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Abstract

Classification of AI-manipulated content is receiving
great attention, for distinguishing different types of manip-
ulations. Most of the methods developed so far fail in the
open-set scenario, that is when the algorithm used for the
manipulation is not represented by the training set. In this
paper, we focus on the classification of synthetic face gener-
ation and manipulation in open-set scenarios, and propose
a method for classification with a rejection option. The
proposed method combines the use of Vision Transform-
ers (ViT) with a hybrid approach for simultaneous classi-
fication and localization. Feature map correlation is ex-
ploited by the ViT module, while a localization branch is
employed as an attention mechanism to force the model
to learn per-class discriminative features associated with
the forgery when the manipulation is performed locally in
the image. Rejection is performed by considering several
strategies and analyzing the model output layers. The ef-
fectiveness of the proposed method is assessed for the task
of classification of facial attribute editing and GAN attribu-
tion.

1. Introduction
Synthetic manipulation of face images has become ubiq-

uitous and is being increasingly used in a wide variety of
applications [15], thus posing a serious threat to public
trust. Many detectors have been proposed to classify images
forged by generative models as fakes/synthetic [14]. There
are cases where just knowing that the image is fake is not
enough and more information is required on the synthetic
manipulation undergone by the image. This is the case, for
instance, when the synthetic manipulation1 consists of local
attribute editing, rather than in the generation of a synthetic
image from from scratch [26,30], in which case it is prefer-
able to also provide evidence to support the judgment that

1In the following, we generically refer to the case of local GAN manip-
ulation and generation from scratch with the term synthetic manipulation.
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Figure 1. Open set scenario of synthetic manipulation classifica-
tion (classification with rejection option) considered in this paper.

the image is fake, rather than simply saying that the im-
age has been manipulated. Several methods addressed this
problem via binary detectors, judging the image as real or
fake, which also have the ability to localize the manipu-
lation, e.g. outputting binary localization masks or atten-
tion maps [18, 23, 44], or via multi-class classifiers [34],
that classify the type of facial attribute editing performed by
generators. In yet some other cases there is interest in know-
ing the specific type of architecture used to generate the ma-
nipulation (synthetic image attribution), Methods have been
proposed that perform attribution via multi-class classifiers
by relying on artifacts or signatures (fingerprints) left by the
models in the generated images [22, 39].

A common drawback with all the above binary and
multi-class classification approaches is that their applica-
tion is limited to closed-set scenarios. For instance, Gener-
ative Adversarial Network (GAN) attribution methods can
correctly attribute the image only if it comes from a GAN
architecture among those seen during training, and they are
incapable of identifying or revealing unseen GAN types.
This seriously limits the applicability of these methods in
real-world settings, where the images seen during operation
time may be edited in different ways or generated by archi-
tectures not seen during training, with the consequence that
the predictions made by methods are not trustable.

In this paper, we address the problem of classification of
synthetic facial manipulation in open set scenarios, propos-
ing a method for classification with rejection option. To
build the closed-set classifier, the method combines a Vision
Transformer (ViT) with a hybrid approach for simultaneous
classification and localization, inspired to [33, 34]. Then,
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a dedicated module performs rejection/acceptance of the
sample by analyzing the model output layers. Rejection is
performed by considering the maximum logit score (MLS),
maximum softmax probability (MSP), and the OpenMax
approach. More specifically, in our architecture, the input
sequence to the ViT is formed from feature maps extracted
from a CNN ( [7, 36]), and then the ViT module is used
to exploit feature maps correlation, via the self-attention
mechanism. In the general case of local manipulation, the
same features shared by Vit-based classification heads are
also utilized by a localization branch via a fully convolu-
tion network. The goal of the localization branch is to force
the network to focus on the most significant parts of the
image (attention mechanism) [33].The overall architecture,
which includes the feature extraction network, localization
branch and ViT module, is then trained in an end-to-end
fashion. Our method follows some recent works in machine
learning, showing that ViT allows achieving improved per-
formance for out-of-distribution detection [9] and open set
recognition [1], compared to standard CNN architectures.

