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Abstract

MP4 video files are stored using a tree data structure.
These trees contain rich information that can be used for
forensic analysis. In this paper, we propose MP4 Tree Net-
work (MTN), an approach based on an end-to-end Graph
Neural Networks (GNNs) that is used for forensic analysis of
MP4 trees. MTN does not use any video pixel data. MTN is
trained using Self-Supervised Learning (SSL), which gen-
erates semantic-preserving node embeddings for the nodes
in an MP4 tree. We also propose a data augmentation
technique for MP4 trees, which helps train MTN in data-
scarce scenarios. MTN achieves good performance across 3
video forensics tasks on the EVA-7K dataset. We show that
MTN can gain more comprehensive understanding about the
MP4 trees and is more robust to potential attacks compared
to existing methods.

1. Introduction
The MP4 video container [13] is one of the most popular

video container standards. MP4 files use a tree data struc-
ture to store information internally [13, 14]. In addition to
video/audio bit streams which occupy most of the space in an
MP4 file, other metadata information such as subtitles, codec
type, video-audio synchronization information, timestamps,
and geographic locations can also be stored. An MP4 file
can be logically split into two components: 1) the “MP4 tree”
that contains information related to both the tree topology
and the metadata stored in the container; 2) the “bit streams”
that contain information related to the encoded video pixel
values and audio tracks. Existing work [1, 9, 32, 33] have
shown that the MP4 tree (i.e. metadata information as well as
the topology of the MP4 tree) can be used for video forensic
analysis. This is a relatively new and developing concept
since most existing Video Forensics Methods (VFMs) use
the bit stream (i.e. pixel data) to make decisions in tasks
such as camera model attribution, deepfake detection, and
manipulation detection [2, 19, 29].

It has been shown in recent work that VFMs using the MP4
trees can provide an independent and alternative perspective

compared to those that rely on pixel data (i.e. the bit streams).
For example, Güera et al. [9] used metadata information
extracted by the ffprobe1 tool with Support Vector Machines
(SVMs) and decision trees for video manipulation detection.
Iuliani et al. [14] used hand-crafted features from the MP4
tree with a statistical classifier for video forensics analysis
tasks. Yang et al. [33] converted the MP4 tree to an integer
vector representation, which can be processed by decision
tree classifiers for video forensics analysis tasks. Xiang et
al. [32] extended the approach in [33] by improving MP4 tree
parsing and introducing feature selection and dimensionality
reduction to the vector representation of MP4 trees. Altinisik
et al. [1] fused MP4 tree and video bit stream analysis for
video source attribution.

In this paper, we propose MP4 Tree Network (MTN),
which is a VFM based on end-to-end Graph Neural Networks
(GNNs). MTN analyzes only the information in the MP4 tree
(i.e. no bit stream data is used) and can be used to perform
different forensic tasks.

In existing MP4 tree analysis [9, 32, 33], hand-crafted
features with light-weight classifiers such as SVM [11] or
decision trees [23] are used to predict the labels for the MP4
trees. Due to the limitations of hand-crafted features and
light-weight classifiers, these methods are unable to process
unseen data in MP4 trees and often fail to gain comprehensive
understanding about the MP4 tree. MTN does not have
these shortcomings as it is based on end-to-end deep neural
networks. The scalability of deep neural networks also
allows MTN to process very large datasets. We propose a
Self-Supervised Learning (SSL) scheme for MTN, which
enables it to generate semantic-preserving node embeddings
for MP4 tree nodes. The design of the SSL scheme helps
MTN cope with unseen data in MP4 trees. We also devise
a data augmentation technique for MP4 trees, which helps
train MTN in data-scarce scenarios.

We evaluate the performance of MTN on the EVA-7K
dataset [33], where MTN shows good performance in 3 video
forensics analysis tasks. We also show that MTN can gain a
more comprehensive understanding on MP4 trees and is more

1https://ffmpeg.org/ffprobe.html
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Figure 1. The block diagram of MP4 Tree Network (MTN).

robust to potential attacks compared to existing methods.

2. MP4 Tree Network (MTN)
The block diagram of MTN is shown in Fig. 1. The input

MP4 tree is first transformed so that it can be processed by
the Graph Neural Networks (GNNs) (Sec. 2.1). Then, the
Node Embedding Network (NEN) is used to process the
transformed MP4 tree to generate a node embedding for each
node in the transformed tree (Sec. 2.2). After that, the Graph
Convolution (GC) and Graph Pooling (GP) step analyzes all
node embeddings and produce a graph embedding (Sec. 2.3),
which is a single vector representation of the MP4 tree.
Finally, the graph embedding vector is used by a classifier
in the classification step to predict a label for the input MP4
tree depending on the specific forensic analysis task.
2.1. MP4 Tree Transformation

MP4 video files are organized using a tree data structure
[13, 14] (as shown in Fig. 2). An MP4 video file is made up
of a set of nodes, where each node contains the following
information:
• The node type (e.g. ftyp, moov), which annotates the type

of data stored in the node and its descendants.
• The node data, which carries the information in the node.

