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Abstract

MLP-based architectures, which consist of a sequence
of consecutive multi-layer perceptron blocks, have recently
been found to reach comparable results to convolutional
and transformer-based methods on image classification.
However, most methods adopt spatial MLPs which take
fixed-dimension inputs, therefore making it difficult to ap-
ply them as backbones to downstream tasks such as ob-
ject detection and semantic segmentation, which require in-
puts with arbitrary dimension. Moreover, single-stage de-
signs further limit the performance in other computer vision
tasks and fully-connected layers bear heavy computation.
To tackle these problems, we propose ConvMLP: a Hier-
archical Convolutional MLP for visual recognition, which
is a lightweight, stage-wise, co-design of convolution lay-
ers, and MLPs. In particular, ConvMLP-S achieves 76.8%
top-1 accuracy on ImageNet-1k with 9M parameters and
2.4 GMACs (15% and 19% of MLP-Mixer-B/16, respec-
tively). Experiments on object detection and semantic seg-
mentation further show that visual representation learned
by ConvMLP can be seamlessly transferred to downstream
tasks and achieve competitive results with fewer parame-
ters. Our code and pre-trained models are open-sourced at
https://github.com/SHI-Labs/Convolutional-MLPs.

1. Introduction

Image classification is a fundamental problem in com-
puter vision, and most milestone solutions in the past five
years have been dominated by deep convolutional neu-
ral networks. Since late 2020, with the rise of Vision
Transformer [6], researchers have not only been apply-
ing Transformers [38] to image classification and other
computer vision tasks, but explored more meta-models
other than convolutional neural networks for visual recogni-
tion. MLP-Mixer [35] proposes token-mixing and channel-
mixing MLPs to allow communication between spatial lo-
cations and channels. ResMLP [36] uses cross-patch and
cross-channel sublayers as the building block, following
the design of ViT. gMLP [25] connects channel MLPs by
adding spatial gating units. In essence, MLP-based models
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Figure 1. Comparing MLP-Mixer to ConvMLP. MLP-Mixer is de-
signed for image classification with fixed representation of visual
feature maps. ConvMLP adopts a simple hierarchical multi-stage
co-design of convolutions and MLPs, which achieves both more
flexible mutli-scale representations as well as better accuracy vs
computation trade-offs for visual recognition tasks including clas-
sification, detection and segmentation.

show that simple feed-forward neural networks can com-
pete with operators like convolution and self-attention on
image classification.

However, using MLPs to encode spatial information re-
quires fixing dimension of inputs, which makes it difficult
to be deployed on downstream computer vision tasks – such
as object detection and semantic segmentation – since they
usually require arbitrary resolutions of input sizes. Further-
more, single-stage design, following ViT [6], may constrain
performances on object detection and semantic segmenta-
tion since they make predictions based on feature pyramids.
Representation learned by single resolution hurt the perfor-
mance on small object recognition as shown in DETR [1].
Large consecutive MLPs also bring heavy computation bur-
den and more parameters with high dimension of hidden
layers. For instance, MLP-Mixer is only able to slightly
surpass ViT-Base with its large variant, which is over twice
as large and twice as expensive in terms of computation.
Similarly, ResMLP suffers from over 30% more parameters
and complexity, compared to a transformer-based model of
similar performance.

Based on these observations, we propose ConvMLP:
A Hierarchical Convolutional MLP backbone for visual

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Overview of ConvMLP framework. The Conv Stage consists of C convolutional blocks with 1× 1 and 3× 3 kernel sizes. The
Conv-MLP Stage consists of Channel MLPs with skip layers and a 3× 3 depthwise convolution layer. This is repeated M times before a
down-sampling convolution is utilized to express a level L. A level down samples an image L : h× w × c 7→ h