Experiments are carried out considering the classifica-
tion of facial attribute editing and GAN attribution. For
the classification of synthetic facial attributes, we consid-
ered 19 editing types, with manipulations performed by In-
terfaceGAN [30] and StyleCLIP [26]. For GAN attribu-
tion, the performance is assessed considering facial images
generated by several modern generative models, namely,
LGSM [31], StyleGAN2 [20], StyleGAN3 [19], Taming
transformer [8] and Latent Diffusion [28]. For both tasks,
experiments were performed considering different combi-
nations of in-set and out-of-set manipulations. The results
confirm that the proposed architecture, and in particular the
use of ViT, is beneficial and allows to significantly improve
open set performance without impairing the accuracy on
closed-set samples, outperforming state-of-the-art methods
in the literature for open set recognition (OSR).

The rest of the paper is organized as follows. Section
2 introduces the related work on the generation and de-
tection/classification of synthetic faces, and the most rele-
vant methods for open-set classification in machine learn-
ing. The proposed architecture is presented in Section 3.
Section 4 describes the experimental methodology and set-
ting. The results and the comparisons with the state-of-the-
art are finally reported and discussed in Section 5. Finally,
we draw conclusions in section 6.

2. Related work

2.1. AI-synthesized faces and their detection

Artificial Intelligence (AI)-synthesized faces can be ei-
ther fully synthetic when the faces are generated from
scratch using generative models, or locally manipulated,
e.g. when a single facial attribute or multiple attributes are

modified by the model while the other attributes remain un-
changed.

A wide variety of generative models, notably GANs
[19, 20] and diffusion models [28, 31], are nowadays able
to generate high-resolution images from scratch with an un-
precedented level of realism. Inspired by the superior per-
formance of the StyleGAN series [20] in synthesizing high-
resolution and high-quality images, StyleGAN architec-
tures have been adopted for image editing, achieving high-
quality edited images. Among them, we mention InterFace-
GAN [30] and StyleCLIP [27]. InterFaceGAN proposes a
framework to interpret the disentangled face representation
learned by the StyleGAN model and studies the properties
of the facial semantics encoded in the latent space, showing
that it is possible to edit the semantic attribute through linear
subspace projection. StyleCLIP is a text-based interface for
StyleGAN-based image manipulation. StyleCLIP mainly
uses the Contrastive Language-Image Pre-training (CLIP)
model to edit the latent code through the user input language
description, so as to achieve the purpose of editing the im-
age. With regard to the defences, several methods have been
developed in the last years to discriminate between fake and
real [35–37]. Attempts have also been made to attribute the
GAN model and/or the type of architecture generating the
image. In many cases, model-level attribution is performed
by relying on the estimation of a fingerprint characterizing
the GAN model, e.g. [22, 42, 43]. Other works address the
task of architecture attribution, attributing the fake image to
the source architecture instead of the specific model, see for
instance [39], where a multi-class classifier is proposed to
discriminate among different architectures in a closed-set
setting, even when the images are generated by using dif-
ferent initialization, loss and dataset, hence possessing dis-
tinct model-level fingerprints. Recently, a method for the
classification of the synthetic face editing performed by the
GAN has also been proposed in [34]. The method relies on
a patch-driven hybrid classification network with localiza-
tion supervision, that classifies the editing among a pool of
possible manipulations (closed-set setting), with good ro-
bustness against post-processing. As a drawback of this ap-
proach, the pre-training of the patch-based models is time-
consuming.

2.2. Open Set Recognition

Open set recognition (OSR), first formalized in [29] for
classical machine learning, addresses the problem of deter-
mining whether an input belongs to one of the classes used
to train a network. Such a problem has received increas-
ing attention, especially in the last years [11]. A method to
address OSR with deep neural network-based approaches,
named OpenMax, was presented in [2]. An extra class is
added for the prediction, to model the unknown class case.
OpenMax adapts meta-recognition concepts to the activa-
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tion patterns in the penultimate layer of the network for
unknown modelling. The Extreme Value Theory (EVT) is
used to estimate the probability of the input being an out-
lier. Several works have shown that in many cases easy
strategies that look at the softmax probability or the logits
can also effectively judge if the sample comes from an un-
known class [10], e.g. exploiting the fact that the maximum
output score tends to be smaller for inputs from unknown
classes (out-of-set) [6, 32], or that the energy of the logit
vector tends to be lower for out-of-set samples [21].

