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Abstract

Talking head videos have gained significant attention in
recent years due to advances in AI that allow for the syn-
thesis of realistic videos from only a single image of the
speaker. Recently, researchers have proposed low band-
width talking head video systems for use in applications
such as videoconferencing and video calls. However, these
systems are vulnerable to puppeteering attacks, where an
attacker can control a synthetic version of a different target
speaker in real-time. This can be potentially used spread
misinformation or committing fraud. Because the receiver
always creates a synthetic video of the speaker, deepfake
detectors cannot protect against these attacks. As a re-
sult, there are currently no defenses against puppeteering
in these systems. In this paper, we propose a new defense
against puppeteering attacks in low-bandwidth talking head
video systems by utilizing the biometric information inher-
ent in the facial expression and pose data transmitted to
the receiver. Our proposed system requires no modifica-
tions to the video transmission system and operates with low
computational cost. We present experimental evidence to
demonstrate the effectiveness of our proposed defense and
provide a new dataset for benchmarking defenses against
puppeteering attacks.

1. Introduction

Talking head videos are a type of video where the main
focus is on a speaker being filmed from the shoulders up
and directly addressing the camera. Advances in AI have
allowed for the development of systems that can synthesize
realistic talking head videos [7, 44, 48]. In recent years, re-
searchers have made significant progress in creating “one
shot” talking head synthesis networks [20, 42, 43, 46, 47].
This new technology enables the creation of realistic talking
head videos of a speaker using only a single image of that
speaker. As a result, synthetic talking head videos can now

Figure 1. High-level overview of our proposed defensive system.

be easily created for positive uses ranging from virtual asis-
stants and movie production, to potentially malicious uses
such as deepfakes

Recently, researchers have proposed low bandwidth talk-
ing head video systems for use in applications such as
videoconferencing and video calls [1, 14]. These systems
are based on one-shot talking head synthesis networks. In
these systems, a single frame or latent space representation
of a speaker is sent from the sender to the receiver. Af-
ter this initial transmission, the sender only transmits infor-
mation related to facial expression and pose features to the
receiver. Using this information and the initial face repre-
sentation, the receiver synthesizes each frame of the video
in real-time. As a result, the speaker on the sender side can
“drive” the actions of the synthetic version of themselves on
the receiver side in real time. This method significantly re-
duces the bandwidth needed for videoconferencing, as only
the vectors of facial pose and expression information are
transmitted rather than the entire frame itself. This advance-
ment has the potential to greatly improve the quality and
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accessibility of videoconferencing, especially in low band-
width or remote areas.

Talking head videoconferencing systems are unfortu-
nately susceptible to real-time puppeteering attacks, in
which the synthetic video generated at the receiver side does
not match the person driving the video. To carry out such at-
tacks, the attacker first sends an image of the target speaker
to the receiver during the initialization phase of the video.
The system then receives the attacker’s facial expression
and pose information, which is used to create a synthetic
video of the target speaker. This allows the attacker to con-
trol a realistic version of the target speaker in real-time, po-
tentially deceiving the viewer on the receiver side.

The ability to puppeteer a target speaker in real-time us-
ing talking head videoconferencing systems poses signif-
icant risks. This capability can be used to spread misin-
formation and disinformation, but it can also enable other
criminal activities such as fraud and defamation. Already,
real-time audio deepfakes have been reportedly used to
commit financial crimes [11]. This trend is expected to be-
come more common if videoconferencing systems are un-
able to protect against puppeteered videos. These videos are
likely to be even more convincing than audio-only deep-
fakes, making them a potent tool for malicious actors. It
is crucial to develop effective security measures to prevent
puppeteering attacks and ensure the authenticity of input
signals in talking head videoconferencing systems.

Currently, there are no defenses against against pup-
peteering attacks in low-bandwidth talking head videocon-
ferencing systems. Initially, this problem may seem identi-
cal to detecting deepfake videos. However, even when these
videoconferencing systems are operating as intended, they
create a synthetic version of the speaker at the receiver, i.e.
the system deepfakes an authentic speaker in order to save
bandwidth. As a result, deepfake detectors are ill-suited to
protecting against puppeteering attacks.

