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Abstract

Recent advancements in language-image models have
led to the development of highly realistic images that can
be generated from textual descriptions. However, the in-
creased visual quality of these generated images poses a po-
tential threat to the field of media forensics. This paper aims
to investigate the level of challenge that language-image
generation models pose to media forensics. To achieve this,
we propose a new approach that leverages the DALL-E2
language-image model to automatically generate and splice
masked regions guided by a text prompt. To ensure the cre-
ation of realistic manipulations, we have designed an an-
notation platform with human checking to verify reasonable
text prompts. This approach has resulted in the creation of a
new image dataset called AutoSplice, containing 5,894 ma-
nipulated and authentic images. Specifically, we have gen-
erated a total of 3, 621 images by locally or globally manip-
ulating real-world image-caption pairs, which we believe
will provide a valuable resource for developing generalized
detection methods in this area 1. The dataset is evaluated
under two media forensic tasks: forgery detection and lo-
calization. Our extensive experiments show that most media
forensic models struggle to detect the AutoSplice dataset as
an unseen manipulation. However, when fine-tuned models
are used, they exhibit improved performance in both tasks.

1. Introduction
The proliferation of digital media and AI technology

have made it easier to manipulate and fabricate digital con-
tent. In recent years, the rapid development of power-
ful deep generative models, such as Variational Autoen-
coders (VAEs) [14, 35], Generative Adversarial Networks
(GAN) [32, 33], diffusion-based models [16, 56], and the
latest large-scale language-image (LLI) models [22, 53–55,
73], have brought new challenges to the authentication of
digital media. The generated images have become increas-

1The AutoSplice dataset is available from https://github.com/
shanface33/AutoSplice_Dataset

Figure 1. Comparison of our text-prompt-based image manipula-
tion pipeline and traditional manual pipeline.

ingly realistic and convincing so that it can be difficult for
human eyes to discern as artificial [59, 67].

Many efforts [29, 63, 66, 67] have investigated the chal-
lenges of GAN-generated images to media forensics due to
the surge of GAN generation models, such as ProGAN [30],
BigGAN [3], StyleGAN [32], etc. In addition, synthetic im-
ages from diffusion models can be identified with high ac-
curacy using similar diffusion models in training, as demon-
strated by [9]. The majority of previous studies have fo-
cused on entire synthesis using generative models. How-
ever, with the emergence of large-scale language-image
models, local image manipulations guided by text prompts
have become more accessible. Local manipulation of image
regions, regardless of size, tends to be more realistic and
challenging to detect than entire synthesis. In contrast to
local manipulation techniques such as manual copy-move,
slicing, or inpainting as described in [64], the latest lan-
guage and vision models such as DALL-E [53, 54] allow
for fully automatic and realistic local edits to images guided
by a text prompt while preserving semantic information and
stylistic elements, as shown in Figure 1. These models offer
improved generation efficiency, image quality, and content
flexibility compared to traditional local manipulation meth-
ods, and potentially revolutionize image manipulation.

A key question we investigate in this paper is: how much
threat does the state-of-the-art language-image model pose
to the current media forensic techniques? To explore this
question, we first create a novel text-prompt manipulated
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image dataset using DALL-E2 2. To create high-quality ma-
nipulations, we designed a semi-automatic annotation plat-
form with manual checking. To ensure a diverse set of real-
world media data, we utilized caption-image pairs from the
Visual News dataset [43] as source data. Using automatic
media analysis tools and human annotations, we extracted
potential object regions to be manipulated from the images
and parsed and replaced the corresponding text prompts in
the captions. These captions were then taken as input to the
DALL-E2 model for local image manipulation. For each
caption-image pair input, we generated manipulated images
(three by DALL-E2) and the corresponding manipulation
mask. After data cleaning, our AutoSplice dataset contains
3, 621 manipulated images and 2, 273 authentic images.