Other approaches explored reconstruction errors ob-
tained via autoencoders for open set rejection [24, 25, 40].
In [5], Yang et al. designed a suitable embedding space for
open set recognition using convolutional prototype learn-
ing, that abandons softmax, and implements classification
by finding the nearest prototype in the Euclidean norm in
the feature space (GCPL). In [38], a novel learning frame-
work for OSR, called reciprocal point learning (RPL), is
proposed. The method is extended in [4] (ARPL) via an ad-
versarial mechanism that generates confusing training sam-
ples, to enhance the distinguishability of known and un-
known classes. Recently, in [17], a method that combines
autoencoders with, respectively, prototype learning (PC-
SSR) and reciprocal point learning (RCSSR) has been pro-
posed.

To the best of our knowledge, in the literature pertain-
ing to synthetic manipulation detection, all the methods pro-
posed so far are limited to the closed-set scenario. An ex-
ception is represented by [12], where an algorithm to dis-
cover new GANs from a given unlabeled set and cluster
them is proposed. More specifically, in the method in [12],
unseen classes are considered during network training as a
unique -unlabeled - class (discovery set). The images be-
longing to this class are then clustered using the learned
features, attributing them to new labels.

2.2.1 Vision Transformers for OSR

Transformers were originally proposed for natural language
processing (NLP). Recently, they have been successfully
exploited in computer vision tasks with great results [16].
The extension of transformers to the image domain, namely,
Vision Transformers (ViT) [7], are self-attention architec-
tures that process the image as a sequence of image patches,
that are treated the same way as tokens (words) in the NLP
case. Following the paradigm of the ViT architecture in [7],
a series of variants of the original structures have been pro-
posed to further improve the performance on image tasks.

Recent literature on machine learning has shown that
ViT can achieve very good performance for out-of-
distribution detection in image classification tasks [9], out-
performing standard CNNs. Among the works exploiting
ViT for open set recognition, we mention [1,3]. The method

in [1], in particular, combines ViT with energy-based rejec-
tion for open set scene classification in remote sensing im-
agery. Following the above literature, in this paper, we pro-
pose to exploit ViT for open-set classification of synthetic
image manipulation. To the best of our knowledge, this is
the first attempt in this direction.

3. Proposed method
The general problem of open set classification of syn-

thetic manipulation addressed in this paper is illustrated in
Figure 1. A forensic classifier with rejection option clas-
sifies the type of synthetic manipulation, among those in
a kwown set, at the same time being capable to reject un-
known samples, namely, samples that were subject to a dif-
ferent manipulation or generation procedure with respect to
those in the known set.

As we said, we focus on the case of facial manipulations.
Formally, given a synthesized face image x ∈ RH×W×3

(height = H, weight = W), the system assigns to x a label y
and a mask M associated to the manipulation. Given the set
with the N known manipulations considered during train-
ing, the predicted label may take N + 1 values, where the
N + 1-th value identifies the rejection class (unknown ma-
nipulation). If we let ŷ denote the output (predicted label)
of the N -class classification network, the final classification
function ϕ(x) takes the following expression: ϕ(x) = ŷ if
x is accepted as an in-set sample, or ϕ(x) = N + 1 oth-
erwise. In the following, we denote with p ∈ RN is the
probability vector (after softmax) of the network associated
with the N classes in the closed-set. The localization mask
M is used to indicate the pixels where the image has been
manipulated (pixels for which M = 1 indicate the manipu-
lated areas). More in general, a localization mask may just
highlight regions of interest (like an attention mask), with-
out necessarily corresponding to a manipulation mask.