2L
× w

2L
× 2Lc

recognition, which is a combination of convolution layers
and MLP layers for image classification and can be seam-
lessly used for downstream tasks like object detection and
segmentation as shown in Figure 1. To remove constraints
on input dimension in other MLP-like frameworks, we first
replace all spatial MLPs with channel MLPs for augment-
ing cross-channel connections and build a pure-MLP base-
line model. To make up spatial information interaction, we
add a light-weight convolution stage on top of the rest MLP
stages and use convolution layers for down-sampling. Fur-
thermore, to make up spatial connections in MLP stages,
we add a simple 3× 3 depth-wise convolution between the
two channel MLPs in each MLP block, hence calling it a
Conv-MLP block. This co-design of convolution layers and
MLP layers builds the prototype of ConvMLP model for im-
age classification. To make ConvMLP scalable, we extend
ConvMLP model by scaling the depth and width of both
convolution and Conv-MLP stages. It achieves competi-
tive performances on ImageNet-1k with fewer parameters
compared to recent MLP-based models. We also fine-tune
the model on CIFAR and Flowers-102 for transfer learning.
On object detection and semantic segmentation, we conduct
experiments on MS COCO and ADE20K benchmarks. It
shows that using ConvMLP as a backbone achieves better
trade-off between performance and model size compared to
other MLP-based methods.

In conclusion, our contributions are as follows:

• We analyze the constraints of current MLP-based mod-
els for image classification, which only take inputs of
fixed dimensions and are difficult to be used in down-
stream computer vision tasks as backbones. Single-
stage design and large computation burden further
limit their applications.

• We propose ConvMLP: a Hierachical Convolutional
MLP backbone for visual recognition with co-design

of convolution and MLP layers. It is scalable and can
be seamlessly deployed on downstream tasks like ob-
ject detection and semantic segmentation.

• We conduct extensive experiments on ImageNet-1k
for image classification, CIFAR and Flowers-102 for
transfer learning, MS COCO for object detection and
ADE20K for semantic segmentation to evaluate the ef-
fectiveness of our ConvMLP model.

2. Related Work
2.1. Convolutional Methods

Image classification has been dominated by convo-
lutional neural networks for almost a decade, since the
rise of AlexNet [21], which introduced a convolutional
neural network for image classification, and won the 2012
ILSRVC. Following that, VGGNet [33] proposed larger
and deeper network for better performance. ResNet [12]
introduced skip connections to allow training even deeper
networks, and DenseNet [17] proposed densely connected
convolution layers. In the meantime, researchers explored
smaller and lightweight models that would be deployable to
mobile devices. MobileNet [16,32] consisted of depth-wise
and point-wise convolutions, which reduced the number
of parameters and computations required. ShuffleNet [29]
found channel shuffling to be effective, and Efficient-
Net [34] further employs model scaling to width, depth,
and resolution for better model scalability.

2.2. Transformer-based Methods

Transformer [38] was proposed for machine translation
and has been widely adopted in most natural language
processing. Recently, researchers in the computer vision
area have adopted transformers to image classification.
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Stage ConvMLP-S ConvMLP-M ConvMLP-L

Conv

[ 1×1 Conv

3×3 Conv

1×1 Conv

]
× 2

[ 1×1 Conv

3×3 Conv

1×1 Conv

]
× 3

[ 1×1 Conv

3×3 Conv

1×1 Conv

]
× 3

Scale C1 = 64 C1 = 64 C1 = 96

Conv-MLP

[ Channel MLP

3×3 DW Conv

Channel MLP

]
× 2

[ Channel MLP

3×3 DW Conv

Channel MLP

]
× 3

[ Channel MLP

3×3 DW Conv

Channel MLP

]
× 4

Scale C2 = 128, R = 2 C2 = 128, R = 3 C2 = 192, R = 3

Conv-MLP

[ Channel MLP

3×3 DW Conv

Channel MLP

]
× 4

[ Channel MLP

3×3 DW Conv

Channel MLP

]
× 6

[ Channel MLP

3×3 DW Conv

Channel MLP

]
× 8

Scale C3 = 256, R = 2 C3 = 256, R = 3 C3 = 384, R = 3

Conv-MLP

[ Channel MLP

3×3 DW Conv

Channel MLP

]
× 2

[ Channel MLP

3×3 DW Conv

Channel MLP

]
× 3

[ Channel MLP

3×3 DW Conv

Channel MLP

]
× 3

Scale C4 = 512, R = 2 C4 = 512, R = 3 C4 = 768, R = 3

Table 1. Detailed model architecture of ConvMLP in different scales. R denotes scaling ratio of hidden layers in MLP.