Our dataset has several advantages over existing relevant
media forensics datasets or methods, including high flexi-
bility in content generation, high diversity in manipulation
region, and good and reasonable generation quality. We use
the large-scale language-image model, DALL-E2, for auto-
matic local manipulation to create realistic forgery images,
unlike previous local image manipulation methods based on
manual and random object copy-move, slicing, or inpaint-
ing. Additionally, we only partially manipulate the image
guided by the input region mask instead of generating the
entire image, unlike recent semantic editing tools that use
diffusion-based LLI models such as DiffEdit [10], Prompt-
to-prompt [25], and Imagic [34]. Thanks to the powerful
DALL-E2 generation model and human annotations, our
dataset contains highly diverse and realistic synthesized im-
ages. We evaluate two media forensics tasks, namely, im-
age forgery detection and image manipulation localization,
on the AutoSplice dataset with lossless and lossy compres-
sion. Results show that pre-trained methods have limited
generalization ability and unreliable prediction in detecting
AutoSplice images. Models with fine-tuning on the dataset
achieve improved performance, but also show vulnerability
to compression.

2. Related Work
2.1. LLI Synthesis Models

Recent advancements in attention-based transformer and
diffusion models have significantly improved text-to-image
generation in the past two years. Several large-scale
language-image models have been developed. The DALL-E
model [54], proposed by OpenAI in 2021, uses an autore-
gressive transformer to achieve high-quality image genera-
tion on the MS-COCO dataset [40] without using any train-
ing labels. Other models, such as CogView [17], Parti [70],
and Make-A-Scene [22], have also trained autoregressive
transformer models on text and image tokens for text-to-
image generation. In 2022, an updated version of DALL-E,

2https://github.com/lucidrains/DALLE2-pytorch.

DALL-E2 [53], was developed using a diffusion model with
CLIP image embeddings, making it computationally more
efficient and able to produce higher-quality and more di-
verse samples. Other models, such as GLIDE [50], Stable-
Diffusion [55], and Imagen [57], have also used diffu-
sion models to improve text-to-image synthesis. Inspired
by these powerful LLI synthesis models, several studies
have developed text-guided image editing models, includ-
ing DiffEdit [10], Prompt-to-prompt [25], Null-text Inver-
sion [47], Imagic [34], and Muse [5]. These models apply
local semantic editing to an image given a text input (with
the desired edit) and an optional scene layout (segmenta-
tion map). However, their optimization tends to maximize
the similarity to the original image while maintaining the
ability to perform meaningful editing on local regions. This
kind of entire synthesis can be easily identified if seen in
training data [9]. To create more challenging fake media,
we utilize the DALL-E2 model with high-quality local im-
age editing techniques, which can generate text-guided pix-
els only in erased image regions.

2.2. Image Forensic Datasets

Two types of fake media datasets are relevant to our
work: AI-synthesized image datasets and local image ma-
nipulation datasets. Several large-scale AI-synthesized im-
age datasets have been collected from various GAN and
VAE models, including DFFD [13] with GAN-based face
attribute manipulations and entire face synthesis, CNNDe-
tection [66] created using 11 CNN-based image genera-
tors, DF 3 [28] with entire face generation from six gen-
eration models (i.e., StyleGAN2 [33], StyleGAN3 [31],
3DGAN [4], Taming Transformers [20], LSGM [62], and
Stable Diffusion [55]), and DMimageDetection [9] with
diverse images from different GAN and diffusion mod-
els. The recent diffusion-based generation models are a
class of likelihood-based models [51], which perturb data
through successive addition of Gaussian noise and learn to
recover the data by reversing this noising process. Although
diffusion-based models achieve superior generation quality
to GAN models [48, 60], a study [9] showed that current
GAN image detectors can achieve near-perfect detection on
similar diffusion models when trained with images gener-
ated with the diffusion models.

For local image manipulation, current research primar-
ily focuses on techniques such as image slicing and copy-
move. These methods involve copying and pasting specific
regions of an image onto another part of the same image
or a different one. Several widely used datasets, includ-
ing Columbia [26, 49], CASIA [19], NIST16 [1], Cover-
age [68], Realistic Tampering [37], and IMD2020 [52], of-
fer various types of locally manipulated images that are cre-
ated either by manual operations or random slicing. How-
ever, these datasets have certain limitations, such as small
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Table 1. Summary of previous image manipulation datasets and our work.