In this paper, we propose a new system to defend against
puppeteering attacks in low bandwidth talking head video-
conferencing systems. Our defensive system exploits the
fact that the facial expression and pose information sent to
the receiver inherently contains biometric information about
the driving speaker. We leverage this information to obtain
measurements of the biometric distance between the driv-
ing and reconstructed speaker. If the biometric distance be-
comes large, this indicates that the driving speaker is a dif-
ferent person than the reconstructed speaker. Our system
then flags the video transmission as a puppeteering attack.

Our proposed system has several desireable properties:
It requies no modifications to the video encoding and trans-
mission system, nor does it require the additional transmis-
sion of side information to detect puppeteering. Instead, it
only utilizes information already available at the receiver.
Biometric features describing the driving and reconstructed

speaker are obtained using compenents already present in
the system. Furthermore, our system operates with a very
low computational cost, making it well suited to real-time
puppeteering detection.

The main contributions of this work are as follows:
• We present the problem of puppeteering attacks in low-

bandwidth talking head videoconferencing systems.

• We demonstrate that facial expression and pose informa-
tion transmitted by the sender inherently contains biomet-
ric information about the driving speaker. We show that
this information can be used to identify discrepencies be-
tween the driving and reconstructed speaker.

• We propose a new defense against puppeteering in low-
bandwidth talking head videoconferencing systems. To
the best of our knowledge, this is the first defense against
puppeteering attacks in these systems. Our defense is re-
quires no modifications to the video encoding and trans-
mission system, and can operate in real time.

• We present a series of experiments to verify the perfor-
mance of our proposed defense. To do this, we develop a
new dataset that can be used for benchmarking defenses
against puppeteering attacks in low bandwidth talking
head videoconferencing systems. We present experimen-
tal evidence that our defense does not exhibit bias in terms
of race/ethnicity and sex .

2. Background Work
Talking Head Video Systems. Talking head video sys-

tems are a type of artificial intelligence-driven technology
used to generate highly realistic and dynamic facial ani-
mations or video sequences. These systems create virtual
characters or “talking heads” that can mimic human-like
speech, facial expressions, and emotions. The primary goal
of talking head video systems is to provide more engaging
and interactive experiences in various applications such as
virtual assistants, video games, film, and telecommunica-
tion. Non-AI-based talking head video systems typically
rely on traditional computer graphics and animation tech-
niques, such as: keyframe animation [26, 36, 41], blend-
shapes [12, 25, 27], morph target [8, 15, 39], facial motion
capture [5, 33, 37], to generate facial animations and move-
ments. These approaches often require more manual inter-
vention, time, expensive equipments and large amount of
expertise compared to AI-based systems. Recent develop-
ments in AI-based ”talking head” systems involve extract-
ing facial features combined with facial expression or emo-
tion features from both source and target videos. These sys-
tems then learn a transfer function that adapts the source’s
features to fit the target’s features, resulting in a more nat-
ural and accurate representation. Notable work using this
paradigm includes Face2Face [42], DaGAN [20], Reenact-
GAN [47], SAFA [43], and X2Face [46].

984



Figure 2. Overview of a low-bandwidth talking head videoconferencing system.

A possible application for talking head video Systems
lies in enhancing low-bandwidth video transmission sys-
tems. In these systems, low utilization of bandwidth can be
achieve in two ways: 1) By transmitting highly compressed
facial embeddings from the sender, which the receiver then
uses to reconstruct the face in the video stream [14, 32]; or
2) The sender initially sends low-level representations of the
face and background, followed by facial landmarks for sub-
sequent frames, allowing the receiver to reconstruct the cor-
responding face and background using this information. [1]

Deepfakes And Synthetic Image Detectors. In or-
der to combat these concerns, researchers have devel-
oped many techniques to detect synthetic media. Some
of these work has focused on detecting deepfakes. Deep-
fake detectors work by leveraging priors about the human
face’s anatomy structure to identify subtle inconsistencies
or artifacts in the generated video. State-of-the-art ap-
proaches [2, 6, 10, 21, 23, 29, 45, 49] use deep learning to do
this and they have achieved very strong results in multiple
public datasets [13, 34, 50]. Other research has been done
to detect synthetic images, as well as identify video edit-
ing and origin. These systems work by looking for either
specific forensic traces left by the image generation pro-
cess, or anomalies in the locally edited media. Notable ap-
proaches includes [3,4,9,16–19,22,24,28,30,31,35,38,40].
However, since these approaches will likely false alarm au-
thentic, self-reenacted videos as being deepfaked, or syn-
thesized, they are not effective in identifying misuse of this
technology.