They propose ViT [6] that reshapes image to patches for
feature extraction by transformer encoder, which achieves
comparable results to CNN-based models. DeiT [37]
further employs more data augmentation and makes ViT
comparable to CNN-based models without ImageNet-22k
or JFT-300M pretraining. DeiT also proposes an attention-
based distillation method, which is used for student-teacher
training, leading to even better performance. CCT [10]
proposes a convolutional tokenizer and compact vision
transformers, leading to better performance on smaller
datasets training from scratch, with fewer parameters
compared with ViT. TransCNN [26] also proposes a
co-design of convolutions and multi-headed attention to
learn hierarchical representations. To make models friendly
to downstream tasks, PVT [39] proposes feature pyramids
for vision transformers. Swin Transformer [27] uses patch-
level multi-headed attention and stage-wise design, which
also increase transferability to downstream tasks. Shuffle
Swin Transformer [18] proposes shuffle multi-headed
attention to augment spatial connection between windows.
NAT [9] and DiNAT [8] adopt dense and sparse sliding

window attention patterns to achieve a linear cost attention.

2.3. MLP-based Methods

MLP-Mixer [35] was recently proposed as a large
scale image classifiers that was neither convolutional nor
transformer-based. At its core, it consisted of basic ma-
trix multiplications, data layout changes and scalar non-
linearities. ResMLP [36] followed a ResNet-like structure
with MLP-based blocks instead of convolutional ones. Fol-
lowing that, gMLP [25] proposed a Spatial Gating Unit to
process spatial features. S2-MLP [41] adopts shifted spa-
tial feature maps to augment information communication.
ViP [14] employs linear projection on the height, width
and channel dimension separately. All these methods have
MLPs on fixed spatial dimensions which make it hard to be
used in downstream tasks since the dimensions of spatial
MLPs are fixed. Cycle MLP [3] and AS-MLP [22] are con-
current works. The former replaces the spatial MLPs with
cycle MLP layers and the latter with axial shifted MLPs,
which make the model more flexible for varying inputs
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sizes. They reach competitive results on both image clas-
sification and other downstream tasks. Hire-MLP [7] is an-
other concurrent work that uses Hire-MLP blocks to learn
hierarchical representations and achieves comparable result
to transformer-based model on ImageNet.

3. ConvMLP
In this section, we first introduce the overall design and

framework of ConvMLP. Then, we follow that design pat-
tern including convolutional tokenizer, convolution stage
and Conv-MLP Stage. We also explain how model scal-
ing is applied to ConvMLP on convolution and Conv-MLP
stages.

3.1. Overall Design

The overall framework of ConvMLP is illustrated in Fig-
ure 2. Unlike other MLP-based models, we use a convo-
lutional tokenizer to extract the initial feature map F1 ∈
RH

4 ×W
4 ×C1 . To reduce computation and improve spatial

connections, we follow tokenization with a pure convo-
lutional stage, producing feature map F2 ∈ RH

8 ×W
8 ×C2 .

Then we place 3 Conv-MLP stages, generating 2 feature
maps F3 ∈ RH

16×
W
16×C3 and F4 ∈ RH

32×
W
32×C4 . Each

Conv-MLP stage includes multiple Conv-MLP blocks and
each Conv-MLP block has one channel MLP followed by a
depth-wise convolutional layer, succeeded by another chan-
nel MLP. Similar to previous works, we include residual
connections and Layer Normalization applied to inputs in
the block. Each channel MLP consists of two fully con-
nected layers with a GeLU activation [13] and dropout. We
then apply global average pooling across to the output fea-
ture map, F4, and send it through the classification head.
When applying ConvMLP to downstream tasks, the feature
maps F1, F2, F3, and F4 can be used to generate feature
pyramids with no constraints on input size.

