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Abstract

The advances in automatic sign language translation
(SLT) to spoken languages have been mostly benchmarked
with datasets of limited size and restricted domains. Our
work advances the state of the art by providing the first
baseline results on How2Sign, a large and broad dataset.

We train a Transformer over 13D video features, using
the reduced BLEU as a reference metric for validation, in-
stead of the widely used BLEU score. We report a result of
8.03 on the BLEU score, and publish the first open-source
implementation of its kind to promote further advances.

1. Introduction

Sign language translation (SLT) is the task of translating
continuous sign language videos into spoken language sen-
tences. SLT is a challenging multimodal problem that re-
quires both a precise understanding of the signer’s pose and
the generation of a textual transcription. The current state
of the art for automatic SLT is still far away from consider-
ing the problem solved [ 1, 16, 18,59, 64, 66]. Solving SLT
will bring important benefits to the communication between
signers and non-signers.

Recent advances in SLT have followed a trajectory sim-
ilar to other computer vision and natural language process-
ing problems: training deep neural networks on large-scale
datasets. However, the availability of public sign language
datasets is limited and especially reduced when consider-
ing parallel corpus of videos and their textual translations,
which allow benchmarking the state of the art. Up to
date, the most used dataset to assess the progress in SLT
is PHOENIX-2014-T [24], with only 9.2 hours of video
recordings on the restricted domain of weather forecasts.

In this work, we consider a much larger and more com-
plex dataset, How2Sign [23], which contains almost 80
hours of instructional videos from 10 different topics. This
dataset was approved by the Carnegie Mellon University In-
stitutional Review Board. We publish the first SLT baselines
for this dataset, achieving a BLEU score of 8.03.

In addition, we show that the common practice of choos-
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Figure 1. A basic pipeline for sign language translation.

ing the best model checkpoint based on the BLEU metric
may be misleading. This is because the model tends to
capture frequent patterns, and may even provide realistic
outputs completely unrelated to the input video. We em-
pirically test how using an alternative metric [21], reduced
BLEU (rBLEU), we can better characterize the performance
of the SLT solutions and choose better checkpoints during
training.

We provide open code and models of a translation sys-
tem from American Sign Language (ASL) to written En-
glish, trained on How2Sign. Our implementation contains
scripts to preprocess the data, train, translate, and evalu-
ate models, which allows reproducibility and adaptation to
other datasets.'

2. Related Work

Sign language video understanding has been addressed
from a variety of tasks: sign language recognition (SLR)
over isolated or continuous signs [, 19,27,28,41,44,46],
sign language translation (SLT) [9, 17,24,32], sign language
production (SLP) [49-53] or retrieval [22]. Our work fo-
cuses on sign language translation.

Gloss supervision. Gloss-based SLT [8, 11, 16,66] uses an
intermediate textual representation between the input video
sequence and the output text. These tokens are named
glosses. Glosses are a type of transcription of sign lan-
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guages that must be produced by trained sign language lin-
guists and that are available in some SLT datasets. Glosses
provide supervision that helps models in their training, but
their acquisition is also very time-consuming and expensive
because of the scarcity of annotators.

On the other hand, gloss-free SLT [9, 12,45, 54, 64] ad-
dresses the raw task of converting the video into text, with-
out any intermediate gloss. Our work targets this second
case, as glosses for [23] have yet to be released.

Datasets. Gloss-free SLT has traditionally focused on
datasets that have a limited amount of data, and a restricted
vocabulary [8,32,34,36,55]. Thus, the challenge to serve
in real-world use cases remains.

SLT is by definition associated with continuous signing
rather than isolated signing, because signers naturally con-
catenate one sign after the other with no resting position,
similarly to how speakers concatenate spoken words. Com-
pared to isolated SL, continuous SL videos include impor-
tant effects such as prosody, which can play a crucial role in
the meaning of a sentence.

Table 1 shows the current state of the art in terms of
the BLEU metric for different SLT benchmarks. Reason-
able scores in the range between 29 and 60 BLEU have
been reported in three datasets of limited vocabulary size:
KETI [33], PHOENIX-2014T [&], and CSL Daily [66].

Our work aims at the more open domain of instructional
videos across 10 different topics, to set the first SLT base-
lines on the How2Sign [23] dataset. This dataset has been
used in the past for human motion transfer, sign language
retrieval [22], or topic detection [6], but never for SLT.

Our baselines are similar to those published with Ope-
nASL [54], another dataset of similar complexity. While
the scores are not directly comparable because they are dif-
ferent datasets, the BLEU score of 6.72 reported for Ope-
nASL is in a similar range to the values we report in Sec-
tion 5. Other works on alternative datasets of large scale
obtained very poor BLEU scores: 1.0 in BOBSL [3], 0.4 in
SWISSTXT-NEWS [12], 0.4 in VRT-NEWS [12], or 0.37
in SRF [57] and 0.84 in FocusNews [2 1] in the WMT shared
task on sign language translation 2022 [43].