3. Problem Formulation

In this section, we describe the problem of puppeteering
in low bandwidth talking head video systems. We begin
by describing how these systems operate, including system
components relevant to this paper. Next, we provide details
of how puppeteering attacks are launched.

3.1. Low-Bandwidth Talking Head Videoconferenc-
ing Systems

Low-bandwidth talking head videoconferencing systems
are designed reduce the amount of information that must be
transmitted to a receiver in video conferencing and simi-
lar applications. They do this by encoding a talking head
video of a speaker at the sender side, then transmitting the
encoded information to a receiver. The receiver decodes
the video by using the transmitted information as input to a
generator, which creates a synthetic video of the speaker.

These systems operate by first, sending a representation
x of the speaker’s face to the receiver. This representation
is learned from the initial portion of the video, often the
first video frame. Typically, x is a single video frame of the
speaker containing the speaker’s neutral face or a represen-
tation of the speaker’s face in a latent space learned by a
generative adversarial network (GAN).

At the sender’s side, facial expression and pose informa-
tion ft at time t is extracted from the current frame It using
a system using a system h(·) such that

ft = h(It). (1)

The resulting expression and pose feature vector ft is then
transmitted to the receiver. Additional information, such as
features that capture any motion present in the background
may also be captured and transmitted. These additional fea-
tures are not relevant to this work, and for simplicity we will
omit them further discussion without loss of generality.

The receiver decodes each video frame by using a system
g(·) which takes as input the current expression and pose in-
formation from the sender, along with the representation of
the speakers face sent at the beginning of the transmission.
This produces a reconstructed frame I ′t containing a synthe-
sized version of the speaker’s face with the desired pose and
expression such that

I ′t = g(ft, x). (2)

In many systems, g corresponds to a generator pre-trained
as part of a GAN to synthesize a realistic human face.
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Figure 3. Overview of a puppeteering attack in a low-bandwidth talking head videoconferencing system.

An overview of the complete encoding, transmission,
and decoding process at time t can be seen in Fig. 2 .

3.2. Puppeteering Attacks

The low-bandwidth talking head videoconferencing sys-
tems described above are vulnerable to puppeteering at-
tacks, in which the reeconstructed speaker at the receiver
side is actually controlled in real-time by a different person
at the sender side. An overview of a puppeteering attack
can be seen in Fig. 3.

In a puppeteering attack, an attacker (Speaker A) on the
sender side first obtains a representation x(B) of a target
speaker’s face (Speaker B). When the video transmission is
initiated, the attacker sends x(B) to the receiver instead of
a representation of their own face. After this, they allow
the video system at the sender side to observe their face,
and produce a facial expression and pose vector f (A)

t which
they send to the receiver. The receiver uses f (A)

t along with
x(B) to construct a video frame Ît = g(f

(A)
t , x(B)) with the

face of Speaker B, but with the facial expression and pose of
Speaker A. As a result, the viewer at the receiver side sees a
video of Speaker B that is actually controlled by the actions
of the attacker.

4. Proposed Approach
4.1. Exploiting Biometric Side-Information

In a puppeteered video, the biometric identity of the
driving speaker is different from that of the reconstructed
speaker. Our proposed system leverages this fact to de-
tect puppeteered videos. While the identity of the driving
speaker is not directly observable to the receiver, the re-
ceiver does have access the series of facial expression and
pose vectors ft sent by the driving speaker. These vectors
inherently capture biometric information about the driving
speaker. By analyzing the reconstructed video and com-
paring it to the corresponding ft’s, our system is able to
identify biometric differences between the driving and re-
constructed speaker present in puppeteering attacks.

To gain further intuition how this is possible, let us first

Figure 4. Example showing the effect of puppeteering on facial
landmark postions

examine talking head video systems such as X2Face [46], in
which ft directly corresponds to facial landmark positions
of the driving speaker as part of the driving features. In sys-
tems such as this, if the driving speaker is the same as the
reconstructed speaker, then facial landmark positions ex-
tracted from the reconstructed speaker should closely match
the facial landmark positions of sent by the driving speaker.
This can be seen in the top row of Fig. 4, which shows the
difference between the landmark positions extracted from
a video frame synthesized by X2Face in red and from the
driving speaker in blue. Here, the facial landmarks from
the driving and reconstructed speaker closely align. In gen-
eral, there may be small differences between the landmark
positions from the driving and reconstructed speaker due to
reconstruction error.