Dataset Year # Forged Image # Authetic Image Image Size Format Manipulation Method
Columbia [49] 2004 912 933 128× 128 BMP Random
Columbia [26] 2006 180 183 757× 568 - 1152× 768 TIF Random
NIST16 [1] 2016 564 875 500× 500 - 5616× 3744 JPEG Manual
CASIA v1 [19] 2013 921 800 374× 256 JPEG Manual
CASIA v2 [19] 2013 5,123 7,200 320× 240 - 800× 600 JPEG, BMP, TIF Manual
Coverage [68] 2016 100 100 400× 486∗ TIF Manual
Realistic
Tampering [37] 2016 220 220 1920× 1080 TIF Manual

IMD2020 [52] 2020 2,010 414 1062× 866∗ JPEG, PNG Collected from Internet
AutoSplice (ours) 2023 3,621 2,273 256× 256 - 4232× 4232 JPEG LLI model

* Using the average image size.

data size (e.g., Columbia, Coverage, and NIST16), low
authenticity level (e.g., Columbia’s random region copy-
move), or low flexibility and efficiency in generation due
to careful and manual operations (e.g., CASIA and Realis-
tic Tampering).

Recent advances in large-scale language-image models
have demonstrated remarkable abilities in text-guided im-
age manipulation and generation. Leveraging the power
of these models, we introduce AutoSplice, a text-prompt
guided image manipulation dataset that is built using the
DALL-E2 model for automatic image editing. Table 1 pro-
vides further details regarding the existing image local ma-
nipulation datasets and our AutoSplice dataset.

2.3. Image Forgery Detection

The advancement of image forgery detection methods is
a critical step in identifying manipulated/synthetic images
for media forensics. Deep learning techniques have become
increasingly popular for designing effective image forgery
detectors. Most approaches consider forgery detection as
a binary classification task and utilize well-designed deep
neural networks to learn discriminative features automati-
cally. Studies in this area can be divided into two categories:
image-level forgery detection and pixel-level forgery detec-
tion (i.e., localization).

The former category concentrates on extracting global
artifacts that synthesis models leave on the entire image,
such as using augmented CNN models [66], frequency anal-
ysis [21], and re-synthesis residuals [24]. To improve the
generalization ability for local image manipulation detec-
tion, recent studies [15, 28, 29, 41, 74] demonstrate the ef-
fectiveness of fusing local and global features in detecting
different types of image forgery.

For manipulation localization, which aims to identify
modifed image regions at the pixel level, existing meth-
ods mainly focus on identifying image tampering involv-
ing copy-move, splicing, removal, and faceswap. A subset
of techniques formulates this task as a local anomaly de-
tection problem and designs methods for capturing anoma-
lies [6, 11, 69]. Several methods [2, 38, 39, 42, 45] uti-

lize compression artifacts for forgery detection consider-
ing that the manipulation often involves double or more
times of compressions. In addition, a branch of methods
explores distinctive noise patterns in forged images, such
as the RGB-N model [71] fusing RGB image content and
image noise features, Noiseprint model with Siamese Net-
work [12], [36], and ViT-VAE [6] to combine Noiseprint,
High-pass filtering residuals, and Laplacian edge maps us-
ing Vision Transformer (ViT).

Given that the latest LLI models offer a powerful tool
for realistic image generation and manipulation, presenting
a potential threat of their misuse for spreading disinforma-
tion, our goal is to investigate the performance of current
detectors on the newly created synthetic images. We will
also pay particular attention to the detectors’ ability in chal-
lenging social-network scenarios with image resizing and
compression.

3. AutoSplice Dataset

To evaluate the difficulty of detecting media generated
by recent LLI models using current forensic techniques, we
introduce a new dataset called AutoSplice. In this section,
we provide a comprehensive overview of the AutoSplice
dataset creation process. The entire generation pipeline is
illustrated in Figure 2. We begin by outlining the data pre-
processing techniques and human annotation process. Next,
we describe the data cleaning process, followed by a sum-
mary of the dataset and an analysis of its statistics.

3.1. DALL-E2

DALL-E2 [53] is a generative model that uses multiple
modes to create synthetic images based on given text in-
puts. The model utilizes diffusion models to produce im-
ages based on CLIP image embeddings. Unlike traditional
image synthesis approaches, DALL-E2 can also perform
image inpainting by using both the input text and a region
mask.
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Figure 2. Pipeline of our text-prompt-based manipulation and annotation.

3.2. Dataset Construction

In this section, we introduce the details of the construc-
tion of the AutoSplice dataset.