Pieces of information are stored as a list of key-value pairs
(e.g. (key1, val1), (key2, val2)). Each key is a string, while
each value can be a string, number, list, or dictionary.

• The list of child nodes, which is used to maintain the tree
structure.

Note that path-like strings can be used to point at nodes
and node data in an MP4 tree. For example, moov/udta
points to the udta node shown in Fig. 2. The string
moov/udta/@key2=val2 points to a key-value pair stored
in the udta node. Here, @ and = are the prefix and delimiter
for key-value pairs, respectively.

Analyzing an MP4 tree is far from being a simple task, as
the node data contains variable amount of key-value pairs,
and the value of a pair can be another data structure such
as list or dictionary. MP4 trees have to be transformed
so that they can be processed by GNNs. The MP4 tree
transformation process we propose takes as input an MP4
tree T and returns a transformed version of the tree T𝑡 . In
T𝑡 , each node contains the following information:
• The tag, which indicates the type of node.
• The data, which is either a String Object List (SOL) or a

number.
• The list of child nodes.
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Figure 2. The illustration of the tree structure of MP4 video files.
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Figure 3. The restructured MP4 tree derived from the tree illustrated
in Fig. 2. For each node, the tag is shown in the circle and the data
is shown in the rectangle.

The MP4 tree transformation is a two-step process. In the
first step, the MP4 tree T is restructured into a new tree T𝑟 .
In the second step, the strings in T𝑟 are processed to generate
the transformed tree T𝑡 . We provide more details about these
two steps.

2.1.1 MP4 Tree Restructuring

This step maps complicated data structures (e.g. list and
dictionary) in an MP4 tree T to graph information that can
be processed by GNNs. It makes sure that every node in the
resulting tree T𝑟 contains one string or one number as data.

In tree restructuring, we represent complicated data struc-
tures in the T using a series of nodes and connections in
T𝑟 . For example, a key-value pair (key,val) in T can be
represented by two interconnected nodes in T𝑟 , where the
first node has tag k and data key, and the second node has tag

964



v and data val. A list in T can be represented by creating a
new node 𝓁′ with tag l in T𝑟 as the “header” of the list, and
for each item in the list, create a child node of 𝓁′ with tag v
that stores the item as its data . A precise definition of the
tree restructuring procedure can be found in supplementary
materials. In the restructured tree T𝑟 , each node is associated
with one of the four tags k, v, l, or n. k nodes and v nodes are
used to represent keys and values, respectively. A key-value
pair in the original tree is represented as an edge between
a k node and a v node. l nodes are list headers, whose
child nodes are items in the list. n nodes represent nodes in
the original MP4 tree as well as dictionary headers, whose
child nodes are k nodes or n nodes. If all values in the
MP4 tree shown in Fig. 2 are strings or numbers, then the
corresponding restructured MP4 tree is shown in Fig. 3.

The restructured tree preserves almost all information
in the original tree (only the order of list items is missing)
while ensuring that the data of each node is either a string
or a number. This makes it easier for GNNs to analyze the
restructured MP4 trees.

2.1.2 String Processing

After the tree restructuring, the data of each node inT𝑟 is either
a string or a number. A string in T𝑟 can be further divided to
multiple parts that contain heterogeneous information. For
example, the string Lavf58.29.100 indicates that the MP4
file contains the signature from the libavformat encoding
library in ffmpeg2 version 58.29.100. It is ideal for the
analysis method to see this string represented as Lavf, 58,
29, 100 where Lavf is a string and 58, 29, 100 are numbers.
The string processing step removes noise, partitions the string
into “words”, and distinguishes between textual data and
numerical data. A detailed description of this step can be
obtained from the supplementary materials.

This step converts each string in T𝑟 into a list of objects
known as SOLs, where each object in the SOL is either
a textual word or a real number. The resulting tree is the
transformed MP4 tree, which is denoted by T𝑡 . After this
step, the data of each node in the transformed tree T𝑡 is either
an SOL or a number. SOLs are lists, but they do not make the
structure of T𝑡 more complicated. As described in Sec. 2.2,
the information from all items in an SOL will be summarized
into a single fixed-size vector.
2.2. Node Embedding Network (NEN)

Graph Neural Networks (GNNs) are neural networks
that can analyze graph data structures [28, 31]. Since the
transformed MP4 trees are a special case of generic graphs,
we can use GNNs to analyze them.