If the driving speaker is different than the reconstructed
speaker, then they will not share the same facial geometry.
This will cause facial landmark positions extracted from
the reconstructed video to differ significantly from those
sent in ft. This can be seen in the bottom row of Fig. 4,
which shows the difference between the landmark positions
extracted from a puppeteered video frame synthesized by
X2Face and those from the driving speaker.

We note that some systems, such as SAFA, do not
transmit explicit facial landmark locations as ft. Instead,
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Figure 5. An overview of our propsed defensive system.

these systems encode facial expression and pose informa-
tion through other means, such as a learned embedding.
These embeddings, however, implicitly capture facial land-
mark position and other biometric information about the
speaker. As a result, we are able still able to use these fea-
tures to expose biometric differences between the driving
and reconstructed speaker.

4.2. Detecting Puppeteering

Our proposed system detects puppeteering attacks by ex-
ploiting the biometric information that ft captures about the
driving speaker as described above. A diagram providing an
overview of our system can be seen in Fig. 5.

Baseline Biometric Distance Measurement: First, our
system obtains a baseline measurement of the biometric dis-
tance the reconstructed speaker and the driving speaker. To
do this, we estimate the facial expression and pose features
f ′
t from the reconstructed video frame Î such that

f ′
t = h(Ît). (3)

We note that h is already available to the receiver because
it is required to encode and transmit their face back to the
sender. Next, our system captures the difference between
the driving and reconstructed speaker’s biometric informa-
tion as

dt = m(ft, f
′
t) (4)

where m(·, ·) is an appropriate metric that measures the
difference between ft and f ′

t . In practice, we have found
that using m(ft, f

′
t) = (

∑
k |ft − fp|2)1/2 is sufficient to

achieve strong system performance.
Controlling For Depth Variation: When a speaker

moves farther from the camera, their face becomes smaller.
As a result, the differences between ft and f ′

t caused by
puppeteering also become relatively smaller. The opposite
of this is true when the speaker moves closer to the camera.
Our system must account for this when differentiating be-
tween values of dt cased by puppeteering and those that nat-
urally occur due to imperfect reconstruction of an authentic
speaker.

To do this, our system makes an initial reference esti-
mate r0 of the speaker’s distance from the camera in the
first video frame. At each subsequent frame, we estimate
the speaker’s depth rt and calcualte a depth-calibrated bio-
metric distance ct between the driving and reconstructed
speaker according to

ct = dt

( rt
r0

)
. (5)

Controlling For Natural Reconstruction Errors: As
previously noted, a low-bandwidth talking head video sys-
tem will not perfectly reconstruct an authentic driving
speaker at the receiver. As a result, there will be natural
variation between ft and f ′

t . This variation will be larger at
some times due to temporally isolated conditions that make
it difficult for the video system to accurately synthesize the
driving speaker. This could be due to sudden motion, ir-
regular facial expressions or poses, or a number of other
factors. If only the instantaneous biometric difference ct
is used to detect puppeteering, then our system will false
alarm when this occurs.

To control for these effects, our system calculates a time
averaged value of the biometric distance ∆t between the
driving and the reconstructed speaker as

∆t =
1
W

W−1∑
ℓ=0

ct−ℓ, (6)

where W is the width of a sliding window over which ct
values are averaged.

Puppeteering Detection: Finally, our system uses the
time averaged biometric distance ∆t to detect puppeteering
by comparing it to a detection threshold τ . Because pup-
peteering induces large biometric distances, values of ∆t

greater than τ indicate that the video is puppeteered.

5. Experiments
Below, we present the details and results of a series of

experiments conducted to evaluate the performance of our
proposed defensive system.
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Figure 6. Example of authentic self reenacted videos as well as puppeteered videos in our experimental dataset.

Proposed CNN Ensemble Efficient ViT Cross-Efficient ViT
DaGAN 99.31% 66.80% 76.26% 69.81%
Reenact GAN 94.83% 69.73% 76.96% 68.58%
X2Face 99.80% 68.24% 79.00% 78.15%
SAFA 98.92% 67.35% 74.86% 67.81%
Average 98.03% 68.03% 76.77% 71.09%

Table 1. Puppeteering detection accuracies achieved by our proposed defensive system as well as several leading deepfake detectors.