3.1. Proposed ViT-based Hybrid Architecture

The general scheme of the proposed method is shown in
Figure 2. The network is composed of two branches for
classification and localization, respectively. A ResNet50
network is used as the backbone for feature extraction. Fol-
lowing [13,35], a modification of the original ResNet archi-
tecture is considered, where we remove the sampling oper-
ation in the first convolutional layer of the network, setting
the stride parameter to 1, with the kernel size fixed to 3.
The features are then input to a transformer-based module
performing the N -class classification and to a fully convo-
lutional network (FCN) head for the localization, as detailed
below. Hence, in our scheme, the input sequence to the ViT
is formed from feature maps of the CNN, as an alternative
to raw image patches [7].

ViT-based classification module. Let fr denote the vec-
tor of extracted features. We indicate with (Hf ,Wf ) the
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Figure 2. Overall architecture of the proposed method.

size of the feature maps, and with Df the number of the
channels/maps. Then, fr ∈ RHf×Wf×Df . The follow-
ing preprocessing is applied before feeding the ViT module.
For a given patch size P , fr is first reshaped into a sequence
of P × P ×Df patches, in number Np = HfWf/P

2. The
special case P = 1 corresponds to the case when the input
sequence is obtained by simply flattening the spatial dimen-
sions of the feature map and projecting to the transformer
dimension. The input sequence obtained after this flattening
layers is fp ∈ RNp×(P 2Df). Following the general proce-
dure with ViT, patch embedding is performed via mapping
to Dp dimensions via linear projection. fe = fp · Ep is
the output, of shape of Np × Dp, obtained after the patch
embedding operation, where EP denotes the embedding
matrix, Ep ∈ R(P

2Df)×Dp . A placeholder data structure
clstoken, used to store information that is extracted from
other tokens in the sequence fe, is prepended to the begin-
ning of input sequence fe (randomly initialized). Position
embeddings Epos ∈ R(Np+1)×Dp are added to the patch
embeddings to retain positional information, thus getting
the sequence of vectors {clstoken, fe} + Epos, that is then
fed to a standard transformation encoder, like those used in
NLP. The transformer encoder is composed of Nb identical
transformer blocks, each one constructed of alternating lay-
ers of multi-headed self-attention (MHA) and multi-layer
perception (MLP) blocks, with a layernorm (LN) applied
before every block, followed by residual connections after
every block, see [7] for more details. Finally, a fully con-
nected layer is attached to the transformer encoder and out-
puts the predicted probability vector p for the N enclosed
classes.

FCN localization module. The extracted features fr are
also input to an FCN computing the estimated manipulation
mask M . Such FCN consists of two convolutional layers,

a batch normalization layer, a ReLU layer and finally a sig-
moid layer to map the values in the [0, 1] range. As we
mentioned, the main reason for the introduction of the lo-
calization branch is to guide the classification and help force
the network to focus on the most significant parts of the im-
age, in the case of local manipulation, that has been shown
to have a beneficial effect on the classification accuracy and
generalization capabilities [33].

The overall N -class classification architecture is trained
end-to-end by minimizing a combination of the cross-
entropy (CE) loss, associated with the classification task,
and the mean squared error (MSE) of localization, re-
spectively. Formally, losshyb = λcls · CE(y, p) + λloc ·
MSE(G,M), where G denotes the ground truth localiza-
tion mask and λcls and λloc balance the trade-off between
localization and classification tasks.

The impact of each part of the proposed architecture, and
in particular, the localization branch and the ViT module, is
assessed in the experiments. For the ViT, we considered
Nb = 4 transformer blocks. Different patch sizes P of the
ViT were considered in our experiments.

3.2. Out-of-Set Rejection

In order to detect samples whose manipulations do not
belong to the knowm set, we considered three rejection
strategies, two of which perform the rejection by analyz-
ing the model output after or before the softmax activation
layer, namely maximum softmax probability (MSP) [6] and
maximum logits score (MLS) [32], respectively, and Open-
Max [2].