The proposed Node Embedding Network (NEN) is based
on GNNs. The NEN analyzes a transformed MP4 tree T𝑡 and
produce a node embedding for each node in T𝑡 . The block
diagram of NEN is shown in Fig. 4. NEN is made up of

2https://ffmpeg.org/

three components: the number encoder, the SOL encoder,
and the Graph Analysis Module (GAM).

The number encoder (Sec. 2.2.1) generates a vector repre-
sentation for numbers in T𝑡 . The SOL encoder (Sec. 2.2.2)
generates a vector for an SOL that summarizes information
from all items in the SOL. Using the number encoder or
SOL encoder, the data from the nodes in T𝑡 are represented
using real-valued vectors known as node data vectors. The
node data vectors are processed by the GAM (Sec. 2.2.3)
to produce the node embeddings, which are 𝑀-dimensional
real-valued vectors. In Sec. 2.2.4, we describe how the NEN
can be pretrained using Self-Supervised Learning (SSL)
techniques so that the node embeddings contain semantic
information about the MP4 tree.

Note that Natural Language Processing (NLP) approaches
[21] are used in the NEN to process numbers and SOLs. The
word embedding technique proposed in [5,18] is used to con-
vert words into word embeddings, which are 𝑀-dimensional
vectors that can be updated during training. In the following,
we use the arc symbol over a word (

N          O
word ) to denote the

embedding of the word.

2.2.1 Number Encoder

The role of the number encoder is to represent numbers as 𝑀-
dimensional vectors. Although it is possible to use existing
NLP approaches such as BERT [5] for this conversion, it has
been shown in [26] that the number representations generated
by most existing NLP approaches can be inefficient and can
lead to worse performance in number-related reasoning tasks.
Therefore, in the NEN, we explicitly represent numbers as the
linear combination of two known vectors. This representation
is more efficient since it only requires two 𝑀-dimensional
vectors. The represented number can also be eailsy retrieved
once the two vectors are given.

The number encoder operation is described as follows. It
first converts the input number to symmetric log scale, which
is defined as

symlog(𝑥) = sign(𝑥) · log10 (1 + |𝑥 · ln(10) |) . (1)
The value of symlog(𝑥) preserves the sign and value of 𝑥
while compressing the scale of 𝑥.

Define the clip operation as
clip(𝑥, 𝑎, 𝑏) = max [𝑎,min(𝑥, 𝑏)] , (2)

where 𝑎 is the lower bound and 𝑏 is the upper bound. From the
data, we determine the minimum and maximum numbers to
be represented by the number encoder, which are denoted by
𝜏min and 𝜏max, respectively. We add two special words #NUM1
and #NUM2 to the set of all words. Their corresponding word
embeddings

N              O
#NUM1 and

N              O
#NUM2 are the vector representations

of 𝜏min and 𝜏max. All numbers between 𝜏min and 𝜏max can be
represented as a linear combination of

N              O
#NUM1 and

N              O
#NUM2 .

Some numbers (e.g., UNIX timestamps) in the MP4
tree are used to represent time stamps. To preserve the
semantic meaning of such numbers and separate them from
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Figure 4. The block diagram of Node Embedding Network (NEN).

“plain” numbers, we introduce a time projection matrix
𝑷time ∈ R𝑀×𝑀 , which can be updated during training. As a
result, the number encoder operation, denoted by Nenc(·),
can be written as

Nenc(𝑥) = 𝑷
(
𝑠(𝑥) N              O

#NUM1+ [1 − 𝑠(𝑥)] N              O
#NUM2

)
, (3)

where
𝑠(𝑥) = symlog [clip(𝑥, 𝜏min, 𝜏max)] − symlog(𝜏min)

symlog(𝜏max) − symlog(𝜏min) , (4)

and

𝑷 =

{
identity if 𝑥 is a plain number,
𝑷time if 𝑥 is a time stamp number.

(5)

It can be seen that Nenc(𝑥) ∈ R𝑀 .

2.2.2 SOL Encoder

As described in Sec. 2.1.2, a transformed MP4 tree contains
SOLs. The role of the SOL encoder is to map each SOL into
an 𝑀-dimensional vector.

