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Intriguing properties of synthetic images:
from generative adversarial networks to diffusion models
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Figure 1. Examples of synthetic images (top) generated by state-of-the-art models: StyleGAN-T [44], GALIP [51], Taming Transformers
[14], DALL- E Mini [9], Stable Diffusion [43], eDiff-I [2]. Each model leaves peculiar traces in the generated images, which can be
regarded as a sort of artificial fingerprint and used for forensic analyses. They are typically visible in the frequency domain as spectral
peaks in the power spectra (middle), or in the spatial domain as anomalous regular patterns in the autocorrelation (bottom). It is easy to
observe that models based on the same architecture, like Taming Transformers and DALL- E Mini, give rise to similar artifacts.

Abstract

Detecting fake images is becoming a major goal of com-
puter vision. This need is becoming more and more press-
ing with the continuous improvement of synthesis meth-
ods based on Generative Adversarial Networks (GAN), and
even more with the appearance of powerful methods based
on Diffusion Models (DM). Towards this end, it is important
to gain insight into which image features better discrimi-
nate fake images from real ones. In this paper we report
on our systematic study of a large number of image gen-
erators of different families, aimed at discovering the most
forensically relevant characteristics of real and generated
images. Our experiments provide a number of interesting

observations and shed light on some intriguing properties
of synthetic images: (1) not only the GAN models but also
the DM and VQ-GAN (Vector Quantized Generative Adver-
sarial Networks) models give rise to visible artifacts in the
Fourier domain and exhibit anomalous regular patterns in
the autocorrelation; (2) when the dataset used to train the
model lacks sufficient variety, its biases can be transferred
to the generated images, (3) synthetic and real images ex-
hibit significant differences in the mid-high frequency sig-
nal content, observable in their radial and angular spectral
power distributions.
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Figure 2. Examples of real and synthetic images drawn from popular datasets. Real datasets (left): Imagenet [10], FFHQ [27], LAION [45].
Synthetic datasets (right): DiT [38], StyleGAN2 [28], GLIDE [35]. For each dataset, we also show the average power spectra (middle) and
autocorrelation (bottom) of noise residuals. It is possible to observe that real images embed some traces of JPEG artifacts (see also Section
4.2) while all generated images exhibit anomalous periodic patterns in the spatial domain.

1. Introduction

In recent years, deep learning-based generated images
have gained immense popularity in industries such as enter-
tainment, advertising, and design. These are high-quality
images of impressive photorealism [29, 360]. Especially the
recent text-image generators, which rely on text descrip-
tions or preliminary sketches as a guide, can allow image
creation across countless categories [2,9,23,35,40,44,51].
While this technology offers tremendous value to artists,
game designers, and creative individuals, it also comes with
risks. The potential security and ethical issues that can arise
from the misuse of these images cannot be ignored.

Research on synthetic image detection has received a
huge boost in recent years [3 1, 34], especially since the first
realistic images generated by Generative Adversarial Net-
works [24, 60] appeared. Some works focus mainly on the
inability of such generators to perfectly reproduce the high-
level semantic features of natural images. In fact, they can
produce visible artifacts, such as chromatic anomalies or
lack of natural symmetries. For example, faces generated
by GANs may have differently colored left and right eyes,
unconvincing eye reflexes, or irregular pupil shapes [20,33].
Similarly, some recent studies on images generated by dif-
fusion models [15, 16] pointed out that the absence of ex-
plicit 3D modeling for objects and surfaces results in asym-

metries in shadows and reflections. In addition, a global
inconsistency in lighting can be observed to some extent.

However, the generation methods keep improving over
time and show fewer and fewer synthesis artifacts. There-
fore, other approaches focus on low-level features that are
related to the generative model architecture and can be ex-
posed by removing the high-level semantic content of the
captured scene [32, 56]. In fact, the complex process-
ing pipeline needed to generate synthetic images inevitably
leads to the introduction of digital artifacts that character-
ize the specific architecture and significantly differ from
those typical of traditional acquisition devices. Some works
have already analyzed the traces present in the synthetic im-
ages working in the Fourier domain. However, the analysis
mainly focused on artifacts caused by GAN models, such
as those due to the up-sampling steps used to achieve the
desired spatial resolution [13, 59]. To date, little attention
has been paid to more recent and promising architectures,
such as those based on auto-encoders and diffusion mod-
els [7,37,41,46].