3.2. Convolutional Tokenizer

As stated, we replace the original patch tokenizer with
a convolutional tokenizer. It includes three convolutional
blocks, each consisting of a 3 × 3 convolution, batch nor-
malization and ReLU activation. The tokenizer is also ap-
pended with a max pooling layer. Our experiments show
that a convolutional tokenizer brings faster convergence and
better performance in the end.

3.3. Convolution Stage

In order to augment spatial connections, we adopt a
fully-convolutional first stage. It consists of multiple
blocks, where each block is comprised of two 1× 1 convo-
lution layers with a 3× 3 convolution in between. It brings
more stable training and improvements on accuracy with
few extra parameters.

3.4. Conv-MLP Stage

To reduce constraints on input dimension, we replace
all spatial MLPs with channel MLPs. Since channel MLP
only share weights across channels which lacks spatial
interactions, we make up it by adding convolution layers in
early stage, down-sampling and MLP blocks.

Convolutional Downsampling In the baseline model, we
follow Swin Transformer [27] that uses a patch merging
method based on linear layers to down-sample feature
maps. To augment adjacent spatial intersection, we replace
patch merging with a 3 × 3 convolution layer under stride
2. It improves the classification accuracy while only brings
a few more parameters.

Convolution in MLP block We further add a depth-wise
convolution layer between two channel MLPs in one MLP
block and name it Conv-MLP block. It is a 3 × 3 convolu-
tion layer with the same channel to the two channel MLPs,
which is also used in recent Shuffle Swin Transformer [18]
to augment neighbor window connections. It makes up the
deficiency of removing spatial MLPs, which improves the
performance by a large margin while only brings few pa-
rameters.

3.5. Model Scaling

To make ConvMLP scalable, we scale up ConvMLP on
both width and depth of convolution stages and Conv-MLP
stages. We present 3 ConvMLP variants. Our smallest
ConvMLP-S starts with only a two convolutional blocks,
and has 2, 4 and 2 Conv-MLP blocks in the three Conv-
MLP stages respectively. ConvMLP-M and ConvMLP-L
start with three convolutional blocks. ConvMLP-M has 3,
6 and 3, and ConvMLP-L has 4, 8 and 3 Conv-MLP blocks
in the three Conv-MLP stages. Details are also presented in
Table 1. Experiments show that the performance of image
classification and downstream tasks improves consistently
with model scaling.

4. Experiments
In this section, we mainly introduce our experiments on

ImageNet-1k, CIFAR-10/100, Flowers-102, MS COCO and
ADE20K. We first show ablation studies on different mod-
ules in the ConvMLP framework to evaluate their effective-
ness. Then, we compare ConvMLP to other state-of-the-
art models on ImageNet-1k with three variants: ConvMLP-
S, ConvMLP-M and ConvMLP-L. We also show transfer-
ring ability to CIFAR-10/100 and Flowers-102. On MS
COCO and ADE20K benchmark, we use ConvMLP as
backbones of RetinaNet, Mask R-CNN, Semantic FPN and
it shows consistent improvements on these different down-
stream models.
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Conv Stage Conv Downsampling Depth-Wise Conv Epochs # Params (M) GMACs Top-1 Acc (%)

- - - 100 7.88 1.47 63.29
✓ - - 100 7.89 1.59 66.69
✓ ✓ - 100 8.71 1.65 69.56
✓ - ✓ 100 7.91 1.59 73.84
✓ ✓ ✓ 100 8.73 1.65 74.04
✓ ✓ ✓ 300 8.73 1.65 76.33
✓† ✓ ✓ 300 9.02 2.40 76.81

Table 2. Ablation study on ImageNet-1k validation set. All experiments are based on ConvMLP-S. † denotes replacing 1 × 1 with 3 × 3
convolution layers in Conv Stage with improved accuracy in the long run, which is used in our final ConvMLP-S model.