Items in an SOL are either textual words or numbers.
Denote an SOL of length 𝐿 by {𝜌1, . . . , 𝜌𝐿}. We first
convert each item in the SOL into a vector representation
using the following rule:

𝝆′
𝑖 =

{N  O
𝜌𝑖 +𝒆𝑖 if 𝜌𝑖 is a textual word,
Nenc(𝜌𝑖) + 𝒆𝑖 if 𝜌𝑖 is a number,

(6)

where 𝝆′
𝑖 ∈ R𝑀 , and 𝒆𝑖 ∈ R𝑀 is the positional embedding [6]

for the 𝑖-th item in the SOL that can be updated during training.
They added to the vector representations of the SOL items to
encode the order of items. We also encode the length of the
SOL by computing 𝝆′

0 = Nenc(𝐿) + 𝒆0.
We use the transformer encoder [27] to analyze the se-

quence of vectors {𝝆′
0, 𝝆

′
1, . . . , 𝝆

′
𝐿}. The transformer en-

coder, which is based on the Multihead Self Attention (MSA)
mechanism, has been successful in many sequence process-
ing tasks [5–7]. The output of the transformer encoder is a
new sequence of vectors { �̃�′

0, �̃�
′
1, . . . , �̃�

′
𝐿}, �̃�′

𝑖 ∈ R𝑀 . The
output of the SOL encoder is the average of the transformer
encoder output. That is, the SOL encoder operation (denoted

by Senc(·)) can be written as

Senc ({𝜌1, . . . , 𝜌𝐿}) = 1
𝐿 + 1

𝐿∑︁
𝑖=0

�̃�′
𝑖 . (7)

After the SOL encoder operation, the information in the SOL
is summarized in an 𝑀-dimensional vector.

2.2.3 Graph Analysis Module (GAM)

The Graph Analysis Module (GAM) analyzes the tag, data,
and parent/child nodes of each node in the transformed MP4
tree. It consists of two components: node tag encoding and
Graph Attention Network (GAtN). In this section, we assume
there are 𝑁 nodes in the transformed MP4 tree T𝑡 . The tag
of each node is denoted by 𝑡1, . . . , 𝑡𝑁 , where 𝑡𝑖 ∈ {k,v,l,n}.
The data of each node is denoted by 𝑑1, . . . , 𝑑𝑁 , where 𝑑𝑖 is
either an SOL or a number. The node data vector of the 𝑖-th
node, denoted by 𝒗𝑖 , is given by

𝒗𝑖 =

{
Senc(𝑑𝑖) if 𝑑𝑖 is an SOL,
Nenc(𝑑𝑖) if 𝑑𝑖 is a number.

(8)

Node tag encoding. The node data vectors 𝒗𝑖 contain infor-
mation about the node data. To encode the tag information
of the nodes, we use the linear projection approach described
in [31]. More concretely, we introduce four 𝑀 ×𝑀 matrices
𝑷k, 𝑷v, 𝑷n, and 𝑷l, which can be updated during training.
We use them to generate the tag encoded node data vector 𝒖𝑖
as follows:

𝒖𝑖 = 𝑷𝑡𝑖 𝒗𝑖 . (9)
The vectors 𝒖𝑖 are used as the input to the GAtN step.

Graph Attention Network (GAtN). GAtNs are based on
the Graph Attention (GA) [28] technique, which is an adap-
tation to the MSA mechanism [27] so that graph-structured
data can be processed. The MSA is an extension to Self
Attention (SA). For both MSA and SA, the input is a sequence
of vectors 𝒘1, . . . , 𝒘𝐾 , and the output is a new sequence
of vectors �̃�1, . . . , �̃�𝐾 , where 𝒘𝑖 , �̃�𝑖 ∈ R𝑀 . In SA, the
similarity between all possible pairs (𝒘𝑖 , 𝒘 𝑗 ) in the input
sequence is analyzed, and the output of the 𝑖-th element in
the sequence �̃�𝑖 contains information about the relationship
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between the 𝑖-th element and other elements in the sequence.
In MSA, each element in the input sequence 𝒘𝑖 is linearly
projected into ℎ lower dimensional sequences, where each
element in the sequence has 𝑀/ℎ dimensions. The SA is
computed over the ℎ lower dimensional versions of the input
sequence, and the SA result from the ℎ versions are merged
together to produce the output sequence where each element
has 𝑀 dimensions.

GA incorporates the graph connectivity information in
MSA so that the attention mechanism can be used to analyze
graphs. The input to GA is a series of node data vectors
𝒖1, . . . , 𝒖𝐾 , where 𝒖𝑖 is the vector representation of the 𝑖-th
node in the graph. The output of GA is a series of node
embeddings 𝒐1, . . . , 𝒐𝐾 , and 𝒖𝑖 , 𝒐𝑖 ∈ R𝑀 . Unlike SA where
the similarity between all possible pairs are analyzed, in GA,
the similarity between (𝒖𝑖 , 𝒖 𝑗 ) is analyzed only when the
𝑖-th node and the 𝑗-th node are connected in the graph.