5.1. Dataset

To conduct our experiments, we created a dataset of talk-
ing head videos reconstructed by the receiver, along with
the facial expression and pose vectors used to reconstruct
them. To do this, we first collected a set of pristine videos
of multiple speakers, which we used to drive a talking head
video system. We gathered these pristine videos by excerpt-

ing segments from celebrity interviews publicly distributed
on Youtube. Each pristine video corresponds to a 20 to 30
second clip of a single, front facing speaker. Three pristine
videos with different backgrounds and settings were col-
lected from each of 24 different celebrities, resulting in a
total of 72 pristine videos. To ensure diversity in our dataset
and to help identify any biases that may be inherent in our
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Figure 7. ROC curves showing the performance of our defensive
system for different talking head video systems.

system, celebrity speakers were chosen to be equally split
across sex (i.e. 12 male and 12 female speakers) as well
as across four racial/ethnic groups: Black, White, Hispanic,
and Asian (i.e. 6 speakers from each group).

The set of pristine videos was then used to create both
authentic and puppeteered talking head videos, as would
be reconstructed by the receiver in a low-bandwidth talk-
ing head video system. Reconstructed talking head videos
were created using four different networks: DA-GAN [20],
SAFA [43], X2Face [46], and ReenactGAN [47]. The set
of facial expression and pose features used to create each
video were also retained.

Using each of the four networks, we created a set of both
authentic self-driven videos as well as a set of puppeteered
videos. Authentic videos were created by using each of the
72 pristine videos to drive a self-driven reconstruction. Pup-
peteered videos of each speaker were created by using a
pristine video from a different speaker to drive the system.
For each speaker, a set of 18 puppeteered videos were made
using two different driving speakers. To produced higher
quality reconstructions, the driving speakers for each pup-
peteered video were selected to match the race/ethnicity and
sex of the target speaker. This process was repeated for a
each of the 24 speakers, resulting in a set of 432 pupeteered
videos per network.

In total, our dataset consists of 2016 talking head videos
corresponding to approximately 14 hours of total video
footage. Examples of this dataset can be seen in Fig. 6.
This dataset can be downloaded at
https : / / gitlab . com / MISLgit / talking -
head-puppeteering-defense/

5.2. System Performance

To assess our system’s overall accuracy, we used it to
identify puppeteering in each of the videos in our dataset.
When conducting these experiments, our system used a
window size of W = 30 frames, corresponding to 1 sec-
ond intervals of each video. Puppeteering detection deci-

Figure 8. Plot showing the puppeteering detection accuracy vs.
temporal averaging window size W .

sions were assessed at a window level. To compare our sys-
tem’s performance to existing approaches, we also analyzed
each video using three leading deepfake detectors: Efficient
ViT [10], Cross-Efficient ViT [10], and CNN Ensemble [6].

Puppeteering detection accuracies obtained by our sys-
tem are shown in Table 1, as well as accuracies obtained by
the three deepfake detection networks used for comparison.
We can see that our system acheives strong puppeteering
detection performance across all four talking head video
systems, with an average detection accuracy of 98.03%.
Additionally, Fig. 7 shows ROC curves capturing the per-
formance of our defensive system on all four talking head
systems. These ROC curves demonstrate that we can
achieve strong puppeteering detection performance at low
false alarm rates. We note that we are still able to achieve
strong performance for SAFA even though facial expression
and pose vector ft used by SAFA do not correspond to ex-
plicit facial landmark positions. Instead, these correspond
to learned abstract landmark representations. Despite this,
we are still able to use SAFA’s ft’s to measure the biometric
distance between the driving and reconstructed speaker.

Comparison With Deepfake Detectors: The results in
Table 1 clearly show that our proposed system significantly
outperforms deepfake detectors. Our system achieves ap-
proximately a 20 percentage point increase in accuracy over
the highest performing deepfake detector (Efficient ViT).
This is not a surprising result, as deepfake detectors are in-
tentionally built to for a different application . We provide
more interpretation of this result in Section 6.