Algorithms. SLT was initially approached with rule-based
systems [05] and statistical methods [7]. Since 2018, vir-
tually all related work has basically applied the advances
in deep learning to sign language translation datasets.
Given that SLT can be formulated as an input sequence
of video frames that is transformed into a sequence of
words, it fits perfectly in the popular sequence-to-sequence
(seq2seq) [56] formulation widely adopted by the Machine
Translation field which employs an encoder-decoder archi-
tecture to transform the input sequence into the output one,
as depicted in Figure 1.

First approaches in neural SLT used Recurrent Neural

Networks (RNNs) [56] for the encoder-decoder architec-
ture, whether with (GRUs) or LSTMs [26,31,33,45].

However, RNNs present limitations in modeling long-
term dependencies, an especially relevant problem when
considering video input sequences captured at high frame
rates. To overcome these limitations, attention-based ap-
proaches were proposed [5]. Attention mechanisms selec-
tively focus on parts of the input during decoding, allowing
to capture long-term dependencies more effectively. Cam-
goz et al. fed 2D CNN visual features into an RNN encoder-
decoder with attention to perform translation [8].

The Transformer [58] has emerged as the preferred op-
tion for numerous Natural Language Processing (NLP) and,
more recently, Computer Vision (CV) tasks. The Trans-
former relies on the self-attention mechanism, which al-
lows it to process the input sequence in parallel rather than
sequentially, allowing even better modeling for long-term
dependencies and allowing parallelization during train-
ing. Transformers have proven to work well for the SLT
task [10-12,16,37,60,64,66]. Thus, we explore the Trans-
former architecture for the How2Sign dataset.

Tokenization of sign language videos. Sign language
videos are normally tokenized to be fed into neural architec-
tures, like the Transformer. Camgoz et al. [8, | 1] used 2D
CNN to extract features of frames at the gloss-level. These
2D CNN features were learned from another sign language
recognition model [66].

Another commonly used features are inflated 3D con-
vnets (I3D), developed for action-recognition [ 4], that can
be further trained with sign language data [2,21,22,37,45,

]. Similarly, [15] uses S3D [62] features, which have
been pretrained in kinetics [30] and WLASL dataset. We
focus our study on I3D video features.

Other works have also used pose estimators [13,40] to
represent the input video sequence since they contain rel-
evant information about the motion and position of body
parts. They have been particularly useful for action recog-
nition [61]. Poses can be directly extracted, normalized and
concatenated to form a video-level representation [12, 33,

] or perform frame level processing [31]. Our work does
not include baselines based on poses because our first ef-
forts to train models using this approach were unsuccessful.

Finally, other manually designed and sophisticated
multi-cue channels have been proposed for SLT. In [16]
they combine raw frames and poses with a two-stream net-
work. [64] proposes using Spatial and Temporal Multi-cue
networks [67], which combines cues from image and pose
(hand, face, full-frame and pose) in multiple scales. An-
other work uses a combination of raw frames and poses,
and uses Graph Convolutional Networks to extract the to-
kens [25].
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Dataset Duration(h) Vocabulary(K) BLEU Domain

train  val  test train val test
KETTI [33] 20.05 224 570 <+ 049 —  5737[33] Emergency situations
PHOENIX-2014T [8] 9.2 0.6 0.7 2 0.9 1 25.59 [60]  Weather Forecast
CSL Daily [66] 20.62 1.24 141 2 1.3 1.3 2392[15] Daily life
OpenASL [54] — 288 — < 33 — 6.72 [54] Youtube (news + vlogs)
How2Sign [23] 69.6 3.9 56 156 32 3.6 8.03(Ours) Instructional

Table 1. Comparison between SLT datasets based on the duration of the videos (in hours), number of unique words (in thousands) in the
vocabulary and SOTA on SLT without glosses. <— — indicate that in some cases only statistics on the whole dataset are provided.

3. Data Preprocessing

One of the main challenges in SLT is the variability and
complexity of sign languages, which can be influenced by a
variety of factors such as the signer’s background, context,
and appearance. Therefore, it is important to preprocess
the data to reduce this variability. This includes techniques
such as visual feature extraction and normalization, as well
as standardizing the format of the target data, which is text
in our case.

3.1. Video tokenization

We choose I3D features [14] to extract video representa-
tions directly from the RGB frames, motivated by their ef-
fectiveness in the sign recognition [29,36] and retrieval [22]
tasks. I3D features consider not only visual cues, but also
temporal information. As a result, they provide a dense and
reliable source of visual cues as input to our models.