4.1. ImageNet-1k

ImageNet-1k [21] contains 1.2M training images and
50k images on 1000 categories for evaluating performances
of classifiers. We follow standard practice provided by
timm [40] toolbox. We use RandAugment [5] Mixup [44],
and CutMix [43] for data augmentation. AdamW [28] is
adopted as optimizer with momentum of 0.9 and weight
decay of 0.05. The initial learning rate is 5e-4 with batch
size of 128 on each GPU card. We use 8 NVIDIA RTX
A6000 GPUs to train all models for 300 epochs and the
total batch size is 1024. All other training settings and
hyper-parameters are adopted from DeiT [37] for fair com-
parisons. For those results in ablation study, we train these
models for 100 epochs with batch size 256 on each GPU
and use 4 GPUs with learning rate at 1e-3.

4.2. Ablation Study

Our baseline model Pure-MLP Baseline is composed of
one patch converter adopted from Swin [27] and a sequence
of channel MLPs in following stages. In Table 2, the base-
line model reaches 63.29% top-1 accuracy on ImageNet-1k
and we replace the first stage of MLPs with a convolution
stage that has two 1 × 1 convolution layers with a 3 × 3
convolution layer in between. Then, we replace the down-
sampler from patch merging used in Swin into a single 3×3
convolution layer with stride 2, which further improves top-
1 accuracy to 69.56%. To further make up spatial informa-
tion communication, we add a 3×3 depth-wise convolution
between the two channel MLPs and extend training epochs
to 300. Finally, we modify the convolution stage with suc-
cessive 1 × 1, 3 × 3, 1 × 1 convolution blocks and builds
ConvMLP-S model.

4.3. Comparisons with SOTA

In Table 3, we compare ConvMLP to other state-of-
the-art image classification models on ImageNet-1k. We
use three variants ConvMLP-S, ConvMLP-M, ConvMLP-
L and the detailed architecture are shown in Table 1. We

include Convolution-based, Transformer-based and MLP-
based methods under different scales: Small models (5M-
15M), Medium-sized models (16-30M) and Large models
(> 30M). We also present number of parameters, GMACs
Acc/GMACs, ACC/MParams of these models to show the
efficiency on model size and computation. It turns out that
ConvMLP-S reaches better accuracy vs computation trade-
offs compared with other MLP-based methods.

4.4. Transfer learning

Dataset We use CIFAR-10/CIFAR-100 [20] and Flowers-
102 [30] to evaluate transferring ability of ImageNet-
pretrained ConvMLP variants. Each model was fine-tuned
for 50 epochs with a learning rate of 3e-4 (with cosine
scheduler), weight decay of 5e-2, 10 warmup and cooldown
epochs. We used the same training script and therefore
augmentations as the ImageNet-1k experiments. We also
resized all images to 224× 224.

Results The results are presented in Table 4. We report
results from ResMLP, ViT and DeiT as well. ConvMLP
reaches the top performance with less computations.

4.5. Object Detection

Dataset MS COCO [24] is a widely-used benchmark for
evaluating object detection model. It has 118k images
for training and 5k images for evaluating performances
of object detectors. We follow standard practice of
RetinaNet [23] and Mask R-CNN [11] with ResNet as
backbones in mmdetection [2]. We replace ResNet
backbones with ConvMLP and adjust the dimension of
convolution layers in feature pyramids accordingly. We
also replace SGD optimizer with AdamW and adjust learn-
ing rate to 1e-4 with weight decay at 1e-4, which follows
the configs in PVT [39]. We train both RetinaNet and Mask
R-CNN for 12 epochs on 8 GPUs with total batch size of 16.