When MSP and MLS approaches are adopted, lower
scores associated with the predicted class reflect the un-
certainty of the network prediction, providing evidence of
unknown classes (out-of-set). Then, the final output of our
open set classifier is obtained as follows

ϕ (x) =

{
ŷ, if argmax(h) > th

N + 1, otherwise (1)

where h is the model output (the softmax probability in the
MSP, the logit scores in the MLS), and th is a predefined
threshold. When the OpenMax is adopted, then the out-
put of the closed-set classifier is accepted (ϕ(x) = ŷ) if
po < th′, where po is the probability of the sample being
an outlier, estimated by the method, and th′ is the decision
threshold. Otherwise, it is rejected (ϕ(x) = N + 1).

4. Experimental Setup
4.1. Datasets

GAN editing dataset. To build the dataset, we first use
the PTI inversion method to reconstruct the images and ex-
tract the latent code. Image attributes are manipulated by
InterfaceGAN [30] and StyleCLIP [26]. We selected 5,992

956



Table 1. Summary of the 19 editing classes (18 + ’None’).

Editing tools Edit types

PTI T0: None (Reconstructed)

InterfaceGAN
Expression (T1-T2): Smile, Not smile,

Aging (T3,T4): Old, Young

StyleCLIP

Expression (T5, T6): Angry, Surprised
Hairstyle (T7-T12): Afro, Purple hair,
Curly hair, Mohawk, Bobcut, Bowlcut

Identity change (T13-T18): Taylor swift, Beyonce,
Hilary clinton, Trump, Zuckerberg, Depp

images from CelebAHQ dataset and each image is edited
with 18 edit types: 4 facial attributes are edited with In-
terfaceGAN, and 14 facial attributes with StyleCLIP. The
’None’ type corresponds to the case of the image recon-
structed with no editing (obtained via the PTI inversion
method). An overview of our dataset is provided in Table
1. We exploited a pre-trained face parsing model [41] to
group the various edited attributes into four categories: ex-
pression, aging, hairstyle, identity change. We rely on these
categories to construct the localization masks used for train-
ing. Figure 3 shows an example of manipulated face image
for each edited attribute.

GAN attribution dataset. To build the GAN attribution
dataset used in our experiments we considered five GAN
architectures: StyleGAN2 [20], StyleGAN3 [19], Taming
Transformer [8], Latent Diffusion [28] and LSGM [31]. For
each architecture, we considered 50k images. The models
were trained on the FFHQ/FFHQU dataset. In all the cases,
we used pre-trained models released by the authors. For
LSGM, Taming transformers and Latent diffusion models,
the resolutions of the images are 256 × 256, while for Style-
GAN models the images are generated with both 256 × 256
and 1024×1024 resolution.

4.2. Experimental setting

To train our model for GAN face editing classification,
the dataset of real images is split as follows: 4400 images
are used to generate the editing used for training, 1592 for
those used for testing, for a total of 83600 (4400 × 11)
images for training and 30248 (1592 × 19) for testing.
Cross-validation is implemented during training by ran-
domly splitting the training set in 4000 × 11 images used
for training and 400 × 11 images used for validation, ev-
ery 10 epochs. Training is performed via Adam optimizer
with learning rate lr = 10−5 and batch size bs = 32 for
100 epochs. The input size is set to 256×256×3. We ran
comparison with the state-of-the-art methods in the field of
OSR, i.e., GCPL [5], RPL [38], ARPL [4], CAC [24], PC-
SSR and RCSSR [17], mentioned in Section 2.2. All these
methods are trained using the code released by the authors

Original

Haliry ClitonTaylor Swift Beyonce Trump Zuckerburg DeppAngry

Surprised Afro Purple hair Curly hair Mohawk Bobcut Bowlcut

None Smile Not smile Old Young

Figure 3. Examples of edited images by InterfaceGAN [30] (first
row) and StyleCLIP [26] (second and third rows).

AfroOld Young Curly hairNone

Angry Surprised Hilary Clinton Zuckerberg

Figure 4. Examples of images and masks obtained with different
editing from each category. From left to right: ’None’, aging (2),
hairstyle (2), expression (2), identity change (2).

on our dataset with default setting and input size 224×224.
As for GAN attribution, for each architecture, the im-

ages are split into 35000:5000:10000 for training, valida-
tion and testing, respectively. Training is carried out using
the same optimizer, learning rate and batch size as above,
for 50 epochs. Performance in the closed set is evaluated
by measuring the classification accuracy, while the AUC of
the ROC curve obtained by varying the thresholds th (th′

for OpenMax) is measured to evaluate the rejection perfor-
mance in open set.