In this work we carry out a systematic investigation of
the traces left not only by established GAN-based gener-
ators but also by several recent VQ-based and DM-based
generators. To this end, we consider second-order statis-
tics both in the spatial domain and in the frequency domain.

974



For the spatial domain, we use the average autocorrelation
function while its transform, the average power spectrum, is
used for frequency-domain analyses together with some de-
rived quantities: the radial and angular spectra. Examples of
power spectra and (central crop) autocorrelations are shown
in Fig. 1 and Fig. 2.

As a result of our analyses we contribute the following
main observations:

* To date, no generator appears to be artifact-free. Most
of the times, artifacts are clearly spotted as strong
peaks in the power spectra of noise residuals, but some
recent methods have succeeded in reducing them.
Even in these cases, unnatural regular patterns are typ-
ically observed in the autocorrelations of noise residu-
als.

 Artifacts (e.g., due to compression) present in the
dataset used to train a given model can be transferred
to generated images. This is especially evident when
the training dataset has limited variety and strong bi-
ases.

» Synthetic and real images may be distinguished not
only by the presence of artifacts but also because of
mismatched statistical features of the high-level real or
generated content. We highlight such consistent differ-
ences by studying the radial and angular spectra of the
sources, derived from the average power spectra.

In the following of the paper, we account for related work,
describe the generative models under investigation, report
on experimental results, discuss their significance, and fi-
nally draw conclusions.

2. Related Work

In this section, we describe previous work that shows
the evidence of peculiar invisible traces embedded in the
synthetic images both in the spatial and in the frequency
domain.

Artificial fingerprints. Early research on synthetic images
has shown that, similar to real cameras that imprint each im-
age with a device- or camera-specific signature [8,30], GAN
architectures also embed a fingerprint in each generated im-
age. Such subtle traces, that are originated by the process-
ing steps used in the image synthesis process, betray the
artificial nature of the images. Several detectors [1,32,56]
rely on these traces to expose synthetic images and even to
trace back the individual architecture that generated them.
Differently from these works, we rely on the second order
statistics of the images to better highlight the patterns cre-
ated by the generation process.

Spectral discrepancies. It is well known that synthetic im-
ages generated by GANs present anomalies in the frequency

domain and cannot perfectly reproduce the spectral distri-
bution of natural images. More specifically, in [59] for the
first time evidence of such traces was shown, which appear
as peaks in the Fourier domain and can be used as discrim-
inating features for the development of a forensic detec-
tor. These traces are caused by the up-sampling operation
present in the decoder architecture of the generation process
which causes a marked aliasing phenomenon [26]. Further
studies [13] showed that real and synthetic images exhibit
a different decay of the Fourier spectrum at the highest fre-
quencies. The inability to correctly reproduce the spectral
distributions of the real data used for training is often at-
tributed to up-sampling methods [12, 17]. Some works also
propose a modification to the generator loss in order to bet-
ter fit the spectral decay of natural images [12,22]. Interest-
ingly, it has been recently shown that also diffusion models
are affected by a frequency bias and are not able to perfectly
reproduce high frequencies and image details [55].

Based on these findings, several methods for GAN im-
age detection rely on the high frequency discrepancies be-
tween real and generated images. However, it is not easy
to exploit such traces in the challenging conditions of real-
world applications [5, 19]. In this work we show that also
middle frequencies can play a significant role for discrimi-
nation. In particular, we observe that the generators possess
an anisotropic behaviour and struggle to reproduce details
along the diagonal directions.

3. Generative models

This section aims at describing the generators of syn-
thetic images analyzed in this work and their most impor-
tant properties. A list of the models is reported in Tab. 1.