Results We transfer ResNet, Pure-MLP and ConvMLP
variants to object detection on MS COCO and the results
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Model Backbone # Params (M) GMACs Top-1 (%) Acc/GMACs Acc/MParams

Small models (5M-15M)

ResNet18 [12] Convolution 11.7 1.8 69.8 38.8 6.0
Mobilenetv3 [15] Convolution 5.4 0.2 75.2 376.0 13.9
EfficientNet-B0 [34] Convolution 5.3 0.4 77.1 192.8 14.5

ResMLP-S12 [36] MLP 15.3 3.0 76.6 25.5 5.0
CycleMLP-B1 [3] MLP 15.2 2.1 78.9 37.6 5.2

ConvMLP-S (ours) ConvMLP 9.0 2.4 76.8 32.0 8.5

Medium-sized models (16M-30M)

ResNet50 [12] Convolution 25.6 4.1 76.1 18.6 3.0
EfficientNet-B4 [34] ↑380 Convolution 19.0 4.2 82.9 19.7 4.4

ViT-S [6] † Transformer 22.1 4.6 79.9 17.4 3.6
DeiT-S [37] Transformer 22.1 4.6 81.2 17.7 3.7
PVT-S [39] Transformer 24.5 3.8 79.8 21.0 3.3
CCT-14t [10] Transformer 22.4 5.1 80.7 15.8 3.6

MLP-Mixer-S/16 [35] MLP 18.5 3.8 73.8 19.4 4.0
ResMLP-S24 [36] MLP 30.0 6.0 79.4 13.2 2.6
gMLP-S [25] MLP 19.4 4.5 79.6 17.7 4.1
AS-MLP-Ti [22] MLP 28.0 4.4 81.3 18.7 2.9
ViP-Small/7 [14] MLP 25.1 6.9 81.5 11.8 3.2

ConvMLP-M (ours) ConvMLP 17.4 3.9 79.0 20.3 4.5

Large models (>30M)

ResNet101 [12] Convolution 44.6 7.8 78.0 10.0 1.7
RegNetY-8GF [31] Convolution 39.2 8.0 79.0 9.9 2.0
RegNetY-16GF [31] Convolution 83.6 15.9 80.4 5.1 1.0

ViT-B [6] † Transformer 86.6 17.5 81.8 4.7 0.9
DeiT-B [37] Transformer 86.6 17.5 83.4 4.8 1.0
PVT-L [39] Transformer 61.4 9.8 81.7 8.3 1.3
Swin Transformer-B [27] Transformer 87.8 15.4 83.5 5.4 1.0
Shuffle Swin-B [18] Transformer 87.8 15.6 84.0 5.4 1.0

MLP-Mixer-B/16 [35] MLP 59.9 12.6 76.4 6.1 1.3
S2-MLP-wide [41] MLP 71.0 14.0 80.0 5.7 1.1
ResMLP-B24 [36] MLP 115.7 23.0 81.0 3.5 0.7
gMLP-B [25] MLP 73.1 15.8 81.6 5.2 1.1
ViP-Large/7 [14] MLP 87.8 24.4 83.2 3.4 0.9
CycleMLP-B5 [3] MLP 75.7 12.3 83.2 6.7 0.9
AS-MLP-B [22] MLP 88.0 15.2 83.3 5.4 1.0

ConvMLP-L (ours) ConvMLP 42.7 9.9 80.2 8.1 1.9

Table 3. ImageNet-1k validation top-1 accuracy comparison between ConvMLP and state-of-the-art models. Compared to other MLP-
based methods, ConvMLP achieved the best Acc/GMACs and Acc/MParams in different model size ranges. †: reported from DeiT for
fairer comparison; ViT-S was not proposed in the original paper. ↑ specifies image resolution, if different from 224×224.