The original I3D network is trained on ImageNet [20]
and fine-tuned for action recognition with the Kinetics-
400 [30] dataset. As shown in [2,21,22,37,45,54], further
fine-tuning with sign language data is needed to properly
model the temporal and spatial information present in them.
We used the I3D features provided in [22].

The I3D network was trained on 16 consecutive frames,
and videos were resized to 224 x 224. Color, scale, and
horizontal flip augmentations were applied, and the features
were extracted from the 1024-dimension activation before
the pooling layer of the I3D backbone. Since they are al-
ready an output of a trained network, further processing,
such as normalization, is not needed.

3.2. Text processing

Text preprocessing is an important step in preparing raw
text data into a more suitable format for NLP models. By
cleaning, normalizing, and transforming text data into a
standardized format, data can be effectively utilized by NLP
algorithms.

Lowercase. Similar to NLP pipelines, our system first con-
verts raw text to lowercase. Lowercasing reduces the com-
plexity of the vocabulary and minimizes the impact of ir-

relevant capitalization variations, thereby simplifying sub-
sequent processing steps.

Tokenization. We employ the Sentencepiece tokenizer [35]
to segment the lowercase text into sub-word units. This ap-
proach represents a significant improvement over the con-
ventional method of treating each word as a unit of the
sequence. Word-based tokenization leads to an expansive
vocabulary and an inability to account for previously un-
seen words, even if they are variations of words in the vo-
cabulary. On the other hand, sub-word tokenizers optimize
the representation of words in the training data partition by
identifying the most effective sub-word units, based on their
frequency, while imposing a predefined vocabulary size.
This allows better handling of unseen words, that can be
represented as combinations of sub-words from the vocabu-
lary. Sub-word tokenization requires specifying a fixed vo-
cabulary size, which becomes a hyperparameter to be opti-
mized. The choice of vocabulary size has trade-offs in terms
of representation and computational efficiency. When the
vocabulary size is small, all sub-words are used more fre-
quently, potentially leading to a better representation of un-
seen words. However, this also results in longer sequences
as more sub-words are required to represent the same in-
puts, which can increase computational costs. Conversely,
a larger vocabulary size reduces sequence length but may
have worse coverage of rare and unseen words. There-
fore, selecting the optimal vocabulary size requires balanc-
ing the need for better representation against the computa-
tional cost.

Postprocessing. To ensure a fair assessment of the system’s
performance, it is necessary to compare the model outputs
to the original test set without any prior processing. How-
ever, this approach may result in a lower BLEU score, as
the model generates text based on preprocessed data. For
instance, comparing two versions of the same sentence, one
lowercase and the other not, would result in the same word
being counted as two different words. Therefore, we im-
plement a postprocessing step, that involves detokenization
and truecasing [38], to restore the original capitalization and
prevent this issue from arising.
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4. Methodology

The building blocks of our implementation are depicted
in Figure 2. The input video stream is tokenized with a
pre-trained I3D feature extractor. These tokens are fed into
the encoding layers of the Transformer. The decoder of the
Transformer operates with lowercase and tokenized textual
representations.

ukulele today.
A
,7 Truecasing
Encoder L 1
IR Detokenization
é Postprocessing 4
_ukulele_today.
A (213, 319, 1207, 116, 705, 219,4]
Encoder Layer — Decoder Layer
4
Sign Language g
Encoder L}
Tokenized Video —= Decoder Layer

Pretrained 13D

? [198, 5, 22,9, 25, 1215, 7, 280]
_hi,_we're_learning _to_play
{

Tokenization
A
hi, we're learning to play

Lowercasing

Preprocessing

Hi, we're learning to play

Figure 2. The input video sequence is fed into a Transformer to
generate the output text sequence.

4.1. Neural architecture

We use a standard transformer encoder-decoder, to lever-
age their ability to model context and dependencies across
the input sequence, as well as their sequence-to-sequence
capabilities.

For the model, we choose an asymmetric encoder-
decoder with six encoder layers and three decoder layers,
each with four attention heads, we select an embedding di-
mension of 256 and feed-forward network hidden size of
1024, which corresponds to ID (17) from Table 3.

4.2. Implementation details

In our implementation, we first preprocess the vocabu-
lary as described in Section 3.2, with a vocabulary size of
7000 subwords.

For training, the batch size is set to 32, and we use cross
entropy loss with label smoothing of 0.1. We select the
Adam optimizer, we warm-up the learning rate for the first
2000 updates, and then we apply a cosine decay from 1073
to 107 with warm restart every 1.7 - 10* steps We train the
model for 10° steps, equivalent to 108 epochs. We perform

validation every two epochs. Our training process takes 3.5
hours on a single NVIDIA GeForce RTX 2080 Ti GPU.

