

In PolarMask, we experimented different number of rays,

Table 2. Traffic-sign results. Box vs. polygon detector. Accuracy

metrics precision (P ), recall (R), F1-score (F1) are in percentages.

The speed is measured as latency times on Titan GPU and Orin

Chip devices, in ms.

Detector P R F1 GPU Chip

BBox 74.91 58.68 65.81 1.54 3.18

Polygon 74.54 57.31 64.80 1.63 3.05

Table 3. Crosswalk results. PolarMask vs. DPPD. The accuracy is

evaluated based on polygon IoU directly. The speed is measured as

latency times on GPU and Chip devices, in ms.

Detector P R F1 GPU Chip

PolarMask-36 61.58 38.00 47.00 - -

PolarMask-64 66.72 45.46 54.08 1.91 3.24

DPPD-36 77.27 50.46 61.05 1.28 2.68

i.e., 36 and 64. Since crosswalk shapes are more complex,

the matching criteria is based on polygon-to-polygon IoU di-

rectly. Metrics results and visualizations are shown in Table 3

and Fig. 7 respectively.

In terms of accuracy, DPPD is superior than PolarMask

in all metrics, even the number of predictable vertices is

less in DPPD (36) than PolarMask (64). The first reason is

that PolarMask ground truth are approximated radius length

along pre-defined rays, which are not guaranteed to reach

”real” vertices (e.g., Fig. 2). The second reason is that DPPD

predicts, for each vertex, both radial distance and polar angle,

which allows greater capability to achieve high-quality shape

regression.

In terms of the speed, DPPD also costs less inference time

than PolarMask on both platforms. We claim it is benefitted

from the design of separate training and inference features.

Dense polygons for training facilitates the accuracy, and

sparse polygon for inference boosts the runtime speed.
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Figure 7. Two examples to visualize 64-vertex PolarMask (left) and 36-vertex DPPD (right) results on crosswalks. DPPD expenses less

vertices but achieves tighter alignment with the groundtruth.

Figure 8. Qualitative visualizations of DPPD results on Cityscapes.

4.2. DPPD on Public Dataset

To examine the generic effectiveness, we experiment

DPPD on the public Cityscapes [5] dataset, which covers

more dynamic objects like vehicles, pedestians, bicycles, etc.

We pick Poly-YOLO (an improved version of PolarMask

and YOLOv3) as our main competitor. As the Poly-YOLO

used DarkNet-53 as the backbone, we select Resnet50 as the

backbone for our DPPD for a fair comparison. Input resolu-

tion is 1024×2048. we set the number of prediction vertices

k = 12, and the number of resampling rays m = 360. Re-

sults of DPPD is based on the official Cityscapes evaluation

metrics at the instance level, tested on the validation split.

Results of other methods are borrowed from the Poly-YOLO

paper [10].

As shown in Table 4, for the accuracy, DPPD surpasses

the state-of-the-art polygon method Poly-YOLO, even using

a smaller number of vertices predicted (12 vs. 24). Qualita-

tive visualization are shown in Fig. 8. For the speed, DPPD

runs at 56.1 FPS, measured on a Tesla V100 GPU. Since

it is hard to reproduce competitors latency from the exact

same environment, we mark it with a * symbol to indicate

reference purpose only.

Poly-YOLO is built as an extension of YOLOv3. Compar-

ing with DPPD, there are many fundamental differences such

as the backbone structure, target assignment mechanisms,

loss functions, etc. Considering the polygon head itself, due

to the fact of circular grid splits, Poly-YOLO is still learned

Table 4. Benchmark on Cityscapes. Poly-YOLO predicts 24 ver-

tices, whereas DPPD predicts 12 vertices. YOLOv3 and Poly-

YOLO use DarkNet53 backbone, whereas MaskRCNN and DPPD

use ResNet50 backbone.

Method Detector AP AP50 FPS

YOLOv3 [18] Box 10.6 26.6 26.3

MaskRCNN [8] Mask 16.4 31.8 6.2

Poly-YOLO [10] (24) Polygon 8.7 24.0 21.9

DPPD (12) Polygon 11.96 27.31 56.1*

from approximated labels. Poly-YOLO is trained for boxes

and polygons jointly, and it is claimed benefited from the

auxiliary task learning. However, it predicts the object cen-

ter for both box and polygon, which is not guaranteed well

aligned (see Fig. 9). On the other hand, DPPD is a polygon-

only detector. The resampling process allows DPPD to learn

from the real polygon shape without any approximation, the

angle decoding method enables its capability to fit for both

sparse and dense vertices, and the object center encoded as

the geometry centroid.