3.2.1 Pre-processing

The pre-processing step for the DALL-E2 model involves
providing a manipulation mask and a contextual text de-
scription to perform local image editing. In order to gen-
erate realistic manipulations, we propose using a specific
object region with a modified caption where the correspond-
ing text-prompt to the object is replaced with a target gen-
eration term. To achieve this, we use an object detection
model to extract a list of object regions and a text pars-
ing tool to segment text terms. We compare these terms
with corresponding object-term pairs to facilitate further re-
placement and manipulation. Specifically, we use the Visual
News dataset [43], which contains over one million news
images along with their corresponding captions and meta-
data obtained from reputable real-world news sources (The
Guardian, BBC, USA TODAY, and The Washington Post).
This dataset has been utilized for various media forensic
tasks, including the media manipulation detection [58] and
text-image inconsistency detection [27]. For each sample
in Visual News, we utilize the Detic model [72] to extract
and segment object regions with detected object tags in the
image. We also use spaCy 3 for sentence segmentation and
noun term extraction, as shown in Figure 2. Human anno-

3https://github.com/explosion/spaCy.

tations are then used to select the object with corresponding
descriptions in the caption, and input target terms to replace
the object description in the caption.

3.2.2 Human Annotations

Five annotators who are graduate and undergraduate stu-
dents with professional backgrounds and have a clear un-
derstanding of the data annotation task for DALL-E2 input,
strictly follow the steps outlined in Figure 2 during the data
annotation process.

1. Select the matching object region tag in the real-world
image and the corresponding text description term in
the caption (if present).

2. Provide a target generation term that is similar but in-
consistent with the original term and image.

3. Ensure that the modified caption has the correct syntax.

For each caption-image sample with a matched object-term
pair, human annotations provide the two required inputs for
the DALL-E2 model to perform local image generation: the
segmented object region as the erased manipulation mask
and the modified caption as the text prompt. The DALL-
E2 model returns a group of three manipulation outputs for
each generation.

3.2.3 Post-processing

To address the limitations of the DALL-E2 model in gener-
ating human, text, and abstract concepts [57], we conducted
manual data cleaning to filter out images with visible visual
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artifacts or caption-image pairs with undesirable consisten-
cies. Given an original image-caption pair with the swapped
caption and three DALL-E2 generated images, annotators
were required to assess the visual quality of each generated
image and identify images with good quality (i.e., no obvi-
ous artifacts). Since the definition of “good quality” is sub-
jective and may vary among different annotators, each im-
age was assessed multiple times by different annotators. We
only retained images that received consistent labels from at
least three annotators.

The high-quality DALL-E2 images were resized to
match the dimensions of their corresponding authentic im-
ages. Despite being initially in PNG format, we compressed
the generated DALL-E2 images using JPEG for two rea-
sons. Firstly, their corresponding authentic images included
in our dataset are in JPEG format. It is essential to eliminate
format-level clues in the binary image forgery classification
task. Secondly, JPEG is the most important and widely used
image compression format [61], particularly on social me-
dia and websites, due to its simplicity and efficiency. There-
fore, we chose both lossless (with a JPEG quality factor of
100) and gently lossy compression (with a quality factor
of 90) formats to produce two variations of our DALL-E2
dataset.

3.3. Dataset Summary

Our AutoSplice dataset includes 3, 621 high-quality ma-
nipulated images and 2, 273 authentic images for each com-
pression version. The data has been cleaned, and manipu-
lation masks have been applied, allowing for further eval-
uation in both image forgery detection and image manip-
ulation localization tasks. Figure 3 presents statistical in-
formation about the size of the manipulation region within
the dataset, indicating that the dataset has a high diversity
in the manipulation region. We further show some image
examples in Figure 4.

4. Experimental Evaluation

This section outlines the evaluation experiments con-
ducted on the AutoSplice dataset using state-of-the-art
image-level and pixel-level forgery detection methods. The
first experiment examines the generalization ability of ex-
isting pre-trained detectors to the LLI model manipulated
images. Following this, we analyze the performance limits
of these detectors in in-domain testing scenarios, where the
models are fine-tuned on our AutoSplice dataset for both
detection and localization tasks.

4.1. Evaluation Baselines

We evaluated five image forgery detection methods on
our dataset: CNN-aug [66], ResNet50 Nodown [23], Be-
yondtheSpectrum [24], PSM [29], and GLFF [28]. These

Figure 3. Statistical distribution of AutoSplice dataset in manipu-
lation region size.