Generative Adversarial Networks. GANs adopt a training
strategy based on a min-max game between two networks: a
generator, and a discriminator [ | 8]. The former tries to cre-
ate realistic samples, able to fool the discriminator, while
this latter tries to correctly distinguish real from generated
samples. In 2019, Brock et al. proposed BigGAN [3]
a class-conditional image synthesizer. Karras et al. pro-
posed a series of GAN architectures for unconditional im-
age generation, called StyleGAN [26-28], where the latent
code controls the modulation of the convolutional kernels of
the generator. StyleGAN-T [44] uses a StyleGAN-like ar-
chitecture to generate text-guided images relying on CLIP
(Contrastive Language-Image Pre-Training) [39] a power-
ful model that matches an image with its textual description.
Recently, Tao et al. proposed GALIP (Generative Adver-
sarial CLIP) [51] a GAN for text-to-image synthesis where
both the discriminator and generator architectures are based
on CLIP.

Vector Quantized Generative Networks. The Vector
Quantized Variational Autoencoders (VQ-VAE) proposed
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Method Backbone Dataset Conditioning
[3] BigGAN ResNet-style ImageNet Class
7z [28] StyleGAN2 StyleGAN like FFHQ Uncond.
é [26] StyleGAN3 StyleGAN like FFHQ Uncond.
[44] StyleGAN-T StyleGAN like CCI12M, CC, YFCC100m, Redcaps, LAION-aesthetic-6+ Text
[511 GALIP Transf. based CUB, MS-COCO, CC3M, CC12M Text
<O [14] Taming Transf. VQGAN + Transf. ImageNet, FFHQ Class, Uncond.
> [91 DALL-E Mini VQGAN + Transf. CC, YFCC100M, CC12M Text
[49] Score-SDE U-Net FFHQ Uncond.
s [11] ADM U-Net ImageNet, LSUN Class, Uncond.
A [35] GLIDE U-Net CC, YFCC100M, Wikipedia text-image pairs Text
[40] DALL-E 2 U-Net Unknown Text
[2] Ediff-I Mul. U-Nets Unknown Text
s [42] Latent Diff. VAE + U-Net ImageNet, LSUN Class, Uncond.
91 [43] Stable Diff. VAE + U-Net LAION Text
[38] DiT VAE + ViT ImageNet Class

Table 1. Main properties of the generative models analyzed in this work.

in [54] are auto-encoders with an encoder network to com-
press data into a low-dimensional latent space and a de-
coder network to reconstruct the original data from the la-
tent space. In particular, the VQ-VAEs quantize the latent
space using a discrete codebook, which allows the model
to learn latent vectors with a more meaningful and struc-
tured prior. In [6], the prior is derived from an autoregres-
sive model based on a transformer network, while in [14],
the authors propose VQ-GAN, a variant of the original VQ-
VAE that induces an adversarial loss. Both Taming Trans-
formers [14] and DALL-E Mini [9], considered in this work,
are VQ-GANs with a transformer network as the autore-
gressive model of the prior.

Diffusion Models. To generate synthetic samples mimick-
ing real ones, diffusion models rely on the inversion of an
additive noise process. The model takes as input a noisy im-
age composed of white noise and image content, and gen-
erates progressively less noisy versions of it until reaching
the desired noiseless output. Recently, DMs [21,25,47,48]
have gained popularity for the task of image synthesis due
to their favorable properties, such as stable training and
better mode coverage compared to previous methods [18].
Ho et al. [21] first demonstrated the capability of diffusion
models to generate high-quality images. Later, Dhariwal
et al. [11] showed that DMs can produce images of better
quality than those generated by GANs. The use of U-Net
architecture or its variations is prevalent among diffusion
models [2,35,40,42,43,49]. In particular, [35,40] extend
the previous work [1 1] to image generation from text based
on CLIP. The recent work Ediff-1 [2] adopts multiple U-Net
models specialized for different synthesis stages.

Latent Diffusion Models. These models, proposed in [42],
combine variational autoencoders (VAEs) with diffusion
models. a VAE is used to project images into a latent space
and back. In this low-dimensional space, a diffusion model
can generate the desired latent vector with limited compu-
tational cost. This combination allows for the generation
of high-dimensional images with good quality and with a
reduced computational burden compared to other diffusion
models. A noteworthy model of this class is Stable Dif-
fusion [43], which is part of an open-source project and is
trained on the 5.85 billion images of the LAION dataset
[45]. A recent work, Diffusion Transformers (DiTs) [38],
proposes to replace the commonly-used U-Net architecture
with a transformer architecture.