2.2.4 Self-Supervised NEN Pretraining

SSL refers to training machine learning models without data
labels [12]. SSL techniques can obtain information and
representation from unlabeled data, which can be helpful for
a variety of downstream tasks. It has been used in NLP [5],
image processing [20], and audio processing [7]. SSL can
reduce the need of training data [7], increase model robustness
[12], create semantically meaningful representations [20],
and facilitate transfer learning [34]. We pretrain the NEN
using SSL to generate node embeddings 𝒐1, . . . , 𝒐𝑁 , where
𝒐𝑖 ∈ R𝑀 preserves semantic information about the 𝑖-th node.
The pretrained NEN allows easier fine-tuning for various
video forensics tasks.

To pretrain NEN, we devise three classification and two
regression SSL “pretext” tasks. To enable SSL, we introduce
a special word #MASK, whose word embedding

N              O
#MASK will

be used to mask the node data vectors passed to the GAM.
The five pretext tasks are described as below.
1. Masked node data type classification ( DC ): randomly

select from the tree the 𝑖-th node and mask its data vector
𝒖𝑖 with

N              O
#MASK . Use the node embedding 𝒐𝑖 to classify if

the data of the 𝑖-th node is SOL or number.
2. Masked node tag classification ( TC ): randomly select

from the tree the 𝑖-th node and mask its data vector 𝒖𝑖
with

N              O
#MASK . Use the node embedding 𝒐𝑖 to classify the

node tag (k, v, l, n).
3. Masked SOL word inclusion classification ( IC ): ran-

domly select from the tree the 𝑖-th node whose data is SOL
and mask its data vector 𝒖𝑖 with

N              O
#MASK . Then, select

two words from the set of all words, where the first word
is in the SOL of the 𝑖-th node and the second word is not.
Classify if the two words are in the SOL of the 𝑖-th node
using the node embedding 𝒐𝑖 .

4. Masked number regression ( NR ): randomly select from
the tree the 𝑖-th node whose data is number and mask

its data vector 𝒖𝑖 with
N              O
#MASK . Regress the symmetric

log value of the number of the 𝑖-th node using the node
embedding 𝒐𝑖 .

5. Masked SOL length regression ( LR ): randomly select
from the tree the 𝑖-th node whose data is SOL and mask
its data vector 𝒖𝑖 with

N              O
#MASK . Regress the length of the

SOL using the node embedding 𝒐𝑖 .
The DC TC NR tasks examine if the NEN can gain under-

standing about the MP4 tree by asking it to fill in missing
information in the node data vectors. The IC LR tasks ex-
amine if the node embeddings of SOL data preserve the
information in the SOL.

The set of words and their word embeddings determined
at training time may not include all words that can appear
in an MP4 tree. To cope with unseen words, we introduce a
special word #UNKNOWN. When a word in the MP4 tree has
not been seen, we will use

N                        O
#UNKNOWN as its word embedding.

To emulate the presence of unseen words during training, in
the NEN pretraining, we randomly select 5% of the words
in the transformed tree and replace their word embeddings
with

N                        O
#UNKNOWN .

2.3. Graph Convolution and Graph Pooling
In popular Convolution Neural Network (CNN) based

image classification techniques such as VGG [24] and ResNet
[10], convolution layers are used to extract features from
the input image and pooling layers are used to downsample
the extracted features so that subsequent layers can focus
on higher level features. Similar approach can be used for
graphs using Graph Convolution (GC) and Graph Pooling
(GP) techniques. The node embeddings generated by the
NEN trained with SSL contains semantic information about
the nodes in the MP4 tree. Processing the node embeddings
with GC and GP techniques allows the neural network to
focus on node data and graph topology that have significant
contribution to the decision. In MTN, we follow the GC
technique proposed by Kipf et al. [15] and the GP technique
proposed by Lee et al. [16].

In GC, the node embedding is first stored in a matrix
𝑬 ∈ R𝑁×𝑀 , where 𝑁 is the number of nodes and 𝑀 is the
dimensionality. The GC operation is defined as

GC(𝑬) = ReLU
(
𝑫− 1

2 𝑨𝑫− 1
2 𝑬𝜽

)
, (10)

where 𝑫 ∈ R𝑁×𝑁 is the degree matrix, 𝑨 ∈ R𝑁×𝑁 is
the adjacency matrix, and 𝜽 ∈ R𝑀×𝐶 is the parameters of
GC which can be updated during training. Here, 𝐶 is a
hyperparameter that determines the number of “channels” of
GC. It can be seen that GC(𝑬) ∈ R𝑁×𝐶 .