Figure 4. Examples in our AutoSplice dataset. The first column
shows authentic images, while the second column displays forged
images. The third column shows forgery masks.

models were chosen because they have demonstrated ex-
cellent performance in detecting image forgery, have been
evaluated on both globally and locally manipulated images,
and provide open-source codes and pre-trained models.

For pixel-level forgery detection and localization, we
evaluated seven techniques that employ different feature
learning strategies: Noiseprint [12], ManTra-Net [69],
ForensicsGraph [46], CAT-Net [39], MVSS-Net [7], PSCC-
Net [44], and ViT-VAE [6]. Table 2 presents detailed in-
formation on the feature design, training set, and software
codes of these baseline methods.

4.2. Evaluation Metrics

To detect binary image forgery, we assign Positive (1) to
the tampered image/pixel and Negative (0) to the authentic
image/pixel. In image-level detection, we use standard met-
rics such as Area Under ROC Curve (AUC), True Positive

897



Table 2. Image forgery detection and localization baselines
Reference Year Feature Training set Software Code
CNN-aug [66] 2020 Augmented CNN features ProGAN [66] (720K images) https://github.com/PeterWang512/CNNDetection
ResNet50
Nodown [23] 2021

No down-sampling
CNN features ProGAN [66] (720K images) https://github.com/grip-unina/GANimageDetection

Beyondthe-
Spectrum [24] 2021 Re-synthesis residuals ProGAN [66] (720K images) https://github.com/SSAW14/BeyondtheSpectrum

PSM [29] 2022 Global & local features ProGAN [66] (720K images) https://github.com/littlejuyan/FusingGlobalandLocal
GLFF [28] 2022 Multi-scale features ProGAN [66] (720K images) https://github.com/littlejuyan/GLFF

Noiseprint [12] 2019 Noise residuals 4 datasets with 125 cameras https://grip-unina.github.io/noiseprint/
ManTra-Net [69] 2019 Anomalous features 4 synthetic datasets https://github.com/ISICV/ManTraNet
ForensicsGraph [46] 2020 Similarity graph 4 million image patches from 80 cameras https://gitlab.com/omayer/forensic-graph
CAT-Net [39] 2021 Compression artifacts 4 synthetic datasets (960K images) https://github.com/mjkwon2021/CAT-Net
MVSS-Net [7] 2021 Multi-view features 1 dataset (CASIA v2) https://github.com/dong03/MVSS-Net
PSCC-Net [44] 2022 Spatio-channel correlation 0.38 million images https://github.com/proteus1991/PSCC-Net
ViT-VAE [6] 2023 Multi-modal features −∗ https://github.com/media-sec-lab/ViT-VAE

* Using run-time training where the ViT-VAE model requires an independent training phase for each test image.

Rate (TPR), and False Positive Rate (FPR). For pixel-level
detection, we calculate F1 score, Intersection over Union
(IoU), precision, and accuracy (ACC) by comparing the re-
sults with the binary ground-truth mask using a fixed thresh-
old of 0.5, as done in previous studies [6–8, 18, 65]. The
average scores for all testing images are reported.
Experiment Settings. To evaluate our dataset, we adhered
to the parameter settings used in the baseline implementa-
tion for each task. During the fine-tuning process, we set
a 6:4 split between training and testing data to ensure that
there was no overlapping between the two sets.

4.3. Comparisons on Image Forgery Detection

4.3.1 Pre-trained Models

We started by using five pre-trained models for image
forgery detection and tested their ability to identify the Au-
toSplice forgery. The results, including AUC, TPR, and
FPR, are presented in Table 3. Our analysis shows that all
models trained on the ProGAN dataset [66], which includes
720K images (360K real images and 360K fake images
across 20 object categories), experienced a performance de-
crease in detecting image forgery in the AutoSplice dataset.
Only the ResNet Nodown [23] model achieved the best
AUC on two compression sets. All other models had an
AUC lower than 0.600. The low TPR and FPR scores sug-
gest that most LLI model forged images were incorrectly
classified as authentic, whereas authentic images were cor-
rectly identified. Additionally, all models performed poorly
on JPEG-90 images with mild compression, indicating that
the compression process reduces the distinguishability of
features.