4. Forensic analysis

A crucial step in developing increasingly effective de-
tectors is understanding which image features can help dis-
tinguish fake images from real ones. Interestingly, a few
carefully designed simple experiments provide us already
with several insightful observations. This section serves as
a guided journey through some of these experimental re-
sults, with the aim of conveying the importance of these
findings. Our analysis is carried out by relying on second-
order statistics observed both in the spatial domain, the im-
age autocorrelation function, and in the frequency domain,
the image power spectrum'.

For all sources of interest we consider a set of I = 1000
images, either real or generated under controlled conditions.

UIn the literature, “power” is sometimes replaced by “energy”, but it is
only a matter of theoretical image modeling.
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For a single image x;(m, n) the autocorrelation function is

R, (Am,An) = (x;(m,n)x;(m + Am,n + An)) (1)
where (-) indicates spatial average. The average autocorre-
lation of the source should be obtained through statistical
averaging, which we approximate by averaging on all I im-
ages

R, (Am, An)

~\»~

I
Z (Am, An) )

This function summarizes the statistical correlation between
pixels separated by a (Am, An) displacement.

For frequency domain analyses, we start from the Fourier
transform of the M x N image

X;(k,1) = Flzi(m,n)]

M N
g g:clmn

m=1n=1

3)

—j27( Mm+ Nn)

and obtain the source power spectrum, again, by averaging
all individual power spectra

i o

The power spectrum accounts for the fraction of the total
image power concentrated at a given (horizontal,vertical)
frequency pair (4, £ ). Note that these two functions are
themselves related by a frequency transform

NM—‘
NM—‘

Sy (k,1) = F[Ry(Am, An)] 5)
hence redundant, in theory. However, some phenomena are
more visible in the spatial domain and some in frequency,
so we study both of them.

Often, phenomena of interest are only visible in the noise
residuals, obtained by removing the high-level semantic
content from the image by means of a denoising filter.

ri(m,n) = x;(m,n) — D(x;(m,n); o) (6)
In our experiments, we use always the denoiser by Zhang et
al. [58] with noise parameter o=1.

All autocorrelations and spectra, associated to images or
residuals, are normalized to the average power per pixel
computed as the mean value of S;(k, ). Note that we show
only the central 65 x 65 crop of the autocorrelation function.

4.1. Architecture related traces

It is well known that many GAN-based generators leave
clear traces of their processing pipeline in the images.
These can be exposed by extracting and averaging the noise

Figure 3. Power spectra (top) and autocorrelation functions (bot-
tom) of noise residuals of three slightly different latent diffusion
models. The upsampling factor between latent space and pixel
space is 4 for the first two architectures and 8§ for the third one.
This single parameter appears to be responsible for the position-
ing of the peaks in the power spectra and the periodicity of the
regular patterns in the autocorrelations.

residuals, to compute a model artificial fingerprint, and ana-
lyzing the results in the spatial and/or spectral domain. Im-
ages generated by diffusion models appear to show artifacts
of a similar nature and, arguably, a similar origin. Fig.3
shows the power spectra (top) and autocorrelation functions
(bottom) of the artificial fingerprints of three slightly dif-
ferent latent diffusion architectures. The first two models
are characterized by an upsampling factor of 4 between la-
tent space and pixel space and, not by chance, exhibit clear
peaks in the spectrum at frequencies multiples of 1/4, and
strong regular patterns with periodicity 4 in the autocor-
relation function. The minor differences between the two
are mostly due to the different training set used, ImageNet
vs. CelebHQ. On the contrary, the third model, trained on
LSUN churches images, has an upsampling factor of 8. As
expected, peaks in the power spectrum are now denser, at
frequencies multiple of 1/8, while they are sparser in the
autocorrelation function.

While these artifacts are clearly present in current gener-
ation architectures, and can be exploited for forensic needs,
these analyses refer to images observed “in the lab”, as they
leave the generator, with no further processing. This is not
a realistic condition, just think of all the standard process-
ing steps, especially compression and resizing, applied to
images as soon as they are uploaded on a social network.
These post-processing steps may significantly modify and
hide the artifacts highlighted before and should be always
taken into account when designing a forensic detector.