4.3. Ablation Studies

Admittedly, the optimization of model structure, data

augmentation, and other fantastic training strategies could

further improve the overall performance. But in this sub-
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Table 5. Ablation studies for DPPD design choices.

Exp. Dataset Origin Finding Angle Decoder # of Vertices # of Rays P R F1 AP AP50

1 Crosswalk box center bin offsets 36 360 69.19 50.22 58.20 - -

2 Crosswalk vertices mean bin offsets 36 360 50.13 49.89 50.01 - -

3 Crosswalk geo centroid bin offsets 36 360 72.02 54.54 62.08 - -

4 Cityscapes geo centroid bin offsets 18 360 - - - 11.10 25.80

5 Cityscapes geo centroid cumsum 18 360 - - - 12.01 27.45

6 Cityscapes geo centroid cumsum 12 120 - - - 10.38 24.17

7 Cityscapes geo centroid cumsum 12 180 - - - 11.54 27.29

8 Cityscapes geo centroid cumsum 12 360 - - - 11.96 27.31

9 Cityscapes geo centroid cumsum 18 360 - - - 12.01 27.45

10 Cityscapes geo centroid cumsum 36 360 - - - 11.67 26.83

section, we focus on the key components involved in the

polygon detector regression head. Specifically, we discuss

the design choices of polygon origin finding methods, angle

decoding methods, number of prediction vertices, number of

resampling rays.

Polar Origin Finding. The polygon polar origin holds

two regression targets. To find the groundtruth, we consid-

ered three methods: (i) the mean of all vertices; (ii) the

bounding box center that covers the polygon; (iii) the poly-

gon shape geometry centroid. However, (i) and (ii) are un-

able to guarantee that the polar origin is located within the

polygon boundary (see Fig. 9), which voids the model effec-

tiveness. Therefore, (iii) geometry centroid is the only choice.

We run experiments on a subset of crosswalk objects and

compared the three methods, shown as Exp. 1-3 in Table 5.

Angle Decoding. The flexible angle prediction is one ma-

jor distinction of DPPD. Comparing against PolarMask [25],

this is the second degree of freedom of each vertex; com-

paring against Poly-YOLO [10], it breaks the angle sector

constraint. Using the Cityscapes data, we experiment two

angle decoding methods: (i) predict an offset within each

angle bin; (ii) the angle cumulative summation. According

to Exp. 4-5 in Table 5, (ii) obtains higher accuracy than (i).

Predictable Vertices and Resampling Rays. The num-

ber of predictable vertices and resampling rays are important

hyperparameters to construct the DPPD head. We experi-

ment six combinations of vertices and rays on Cityscapes.

Results are listed in Table 5. Increasing the number of rays

(Exp.6 - 8) results in the accuracy improvement, this is ex-

pected since we have denser representation of the polygon

shape. On the other hand, increasing the number of vertices

(Exp.8 - 10) is less effective. Keep increasing it will lead to

excessive model complexity and hence lower generalization

capability. But this is a good indicator that DPPD is able to

achieve promising results even with less regression outputs.

5. Conclusion

In this paper, we present DPPD, a deformable polygon

detector that stands intermediately between object detection

Figure 9. Example of polygon polar origin finding. If the vehicle

object is partially occluded, the bounding box center (green) is

outside of the polygon shape boundary (red).

and instance segmentation. The polygon detector is able to

describe precise object shape information, while retaining

fast runtime inference speed. Our polygon detection method

is able to predict object shapes with high accuacy without

a need to use an excessively large number of vertices as

done in the previous methods. This is possible due to our

novel polygon training strategy, in which both ground truths

and predictions (not necessarily having the same number of

vertices) are up-sampled so that both have the same number

of raypoints. The upsampling (resampling) is efficient and

differentiable, which is required for training. From the ex-

periments using both in-house autonomous driving dataset

and public dataset, DPPD outperforms PolarMask and Poly-

YOLO in terms of both accuracy and speed for many detec-

tion tasks such as road sign, crosswalk, car, pedestrian.

Although DPPD is designed as a 2D polygon detector, it

is also applicable in 3D perception. Many state-of-the-art 3D

detectors adopt BEV [12] or rangeview [7] representations

for runtime efficiency. We could place DPPD on top of any

detection architecture for complex shape understanding.
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