In GP, the graph is “downsampled” by a factor of 𝛼 ∈
(0, 1). At first, a graph SA score 𝒁 ∈ R𝑁 is computed by

𝒁 = tanh
(
𝑫− 1

2 𝑨𝑫− 1
2 GC(𝑬)𝜽att

)
, (11)

where 𝜽att ∈ R𝐶 is the parameters of GP which can be
updated during training. Then, the nodes associated with the
top ⌈𝛼𝑁⌉ scores in 𝒁 ∈ R𝑁 are preserved in the graph, while
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the remaining nodes are removed from the graph. That is, the
output of GP (denoted by 𝑬′) is a ⌈𝛼𝑁⌉ × 𝐶 matrix, whose
rows are from those in GC(𝑬) associated with top scores.
After node removal, the degree matrix 𝑫 and adjacency
matrix 𝑨 need to be updated accordingly.

3. Data Augmentation

Video data files are usually significantly larger compared
to image, audio, and text data. Therefore, it is difficult to
create, transmit, and store large video datasets. In practice,
we need to analyze video datasets that are several gigabytes
in size, but only contain several hundred samples per label.
The lack of data can be challenging for the training of deep
neural network models. To cope with this problem, we devise
a data augmentation technique for training MTN.

The proposed data augmentation technique is derived
from decision tree analysis for MP4 trees [33]. In this class
of methods, the nodes and key-value pairs in an MP4 tree
are first converted into path-like strings (as described in
Sec. 2.1). Then, the occurrence of each unique string is
counted throughout the tree, which effectively creates an
integer-valued vector representation (denoted by 𝒒) for the
MP4 tree. The vector 𝒒 is used by decision tree classifiers
to predict labels for the MP4 tree. To classify an MP4 tree
based on 𝒒, the decision tree must have split on a number of
elements in 𝒒, where each split either indicates the presence
of a string or the absence of a string. We focus on the splits
that correspond to the presence of a string and denote such
strings by 𝑠1, . . . , 𝑠𝑅. Each path-like string 𝑠𝑖 represents a
path in the MP4 tree from the root node to an inner node or
a leaf node that contributed to the classification of the MP4
tree. Therefore, we mark all nodes in the MP4 tree along the
path as visited. When the node marking procedure is done
for strings 𝑠1, . . . , 𝑠𝑅, the nodes in the MP4 tree not marked
as visited are less likely to have contribution to the decision
process, which implies that they can be removed from the
tree.

The splits from one decision tree may overfit the dataset
and be subject to the noise in the data. To mitigate this
issue, the proposed data augmentation technique is based
on a random forest [3] trained using 𝒒. Random forests are
ensemble classifiers that aggregates the decisions from many
decision trees (in our experiments, we used 100 decision
trees). For each decision tree in the random forest, if it
classifies the label correctly, we collect the strings 𝑠𝑖 as
described above and add the strings to the set of all strings.
The node marking procedure is used for the set of all strings.
For the nodes that are not marked as visited, we randomly
remove 𝛽 percent of them as the data augmentation step. In
our experiments, we set 𝛽 = 30. The data augmentation is
not enabled when the random forest cannot classify the MP4
tree correctly, as the evidence used by the random forest can
be unreliable.

4. Experiments and Results
In this section, we describe the data, experiments, and

results. Throughout the experiments, we extracted the MP4
tree information from MP4 files using the technique described
in [32]. We used F1-score [22] and balanced accuracy [4] to
measure the performance of various approaches.
4.1. NEN Pretext Tasks

The NEN was pretrained on the MFC dataset [8], which
contains 4038 MP4 video files. In the NEN, the SOL encoder
consists of 4 transformer encoder layers; the GAtN consists
of 6 GA layers. We set the number of heads in the MSA
(i.e. ℎ) to be 4. Details about the NEN architecture can be
obtained from the supplementary materials.

We pretrained the NEN using the AdamW optimizer [17]
with an initial learning rate of 10−5 and a weight decay factor
of 0.001. The batch size was set to 16. The classification
pretext tasks were trained using the cross entropy loss [30];
the regression pretext tasks were trained using the mean
squared error loss [30]. For each batch, the five tasks
were trained sequentially. That is, we computed the loss
with respect to the first task and updated the model before
proceeding to the second task. The training was stopped
after 30 epochs.