Fig.4 shows some interesting examples. We consider im-
ages generated by Stable Diffusion and show, on the top-
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Figure 4. Effect of post-processing operations on the autocorrela-
tion of noise residuals. We consider Stable Diffusion images and
apply to them different operations to see how the autocorrelation
changes. In some cases the original generation traces (top-left) are
completely hidden by post-processing artifacts.

Compression 99 Compression 95

left corner, the autocorrelation function observed in the ab-
sence of any post-processing. A clear regular pattern is
visible which suggests the artificial nature of these images
and may even be used to trace back the individual generator
used. In the other slots, we show the autocorrelation func-
tion after various types of post-processing, blurring, sharp-
ening, resizing at three different scales, JPEG compression
at three different quality factors. The autocorrelation func-
tion changes more or less markedly depending on the nature
and intensity of the post-processing, but in most cases it can
be hardly associated with the original one. In the presence
of strong JPEG compression, for example, the compression
artifacts dominate the scene and hide completely the gener-
ation artifacts.

4.2. Training dataset bias

In our analysis, we singled out also a further problem that
undermines the reliability of high-frequency fingerprints.
This is exemplified by the images of Fig. 5 relative to the
DM models, where noise residuals exhibit an obvious regu-
lar pattern that may suggest their artificial origin. However,
this is the very same pattern observed in the residuals of
real images JPEG compressed at quality factor Q=75 (see

ImageNet

ADM Latent Diff.

Latent Diff. LSUN bedrooms

Figure 5. Autocorrelation of noise residuals for real and synthetic
images. Top: two diffusion models (ADM and Latent) and the
dataset used for their training (ImageNet). Bottom: two diffusion
models (ADM and Latent) and the dataset used for their training
(LSUN Bedroom). In the first case the JPEG traces (8 x 8 grid)
are barely visible in the training dataset and they are not present in
the generated images. Instead, in the second case they are clearly
visible both in the training dataset and in the generated images.

Fig. 4). Analyzing in more detail the generation pipeline,
we discovered that the dataset used to train the model was
composed entirely by images JPEG compressed at Q=75.
The model learned to include the compression artifacts in
the generated images, that is, it transferred dataset-related
artifacts in the generated image with the potential to trick
fingerprint-based detectors. This example rings also a bell
about the experimental protocol. In fact, most of the times
we do not know the details of the dataset used to train a
model, but such details may well impact the characteristics
of the generated images. A fully reliable analysis must keep
this aspect under control.

Interestingly, the ability of GANs models to transfer the
same fingerprints from training data to the generated images
has been exploited to develop an approach to protect syn-
thetic images by embedding the same artificial fingerprint
as proposed in [57].

4.3. Fidelity to natural images

Natural images are known to exhibit strong statistical
regularities in the frequency domain. In particular, sev-
eral studies [4, 52] observed that the average power spec-
trum decades with a 1/ law, with @ ~ 2. Moreover, it
has been also recognized [50, 53] that the power spectrum
is far from isotropic, with power concentrated especially at
the horizontal and vertical orientations and much less at the
others. These may be precious pieces of information to-
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Figure 6. Radial spectrum power density. Synthetic images are compared with the real images used for training the correspondent model.
Real images (green) fit very well the expected theoretical curve (dotted).

wards the detection of synthetic images. Indeed, consid-
ering their good photorealism and high semantic quality,
we expect their spectra to be very similar to those of real
images, at low frequencies. However, it is certainly pos-
sible that significant deviations arise at mid-high frequen-
cies, not because of generation artifacts but due to the in-
ability to correctly replicate the statistics of natural images.
This conjecture is indirectly supported also by the literature
where there is wide agreement on the superior performance
of dual-stream detectors, which exploit both high-frequency
artifacts and original RGB images. With this approach, the
detector has the opportunity to analyze not only the highest
frequencies, with their subtle generation artifacts, but also
the intermediate frequency, which carry information on the
signal itself, with beneficial effects.