4.3.2 Fine-tuned Models

We fine-tuned four models with training codes on the Au-
toSplice training dataset, after considering that data-driven
classification methods tend to perform better when the do-
main discrepancy is alleviated [44]. To ensure that com-
pression artifacts did not influence the binary forgery de-
tection task, we compressed the original images produced

by the DALL-E2 model using the same JPEG compression
quality factor (75 4) as the authentic images derived from
Visual News dataset [43]. We evaluated the detection per-
formance on two testing subsets (JPEG-100 and JPEG-90)
and reported the results in Table 4. As expected, most meth-
ods showed a significant improvement in the detection AUC
and TPR when evaluated in the in-domain testing scenario.
The CNN-aug [66] achieved the best performance on both
compression sets. However, after fine-tuning, most methods
had a significant increase in FPR, indicating that a greater
number of authentic images were incorrectly classified.

Table 3. Image forgery detection results on AutoSplice dataset
using pre-trained models. Best results are shown in bold.

Method JPEG - 100 JPEG - 90
AUC↑ TPR↑ FPR↓ AUC↑ TPR↑ FPR↓

CNN-aug [66] 0.597 0.025 0.004 0.551 0.004 0.004
ResNet50
Nodown [23] 0.750 0.070 0.002 0.664 0.004 0.002

Beyondthe-
Spectrum [24] 0.547 0.335 0.290 0.503 0.303 0.290

PSM [29] 0.586 0.038 0.002 0.535 0.005 0.002
GLFF [28] 0.572 0.055 0.013 0.526 0.016 0.013

Table 4. Image forgery detection results on AutoSplice dataset
using fine-tuned models. Best results are shown in bold.

Method JPEG - 100 JPEG - 90
AUC↑ TPR↑ FPR↓ AUC↑ TPR↑ FPR↓

CNN-aug [66] 0.979 0.981 0.372 0.948 0.932 0.372
Beyondthe-
Spectrum [24] 0.797 0.785 0.341 0.787 0.762 0.341

PSM [29] 0.880 0.847 0.257 0.882 0.841 0.257
GLFF [28] 0.926 0.776 0.077 0.908 0.735 0.077

4.4. Comparisons on Image Forgery Localization

4.4.1 Pre-trained Models

We evaluated seven baselines for image forgery localiza-
tion, and reported their pixel-level metrics in Table 5. Re-

4The JPEG-75 compressed images are included in our AutoSplice
dataset along with JPEG-100 and JPEG-90 versions at https://
github.com/shanface33/AutoSplice_Dataset.
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Table 5. Image forgery localization results on AutoSplice dataset using pre-trained models. Best results are shown in bold.

Method Forged JPEG-100 Forged JPEG-90 Authentic
F1↑ IoU↑ Precision↑ ACC↑ F1↑ IoU↑ Precision↑ ACC↑ ACC↑

Noiseprint [12] 0.333 0.217 0.390 0.480 0.316 0.205 0.373 0.467 0.594
ManTra-Net [69] 0.179 0.120 0.639 0.586 0.062 0.035 0.586 0.716 0.992
ForensicsGraph [46] 0.362 0.289 0.393 0.530 0.354 0.253 0.438 0.518 0.584
CAT-Net [39] 0.751 0.648 0.884 0.827 0.676 0.579 0.833 0.793 0.933
MVSS-Net [7] 0.330 0.238 0.734 0.677 0.141 0.093 0.516 0.612 0.991
PSCC-Net [44] 0.558 0.447 0.899 0.725 0.056 0.036 0.295 0.591 0.998
ViT-VAE [6] 0.156 0.115 0.245 0.560 0.244 0.183 0.275 0.534 0.835

Figure 5. Localization results of pre-trained models in detecting AutoSplice forged images with different manipulation regions. The images
in odd rows are compressed using JPEG-100, while the images in even rows are compressed using JPEG-90.

sults varied significantly across models due to their different
training data and forensics cues (detailed in Table 2). The
CAT-Net [39] model performed the best thanks to its two-
stream network that learns compression artifacts from both
RGB and DCT domains, as well as its extensive and diverse
training data. The PSCC-Net [44] also outperformed other

methods on the JPEG-100 testing set, but its performance
degraded significantly on the JPEG-90 set. Most mod-
els showed poor generalization ability on the AutoSplice
dataset, with F1 and IoU lower than 0.37 and 0.29, re-
spectively. For authentic images, where every pixel in the
ground truth mask is negative, F1, IoU, and Precision met-
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Table 6. Image forgery localization results on AutoSplice dataset using fine-tuned models. Best results are shown in bold.