For the NEN, we need to determine two hyperparameters
𝑀 (the dimensionality of embeddings) and 𝛾 (number of
masked nodes in each graph). To determine the choice
of parameters, we sampled combinations of (𝑀, 𝛾) and
pretrained the NEN. We evaluated the training performance
of each task on the MFC dataset after each epoch. The
classification tasks were evaluated using accuracy [25] and
regression tasks were evaluated using mean squared error [30].
We first fixed 𝛾 = 24 and chose 𝑀 among 128, 256, and 384.
The training performance of NEN is shown in Fig. 5. It can
be seen that using 𝑀 = 384 resulted in the best performance
in IC . Then, we fixed 𝑀 = 384 and chose 𝛾 between 16 and
32. The performances are also shown in Fig. 5. It can be
seen that using 𝛾 = 16 resulted in the best performance in
NR . Therefore, in further experiments, we selected 𝑀 = 384
and 𝛾 = 16.

From Fig. 5, it can also be seen that the performance of all
five tasks were generally improving as the number of epochs
increased. This shows that the design of the five tasks allows
them to function collaboratively to help the NEN learn from
unlabeled MP4 trees.
4.2. Forensics Analysis Using MTN

For video forensics analysis tasks, the experiments were
conducted on the EVA-7K dataset [33]. The dataset consists
of 7000 MP4 video sequences captured by different mobile
devices. There are 140 pristine video sequences in the dataset,
which are the original video files captured by the mobile
devices. All 140 pristine video sequences are manipulated
using off-the-shelf tools such as ffmpeg3, Kdenlive4, and

3https://ffmpeg.org/
4https://kdenlive.org/en/
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Figure 5. The training performance of pretext tasks using different (𝑀, 𝛾) settings.

Adobe Premiere5. This results in 1260 manipulated videos.
The pristine and manipulate video sequences are uploaded
to four social networks (YouTube, Facebook, TikTok, and
Weibo) and then downloaded back. In the end, this results in
7000 video sequences.

We evaluated the performance of MTN in 3 video foren-
sics analysis tasks: social network attribution, editing tool
attribution, and manipulation detection. In each task, the
EVA-7K dataset was divided into training, validation, and
testing sets, with a ratio of 4:2:4.

We used the pretrained NEN with 𝑀 = 384 and 𝛾 = 16
(see Sec. 4.1). We used three GC+GP layers with 𝐶 = 128
and 𝛼 = 0.5 (see Sec. 2.3). The classification step of MTN is
realized with a three-layer multilayer perceptron network.
Details about the MTN architecture can be obtained from
the supplementary materials.

For each training batch, we first sampled 16 MP4 trees
from the training set. These 16 samples were added to the
training batch. Then, for each sample, if it was classified
correctly by the random forest approach (see Sec. 3), we
applied data augmentation to the sample twice and put the
two output MP4 trees in the training batch. Therefore, the
batch size varies between 16 and 48. The MTN was trained
using the AdamW optimizer [17] with a learning rate of
3 × 10−5 and a weight decay factor of 0.001. The training
was stopped when the validation performance no longer
increased. We report the performance of MTN on the testing
set. The performance of MTN in each forensics task is
reported as below.
• Social network attribution: in this task, the Video Forensics

Method (VFM) is given videos downloaded from four social
networks as well as local videos that are not from social
networks. The VFM is asked to predict the source of the
video, which can be either one of the four social networks
or local. The performance comparison of this task is shown
in Tab. 1.

• Editing tool attribution: in this task, the VFM is given
videos that are edited by five video editing tools as well
as unedited videos. The VFM is asked to predict which
tool is used to edit the video, which can be either one of
the five tools or unedited. The performance comparison of

5https://www.adobe.com/products/premiere.html

Table 1. The F1-score comparison of the social network attribution
task. The performance of “(Local)” category is not available for
Yang et al. [33].

Social Network Yang et al. [33] Xiang et al. [32] MTN

YouTube 1.00 0.99 1.00
Facebook 1.00 1.00 1.00

WeiBo 0.99 0.99 0.99
TikTok 1.00 1.00 1.00
(Local) – 0.99 0.99

Table 2. The F1-score comparison of the editing tool attribution
task.

Tool Yang et al. [33] Xiang et al. [32] MTN

Avidemux 0.99 0.98 0.99
Exiftool 0.98 1.00 0.96
ffmpeg 0.94 1.00 1.00

Kdenlive 0.95 1.00 0.99
Premiere 1.00 0.99 1.00

(Unedited) 0.97 1.00 0.96

Table 3. The balanced accuracy score comparison of the manipula-
tion detection task.