In the case of the classification of GAN face editing,
the manipulation is performed locally and the localization
branch is employed to guide the training. The ground truth
localization masks highlighting the regions of interest in the
images are used to train the model and are obtained as de-
tailed in the following. We decided to use different masks
for every category (expression, aging, hairstyle, identity
change). We focus on the whole face area for aging editing
while we consider the hair region for hairstyle editing. For
identity editing, the focus area covers the whole face and
hair since both of them are relevant in the characterization
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Table 2. Splitting of editing types considered in the experiments.

Groups In-set Out-of-set

G0
T0, T2, T3, T5, T6, T7
T8, T9, T13, T14, T15

T1, T4, T10, T11
T12, T16, T17, T18

G1
T0, T1, T2, T5, T6, T13
T14, T15, T16, T17, T18

T4, T3, T7, T8
T9, T10, T11, T12

G2
T0, T1, T2, T5, T6, T7
T8, T9, T10, T11, T12

T4, T3, T13, T14
T15, T16, T17, T18

G3
T0, T1, T2, T3, T4, T11
T12, T13, T14, T15, T18

T5, T6, T7, T8
T9, T10, T16, T17

G4
T0, T1, T3, T4, T6, T10
T12, T15, T16, T17, T18

T2, T5, T7, T8
T9, T11, T13, T14

of identity. Finally, for expression editing, the profiles of the
mouth, eyes, eyebrows and nose are enhanced in the masks
by removing the corresponding segmented regions, being
highly related to expressions. Some examples of masks are
shown in Figure 4.

5. Results

In this section, we report and discuss the results we got
for the tasks of classification of GAN face editing and GAN
attribution. Most of the experiments, in particular, the com-
parison with general state-of-the-art methods for OSR in
machine learning, as well as an ablation study on the im-
pact of the various elements of the proposed architecture
and parameters, are reported for the former case. This is
the case, in fact, where all the components of the proposed
ViT-based hybrid network are considered, including the lo-
calization branch.

5.1. GAN face editing classification

Experiments were carried out considering 10 different
configurations of in-set and out-of-set editing types, re-
ferred to as G0-G9. In each case, 11 editing types are con-
sidered as in-set classes, while the remaining 8 are taken
out-of-set. Table 2 reports G0-G4 configurations, with the
’None’ class always included as in-set. Configurations G5-
G9 are obtained from G0-G4 by switching the first in-set
and out-of-set type, hence with the ’None’ class in the out-
of-set.

Table 3 reports the closed-set accuracy and the open-set
performance achieved with the 3 rejection strategies, for the
various configurations. The average accuracy of the classi-
fication on the N = 11 closed-set classes in the closed-set
is 92.86. Regarding the open-set performance, the MLS is
the strategy that gives the best results. In particular, with
MLS we got AUC = 88.74 on average, in contrast to 81.19
and 81.86 for MSP and OpenMax respectively. Notably, the
configurations for which the best closed-set performance

Table 3. Performance in closed-set and open-set, using differ-
ent rejection strategies, for different configurations (G0-G9). The
AUC is reported in the open-set.

Config G0 G1 G2 G3 G4

Closed-set Accuracy 88.99 94.68 87.03 94.34 95.25

Open-set
MSP 79.35 79.63 71.49 84.54 83.97
OpenMax 81.83 81.89 81.39 74.86 81.34
MLS 85.34 91.36 78.34 91.98 89.75

Config G5 G6 G7 G8 G9
Closed-set Accuracy 92.65 95.51 89.24 94.94 95.94

Open-set
MSP 82.29 87.29 75.50 84.49 83.30
OpenMax 78.62 86.20 83.72 85.00 83.73
MLS 88.05 95.23 82.43 93.13 91.77

is achieved correspond to those, that perform better in the
open-set scenario. Therefore, in the following, results are
reported for the MLS strategy, unless stated otherwise.