Method JPEG - 100 JPEG - 90 Authentic
F1↑ IoU↑ Precision↑ ACC↑ F1↑ IoU↑ Precision↑ ACC↑ ACC↑

CAT-Net [39] 0.762 0.658 0.882 0.837 0.693 0.594 0.844 0.805 0.927
PSCC-Net [44] 0.862 0.794 0.847 0.919 0.771 0.693 0.775 0.886 0.993

rics are not appropriate. We reported the ACC in Table 5,
and most methods achieved high accuracy in detecting au-
thentic images derived from real-world media data.

We want to note that the optimal threshold for each lo-
calization method may not be exactly 0.5, and it varies for
different models and images. To eliminate the influence of
the threshold, we further compared several examples with
the predicted masks of these models without binarizing the
map. Figure 5 shows the results on AutoSplice forged im-
ages with two compression versions and different manipula-
tion regions. We observed the influence of even mild com-
pression on the localization performance when comparing
the results in the odd rows on JPEG-100 compressed im-
ages and even rows on JPEG-90 images. Moreover, the size
of the manipulation region appeared to be another crucial
factor affecting the accuracy of localization. The major-
ity of models struggled to detect forgeries containing large
tampered regions in the AutoSplice dataset.

4.4.2 Fine-tuned Models

We fine-tuned two localization methods, CAT-Net [38, 39]
and PSCC-Net [44], on the AutoSplice training set using
JPEG-75 compressed images (as previously described in
Section 4.3.2) to evaluate their performance in localizing
pixel-level forgery. As expected, both models outperformed
pre-trained models on the JPEG-100 and JPEG-90 testing
sets, with the PSCC-Net model demonstrating significant
improvement. However, the performance on the JPEG-90
set decreases obviously in comparison to the results on the
JPEG-100 set, which aligns with the findings from Table 5.

5. Conclusions

This paper investigates the challenge posed by language-
image generation models to media forensics and proposes a
new approach that utilizes the DALL-E2 language-image
model to splice masked regions guided by a text prompt.
To ensure the creation of realistic manipulations, we have
developed an annotation platform with human verification
to validate reasonable text prompts. The approach has re-
sulted in the creation of a new image dataset called Au-
toSplice, containing 5,894 manipulated and authentic im-
ages, including 3, 621 images generated by locally or glob-
ally manipulating real-world image-caption pairs, which we
believe will be a valuable resource for future research. We
have evaluated the effectiveness of several state-of-the-art
forgery detectors in various testing scenarios. However,

our experiments with pre-trained models revealed unsatis-
factory generalization performance in forgery detection and
localization. Including our dataset in training could enhance
the performance of existing models during in-domain test-
ing. This finding emphasizes that fine-tuning on datasets
with homogeneous characteristics results in significant per-
formance improvements in media forensics. Neverthe-
less, achieving balanced performance across different JPEG
compression quality factors and tampered region sizes re-
mains a challenging task for forgery localization.

For future works, we will consider: first, exploring more
advanced models to generate more realistic manipulated im-
ages to further challenge media forensics. Secondly, in-
vestigating approaches to improve the generalization per-
formance of forgery detection and localization models to
handle various types of image manipulations. Thirdly, con-
ducting experiments to evaluate the performance of existing
forgery detection and localization models on the proposed
dataset under various testing scenarios and compare them
with state-of-the-art approaches. Last but not least, explor-
ing the potential of transfer learning approaches to enhance
the performance of existing models on new datasets with
limited training samples.

6. Impact Statement
The recent advancements in language-image models

have led to highly realistic image generation from textual
descriptions, which can pose a potential threat to media
forensics. This paper provides a new image dataset called
AutoSplice, created using the DALL-E2 language-image
model to splice masked regions guided by a text prompt.
The unsatisfactory generalization performance of existing
forgery detection and localization models on the proposed
dataset highlights the need for further investigation and im-
provement in this area. Future works proposed in this pa-
per, such as exploring more advanced models and transfer
learning approaches, aim to address these challenges and
contribute to the advancement of media forensics research.
Ultimately, this work will help detect image manipulations
in various applications, including social media, journalism,
and law enforcement, and contribute to ensuring the authen-
ticity and reliability of digital media content.
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