5.3. Effect of Window Size

We conducted additional experiments to examine the ef-
fect of the window size W in (6) on our system’s overall ac-
curacy. To do this, we repeated the experiments described
in Section 5.2, only we let W vary from 1 to 40, i.e. a
single frame to ∼ 1.33 seconds. The results of this experi-
ment were used to create the plots in Fig. 8, which show our
system’s puppeteering detection accuracy vs window size.
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White
male

White
Female

Asian
Male

Asian
Female

Black
Male

Black
Female

Hispanic
Male

Hispanic
Female

DaGAN 98.37% 99.60% 97.04% 98.13% 98.26% 99.15% 99.71% 99.42%
Reenact GAN 94.10% 93.58% 95.27% 95.74% 93.54% 96.08% 94.37% 96.84%
X2Face 99.37% 98.26% 99.46% 97.35% 98.14% 99.31% 98.46% 99.02%
SAFA 99.74% 99.91% 97.10% 98.75% 98.48% 99.23% 98.20% 98.61%
Average 97.99% 97.84% 97.22% 97.49% 97.19% 98.44% 97.44% 98.47%

Table 2. Our system’s puppeteering detection accuracies conditioned on the race/ethnicity and sex of the reconstructed speaker.

From this plot we can see that our system’s accuracy in-
creases with W for all talking head video systems until W
lies between 25 and 30 frames. After this point, the accu-
racy holds roughly constant as W is further increased.

6. Discussion
6.1. Why Deepfake Detectors Perform Poorly

Deepfake detectors are intentionally built to detect deep-
fake videos where a speaker’s face has been generated to
match a target speaker. This is a similar, yet distinct prob-
lem from detecting puppeteering in low-bandwidth talking
head systems. While it is clear that a deepfake detector
should produce a detection when analyzing a puppeteered
video, it is not as clear what these detectors should output
when presented with a authentic talking head video.

In our experiments, deepfake detectors’ most frequent
source of errors corresponded to them them flagging au-
thentic self-driven videos as ‘fake.’ For example, this ac-
counts for the vast majority of puppeteering detection errors
produced CNN Ensemble. This is reasonable, since the face
of the speaker in an authentic talking head video has still
been synthesized using essentially the same means used to
produce a deepfake. We note, however, that Efficient ViT
is able to achieve puppeteering detection perfomances as
high as 79.00%. This is only possible because Efficient ViT
identifies a large portion of self-driven videos as ‘real.’

6.2. Influence of Race/Ethnicity and Sex

To examine our system for implicit biases, we investi-
gated the influence of race/ethnicity and sex on our system’s
performance. Table 2 shows our system’s accuracy con-
ditioned on the reconstructed speaker’s race/ethnicity and
sex. From this table, we can see that the average accura-
cies hold farirly consistent all groups. The standard devia-
tion of our system’s average accuracy for each group was
0.53 percentage points, with all group’s average accura-
cies lying within two standard deviations from the mean.
This indicates that our system is unlikely to produce incor-
rect decisions more frequently for a speakers of a particular
race/ethnicity or sex.

We note that biases inherent in a low-bandwidth talking
head videconferencing system are likely to propogate to our
defensive system. This is because our system uses the ft’s
produced by the video system to measure the biometric dif-
ference between the driving and reconstructed speaker. If
the video system produces worse facial expression and pose
representations for one sex or racial/ethnic group, then our
system will likely perform worse for the same group.

6.3. System Limitations

Our system’s performance depends on biometric infor-
mation about the driving speaker contained in the transmit-
ted facial pose and expression features. If a talking head
system is developed that is able to completely disaggregate
facial expression and pose information from a speaker’s fa-
cial geometry, our system would not be able to defend this
system. Additionally , our system only works if it has ac-
cess to ft’s. Because of this, it is unable to identify pup-
peteered videos that have been fabricated offline then dis-
tributed over the internet such as deepfakes.

7. Conclusion
In this paper, we proposed a new system to defend

against puppeteering attacks in low bandwidth talking head
video systems. Our defensive system exploits the fact that
the facial expression and pose information sent to the re-
ceiver inherently contains biometric information about the
driving speaker, which can be used to identify discrepan-
cies between the driving and reconstructed speaker. Our
proposed system requires no modifications to the video en-
coding and transmission system and can operate in real-
time with low computational cost. We presented a series
of experiments to verify the performance of our proposed
defense and developed a new dataset for benchmarking de-
fenses against puppeteering attacks in low bandwidth talk-
ing head videoconferencing systems.
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