In Figure 5, we report an example of predicted masks in
the various cases, for the G0 configuration, for visual as-
sessment. Although the localization has been considered
only to supervise the training, like an attention mechanism,
and not for localization purposes, by looking at the figure,
we can observe that in many cases the method is able to
produce similar masks, namely masks with a similar white
region (focus area), in both closed-set and open-set images,
for editing types belonging to the same category (see Table
1). This indicates that the network tends to look at areas of
the image that are most relevant for the discrimination of
the manipulation, and also for open-set inputs.

The comparison of the proposed method with state-of-
the-art algorithms is reported in Table 4, for the configu-
rations G0, G3 and G4. We see that the proposed method
achieves the best results in all the cases in both closed and
open-set. In particular, our ViT-based hybrid algorithm gets
an AUC of 85.34, 91.98 and 89.75 in G0, G3 and G4, re-
spectively, getting an improvement with respect to the best-
performing method from the state-of-the-art always larger
than 4% in both Accuracy and AUC. It is worth observ-
ing that all these methods have been proposed to address
general problems of OSR in deep learning, and adopted for
standard image classification tasks and object recognition,
e.g. MNIST or CIFAR classification. Hence, they are not
designed for forensic problems and in particular manipula-
tion classification tasks, where the classification often relies
on the analysis of subtle traces, and the goal in the open set
scenario is being able to reveal unseen alterations of similar
content or the presence of different fingerprints.

5.1.1 Ablation Study

We conducted an ablation study to investigate the effects of
the patch size P used in the ViT module and to validate the
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Table 4. Comparison with state-of-the-art method. Results are reported for the G0, G3 and G4 configurations.

Methods G0 G3 G4
Closed-set Open-set Closed-set Open-set Closed-set Open-set
(Accuracy) (AUC) (Accuracy) (AUC) (Accuracy) (AUC)

GCPL [5] 73.72 73.25 40.93 69.46 43.16 65.48
RPL [38] 74.43 76.21 70.19 81.46 65.76 71.18
ARPL [4] 82.64 81.73 87.80 84.93 90.7 79.89
CAC [24] 77.86 74.95 83.33 78.57 85.09 77.63
PCSSR [17] 84.10 74.49 90.79 85.42 92.25 83.63
RCSSR [17] 83.70 72.95 90.60 86.87 91.67 85.32
Ours 88.99 85.34 94.34 91.98 95.25 89.75

Orig Not_smile Surprised        Afro   Angry Purple_hair Taylor_swift Beyonce   Curly_hair Hilary_clinton

Old Bobcut Bowlcut Depp Mohowak Trump Zuckerberg Smile Young  

Figure 5. Example of localization masks for the 18 editing types.
Predicted (top) and ground truth (bottom) masks are visualized.
The masks in the red box refer to the out-of-set editing types.

effectiveness of each component of the proposed architec-
ture.

Impact of different patch sizes. Figure 6 shows the
results using different patch sizes P in the ViT module,
namely P = 1, 2, 4 and 8 (the legends reports the P set-
ting among brackets). We see that increasing the patch size,
up to P = 4, is beneficial for both closed-set and open-
set performance. However, when the patch size increases
further, namely, above 4, results do not improve, and ac-
tually a performance drop is observed (of around 1.6% in
Accuracy and 2% in AUC on the average). Then, from our
experiments, with P =4 the ViT achieves the best trade-
off between the exploitation of the spatial and of the feature
maps correlation.

Impact of different architectures Figure 7 compares
the results achieved by the proposed architecture including
the ViT module for the classification and the localization
branch (FCN), with those achieved by the same method by
removing the FCN, and those of the baseline ResNet50,
where the standard ResNet50 is used for the multi-class
classification. In this case, the rejection is performed in a
similar way, by analyzing the output layer of the last FC of
ResNet50, before the softmax (MLS). A significant perfor-
mance gain is obtained with the proposed method in all the
configurations. In particular, combining the use of ViT for
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Figure 6. Ablation study on the impact of patch size P of ViT
under the various configurations. Vertical bars show closed-set
Accuracy, while the line plots show the AUC for open-set.

processing the feature maps with the hybrid approach we
got a gain in performance of up to 10% in Accuracy and
9% in AUC.