Analysis of radial spectra. To test this conjecture, we now
analyze the radial spectra of real and synthetic images. The
radial spectrum of the ¢-th image is computed by averaging
the values of its Fourier transform (normalized by its stan-
dard deviation) at distance p from the origin, irrespective of
the angular direction

Xi(p) = (Xi(k, 1)) a(p) )

where A(p) is the annulus between radii p— Ap and p+Ap,
and p goes from O to 0.5 in 128 discrete steps. Then, as
usual, an average on I = 1000 images is taken to char-
acterize the whole source. In our analyses we will dis-
card low and very high frequencies and focus on the range
p €10.2—0.5].

Our goal here is to test whether the radial spectra of
synthetic images follow the same ‘“correct” law as those
of real images. However, to avoid dataset-related biases,
for a given real source (e.g., imagenet), we study only the
images that are generated using the very same source as
training set. With this care, statistical difference can be at-
tributed only to the generation engine. In Fig. 6, for a few
widespread real sources, we compare radial spectra of real
and corresponding generated images. The former (green)
decay with a nearly perfect power law (dashed black). On
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the contrary, all radial spectra of synthetic sources devi-
ate more or less markedly and in one or more frequency
ranges from that law. Generally, but not always, real images
seem to possess a richer content at the intermediate frequen-
cies. Only for the FFHQ dataset, the radial spectra of some
synthetic sources approximate pretty well that of the real
source. However, the FFHQ dataset is composed by images
that have been interpolated, that is low-pass filtered, a pro-
cess that inevitably modifies the original spectral content
and makes it indistinguishable from that of some synthetic
images. In hindsight, this further supports our conjecture.

Analysis of angular spectra. A similar analysis is carried
out for the angular spectra, where now

Xi(0) = (X[ (k, 1)) o) (8)

C(6) is a double cone between angles 6 — Af and 6 + A6,
and 0 goes from O to 7 in 16 discrete steps. Note that
the non-informative low-pass content is filtered beforehand
with cut-off frequency 0.1. The resulting plots are reported
in Fig. 7(top) for the same real and synthetic sources as be-
fore. Mostly, the very same considerations already done for
radial spectra apply. The only exceptions are observed again
for the FFHQ dataset and for the same reasons as before.
In this case, there is no theoretical reference pattern from
the literature. We observe again significant deviations from
the angular spectra of the real sources (green). Such devia-
tions can be better appreciated in the plots of Fig. 7(bottom),
showing the square root of the Fisher’s discriminant ratios

ps(0) — pio(0)
a2(0) + a5 (0)

where ps(0) = Xs(0) and po(0) = Xo(6) are the mean
angular spectra of synthetic (s) and real (0) images, respec-
tively, and 02(6), 02 (6) the corresponding variances. In this
case the real source is represented by the green unit circle.
Finally, it is worth noting that the StyleGAN2 and Style-
GAN3 models better fit the spectral distribution of real im-
ages. For StyleGANS3, this is justified by the development
of GAN architectures that were able to avoid aliasing [26].

Fi(0) = 9
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Figure 7. Angular spectrum power density (top) and the square-root of Fisher’s discriminant ratio applied at each direction (bottom).

5. Conclusions

Generators of synthetic images are becoming more and
more sophisticated. Casual viewers are already unable to
tell real images from fake ones and even forensic tools
struggle to cope with the rapid progress of new models.
In this context, brute-force detectors, even trained on huge
amounts of data, may not be up to the task, especially when
asked to generalize to new generators. Therefore, it is im-
portant to single out and possibly exploit all features that
distinguish real from fake data. In this work, we analyzed
a large number of modern and popular generators looking
for such features both in the spatial domain and in the fre-
quency domain. In both domains we relied on second-order
statistics, autocorrelation functions and power spectra.

This investigation provides some interesting results. On
one hand, even the most sophisticated architectures keep
generating artifacts that can be exploited for detection.
These may be more visible in the spatial or in the spec-
tral domain and both should be always explored. In ad-
dition, generators do not seem able to mimic the spectral

distribution of real images at the mid-high frequencies and
radial and angular spectra may help expose such discrepan-
cies. Finally, we noted that a strongly biased training set
may teach the model to transfer the very same biases in the
generated images, a possible problem for both generators
and detectors. In future work we will pursue the design of
forensic detectors based also on these traces.
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