are presented in Figure 3. It can be observed that Con-
vMLP achieves better performance on object detection and

instance segmentation consistently as backbones of Reti-
naNet and Mask R-CNN compared with Pure-MLP and
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Model # Params (M) ImageNet-1k (%) CIFAR-10 (%) CIFAR-100 (%) Flowers-102 (%)

ConvMLP-S 9.0 76.8 98.0 87.4 99.5

ResMLP-S12 [36] 15.4 76.6 98.1 87.0 97.4
ConvMLP-M 17.4 79.0 98.6 89.1 99.5

ResMLP-S24 [36] 30.0 79.4 98.7 89.5 97.4
ConvMLP-L 42.7 80.2 98.5 89.2 99.6

ViT-B [6] 86.6 81.8 99.1 90.8 98.4
DeiT-B [37] 86.6 83.4 99.1 91.3 98.9

Table 4. Fine-tuning top-1 accuracy on CIFAR-10/100 and Flowers-102 with pre-training on ImageNet-1k. ConvMLP is the top performing
model on Flowers-102 compared with ResMLP, ViT and DeiT.
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Figure 3. Comparisons between ConvMLP, Pure-MLP and ResNet as backbones of RetinaNet, Mask R-CNN on MS COCO and Semantic
FPN on ADE20K. ConvMLP-based models show consistent improvements under different evaluation metrics and tasks.

ResNet. More details of the results are presented in Ap-
pendix.

4.6. Semantic Segmentation

Dataset ADE20K [45] is a widely-used dataset for
semantic segmentation, which has 20k images for train-
ing and 2k images for evaluating the performance of
semantic segmentation models. We employ standard
practice of Semantic FPN [19] implemented based on
mmsegmentation [4]. Following PVT in semantic
segmentation, we train ConvMLP-based Semantic FPN on
8 GPUs with total batch size of 16 for 40k iterations. We
also replace optimizer from SGD to AdamW with learning
rate at 2e-4 and weight decay at 1e-4. The learning rate

decays with polynomial rate at 0.9 and input images are
randomly resized and cropped to 512× 512.

Results All experimental results on ADE20K are presented
in Figure 3. Similar to the object detection results presented
in 4.5, it can be observed that visual representations learned
by ConvMLP can also be successfully transferred to pixel-
level prediction tasks, such as semantic segmentation. We
present further details of these experiments in Appendix.

4.7. Visualization

We visualize feature maps of ResNet50, MLP-
Mixer-B/16, Pure-MLP Baseline and ConvMLP-M under
(1024, 1024) input size (MLP-Mixer-B/16 under (224, 224)
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ResNet50

ConvMLP-M

Stage4

Pure-MLP
Baseline

MLP-Mixer

Figure 4. Visualization of feature maps in different stages of ResNet50, MLP-Mixer, Pure-MLP Baseline and ConvMLP-M. Visual
representations learned by ConvMLP-M show both semantic and low-level information.

due to dimension constraint) in Figure 4 to analyze the dif-
ferences in visual representations learned by these models,
and similar feature maps of transformer-based model are
presented in T2T-ViT [42]. We observe that representations
learned by ConvMLP involve more low-level features like
edges or textures compared with ResNet and more seman-
tics compared with Pure-MLP Baseline.

5. Conclusion

In this paper, we analyze the constraints of current
MLP-based models for visual representation learning:
1. Spatial MLPs only take inputs with fixed resolu-
tions, making the transfer to downstream tasks, such
as object detection and segmentation, difficult. 2. The
single-stage design and fully connected layers further
constrain usage due to the added complexity. To tackle
these problems, we propose ConvMLP: a Hierarchical
Convolutional MLP for visual representation learning
through combining convolutional layers and MLPs. The
architecture can be seamlessly prepended to downstream
networks like RetinaNet, Mask R-CNN and Semantic FPN.
Experiments further show that it can achieve competitive

results on different benchmarks with fewer parameters
compared to other methods. The main limitation of Con-
vMLP is that ImageNet performance scales slower with
model size. We leave this to be explored in future works.
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