5.2. GAN attribution

In this section, we report the results we got for open-set
GAN attribution. By focusing on fully synthetic images, we
do not include the localization branch in the proposed archi-
tecture, but only the ViT module. Experiments are carried
out considering 4 different splittings of the 5 architectures.
The in-set and out-of-set architectures for each configura-
tion are detailed in the following: S1) in-set: LSGM, Style-
GAN2 and Taming transformer; out-of-set: StyleGAN3
and Latent diffusion; S2) in-set: StyleGAN2, StyleGAN3
and Latent diffusion; out-of-set: LSGM and Taming trans-
former; S3) in-set: LSGM, StyleGAN2 and StyleGAN3;
out-of-set: Taming transformer and Latent diffusion; S4)
in-set: LSGM, StyleGAN2 and Latent diffusion; out-of-set:
StyleGAN3 and Taming transformer.

Table 5 shows the closed-set and open-set performance
achieved by the proposed architecture (ResNet50+ViT) in
all the configurations. The results of the baseline are also
reported (ResNet50). We see that the advantage we got with
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Figure 7. Performance in closed-set (left) and open-set (right) for different configurations (G0-G9).

Table 5. Results on GAN attribution task.

Config Method
Closed-set
(Accuracy)

Open-set (AUC)

MSP OpenMax MLS

S1
ResNet50 97.76 77.23 64.60 76.32

ResNet50+ViT (prop) 99.86 92.73 92.70 92.72

S2
ResNet50 78.26 39.90 33.40 43.40

ResNet50+ViT (prop) 82.38 72.49 65.02 70.39

S3
ResNet50 92.80 78.78 57.83 69.82

ResNet50+ViT (prop) 98.56 82.74 78.13 83.31

S4
ResNet50 81.82 67.43 61.66 69.98

ResNet50+ViT (prop) 94.61 90.31 93.56 93.60

respect to the baseline is even bigger in this case than that
in the previous case of face editing classification. In par-
ticular, when the rejection strategies are mounted on top of
the baseline architecture, that is, by considering the features
extracted by a standard ResNet50 classifier for the analysis,
the rejection performance is very poor, with an AUC lower
than 70% in most cases. Our method instead can achieve a
much higher AUC, that goes above 90 % for S1 and S4. Un-
der the S1 and S2 configurations, the results are worse. We
observe that these configurations include both StyleGAN2
and 3 in the training set, hence resulting in a lower diver-
sity of the in-set dataset, that might be the reason for the
worse generalization capability to open-set scenarios. Fi-
nally, we observe that, as before, the MLS is the strategy
that gives the best performance on average, even if in this
case the 3 rejection strategies work very similarly. These
results confirm that the features extracted with our architec-
ture are representative and allow a good characterization of
the various architectures, yielding good discrimination also
in the open-set scenario.

6. Conclusion

We have presented a method to address the problem of
open-set classification of synthetic manipulations. A multi-
class classifier with rejection option is implemented, that

classifies the manipulation, at the same time being capable
to reject an unknown (unseen) manipulation. To address
this task, we resort to a ViT-based hybrid architecture that
explores global attention from patches while being guided
by manipulation localization. Rejection is performed via
several approaches, that rely on the analysis of the out-
put logits and scores, and on outlier probability estimation.
Experiments demonstrate the effectiveness of the proposed
method, also compared to other state-of-the-art methods for
open-set classification, for the task of classification of GAN
face editing and GAN attribution.

Future works will focus on the application of the pro-
posed architecture to different synthetic manipulation clas-
sification tasks, considering different image contents, be-
yond faces. The robustness of the proposed method against
post-processing and attacks is also worth investigating.
Moreover, the promising results achieved for GAN attribu-
tion encourage us to explore further the use of the proposed
architecture for this task.
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