Balanced Accuracy

Güera et al. [9] 0.67
Iuliani et al. [14] 0.85
Yang et al. [33] 0.98

Xiang et al. [32] 0.99
MTN 1.00

this task is shown in Tab. 2.
• Manipulation detection: in this task, the VFM is given
videos that are manipulated by video editing tools as well
as pristine videos. The VFM is asked to predict whether
the video is manipulated. The performance comparison of
this task is shown in Tab. 3.
It can be seen that MTN achieved the best performance in

social network attribution and manipulation detection. The
performance of MTN is in line with that of [32]. However, as
we will discuss in Sec. 4.2.1, MTN has more comprehensive
understanding about MP4 trees and is more robust against
attacks.

4.2.1 The Robustness of MTN

Existing MP4 tree analysis approaches such as [32, 33] use
hand-crafted features with decision tree classifiers. Decision
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Table 4. The robustness of random forest and MTN against the
evidence removal attack.

Confidence Score Change
Avg. Confidence Num. Evidence Removal

Method Before Attack 1 2 3 4 5
Random Forest 0.99 -0.08 -0.17 -0.24 -0.31 -0.38

MTN 0.97 -0.08 -0.14 -0.18 -0.20 -0.21

tree classifiers function by analyzing a series of deterministic
splits on selected elements in the hand-crafted feature vector.
Therefore, this class of methods cannot model the topology of
the MP4 tree or node-to-node relationships in the tree, which
makes them more vulnerable against attacks. In this section,
we demonstrate an evidence removal attack dedicated to
methods for MP4 tree analysis based on decision trees, and
we show that MTN is more robust against this attack.

In evidence removal attack, the attacker attempts to re-
move information from the MP4 tree in order to change the
predicted label from VFMs. For the attack, we trained a
random forest classifier for the social network attribution
task that consists of 100 decision trees. For a given sample
that is classified correctly by the random forest, we focus on
the decision trees in the random forest that also classifies the
sample correctly. We gathered all the splits in the focused
decision trees that correspond to the presence of a node or
key-value pair in the MP4 tree. This effectively generates a
set of node and key-value pairs that serves as evidence for
the decision. The set of evidence usually contains more than
20 elements. From the set of evidence, we randomly remove
1, 2 . . . , 5 node(s)/key-value pair(s) from the MP4 tree and
ask both the random forest and MTN to classify the MP4
tree with evidence removal.

Both the random forest and MTN can output a confidence
score for the prediction, which is the probability that the
sample belongs to the ground truth label. By comparing the
confidence score of the MP4 tree before and after evidence
removal, we can evaluate the robustness of the classifiers
against the evidence removal attack. The evidence removal
attack was applied to all MP4 trees in the testing set, and we
computed the average confidence score change caused by the
attack.

The result is shown in Tab. 4. It can be seen that the
confidence score decline of MTN is less significant compared
to the random forest. Note that as the number of evidence
removal increases, the confidence score from random for-
est continues to drop, whereas the confidence score from
MTN almost stopped decreasing. This implies that the deci-
sion of MTN is likely to be based on a more comprehensive
analysis of the MP4 tree, which makes MTN more robust
against evidence removal attacks.
4.3. Ablation Study

We analyzed the effectiveness of NEN pretrain and data
augmentation. We trained MTN on the social network
attribution task with four settings: with both techniques
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Figure 6. The validation performance of different training settings
vs. training steps.

(+Both); with only data augmentation (-NEN pretrain); with
only NEN pretrain (-Data Aug.); with none of the techniques
(-Both). We monitored the validation balanced accuracy
of the four settings every 3 training steps. The result is
shown in Fig. 6. It can be seen that NEN pretrain and data
augmentation combined led to faster training as well as less
performance fluctuation. As more training steps elapsed, the
MTN trained using both techniques also managed to achieve
the best validation balanced accuracy, which was close to 1.

5. Conclusion

In this paper, we propose MTN for video forensics
analysis based on end-to-end GNNs. MTN uses the MP4 tree
information to make decisions, it does not require any pixel
data. We devise an SSL scheme to pretrain MTN, which
allows it to generate semantic-preserving node embeddings.
We also propose a data augmentation technique for MP4 trees
to help train MTN in data-scarce scenarios. The experimental
results showed that MTN achieved good performance in
video forensics analysis tasks. It is shown that MTN can
gain more comprehensive understanding about the MP4
trees and is more robust to the evidence removal attack
compared to existing methods. We also demonstrated that
the SSL scheme and the data augmentation technique can
reduce training iterations, reduce performance fluctuation,
and improve the performance. The source code of MTN is
avaliable at https://gitlab.com/viper-purdue/mtn.

In the future, we will examine the performance of MTN in
more video forensics analysis tasks. We will evaluate the
scalability of MTN by analyzing large real-world datasets.
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