For inference, we adopt steps commonly used in ma-
chine translation. During the text generation phase, the de-
coder predicts the next token by sampling from the proba-
bility distribution conditioned on the previously generated
tokens. Instead of only selecting the prediction with higher
probability, we use the beam search algorithm to generate
predictions. Beam search generates multiple candidate se-
quences, we choose a beam size of five.

4.3. Evaluation protocol

To measure the performance of our SLT models, we use
BLEU score [47] a widely used metric in machine trans-
lation that measures the similarity between the predicted
translation and the ground truth, at the corpus level.” We
implement it using sacreBLEU [48].

The difficulty of the SLT task causes a bias in the model
prediction towards most statistically frequent patterns, such
as Example (2) and (3) in Table 4. These patterns can in-
flate the BLEU scores without actually translating anything
meaningful. Inspired by [21] we compute reducedBLEU
(rBLEU). This metric consists of removing certain words
from the reference and the prediction before computing the
BLEU score. We create a blacklist of words that are fre-
quently used in the training data but do not contribute much
to the meaning of the sentences, such as articles, preposi-
tions, and pronouns. Appendix A.l provides the complete
list of the removed words, as well as the process to obtain
them.

Table 4 shows a comparison between rBLEU and BLEU
metrics. In general, rBLEU scores are substantially lower
than BLEU. With rBLEU we are reducing the number of
words of the sentences. Although How2Sign sentences are
long, with an average of 11 words per sentence [23], if
the reduced texts have less than four words, it is not pos-
sible to compute BLEU score and becomes zero-valued,
even if the words are perfectly matching. For reference,
for the test partition, after applying the reduction to the
text, 40% of the sentences contained less than 3 words. Al-
though only longer sentences contribute to the rBLEU met-
ric, shorter sentences are known to be comparatively easier
for the model, so we are able to identify models that deal
better with complex examples.

Focusing on concrete examples, row (2) in Table 4,
shows that both the prediction and the reference contain the
phrase “In this clip I'm going to show you how to”, which
is one of the frequent patterns on the instructional dataset.
This pattern inflates the BLEU score, while it does not affect
the rBLEU score, which is low, suggesting that sentences
have different meanings. Similarly, row (3) in Table 4 con-

2Other SLT papers use BLEU-4 instead of BLEU. It represents the
same score, we use BLEU for simplicity.

5628



val test
rBLEU BLEU-1 BLEU-2 BLEU-3 BLEU rBLEU BLEU-1 BLEU-2 BLEU-3 BLEU
Ours. 2.79 35.2 20.62 13.25 8.89 2.21 34.01 19.3 12.18 8.03

Table 2. Best scores on How2Sign for Sign Language Translation.

tains the phrase “we’re going to talk about how to”, which
similarly inflates the BLEU score even if prediction and the
reference differ in meaning.

Experimental results indicate that rBLEU is a more re-
flective indicator of actual performance than traditional
BLEU, for low-resource settings that also have repetitive
patterns, given that it considers mostly semantically mean-
ingful words. In order to provide comparable results with
other works, we also report standard BLEU in our results.

5. Experiments

The performance of our proposed approach is shown in
Table 2. We evaluate our models using the metrics de-
scribed in Section 4.3 and provide examples of generated
spoken language translation sentences.

5.1. Quantitative results

Our implementation achieves the machine translation
metrics reported in Table 2. To the authors’ knowledge,
these are the first published results for SLT obtained with
the How2Sign dataset. The table displays the results of our
best configuration, which provides a baseline from where
future work can build upon.

5.2. Qualitative results

We provide a qualitative assessment of the results in Ta-
ble 4, showing a few spoken language translations gener-
ated by our best-performing model. Words used to compute
rBLEU are in bold.

Example (1) shows the ability of our model to provide
detailed translations even for complex words like “self de-
fense”. Our metrics indicate both high BLEU and rBLEU
scores meaning that the model is generating a good transla-
tion, considering both full sentences and meaningful words.

However, our results also suggest that this is not always
the case. For instance, in Examples (2) & (3), BLEU is
higher than rBLEU. We believe that this occurs because of
the nature of the dataset. Given that we are working with
instructional videos, there are frequent phrases like “I’'m
going to show you how to”, “we’re going to talk about
how to”, which the model learns to predict easily. And
although this phrase has been correctly translated, the ex-
ample has a different meaning, resulting in a lower rBLEU
score. Given that high BLEU scores can be misleading due
to their susceptibility to frequent phrases, we emphasize the

importance of using rBLEU instead of BLEU when select-
ing the best checkpoint.

The provided examples suggest that the models’ perfor-
mance may depend on the complexity and length of the
signed video. We observed that the model was able to pro-
vide reasonably accurate translations for short sentences,
except for Example (5). For longer sequences, the model
struggled to capture the meaning of the video. This is also
evidenced by the fact that only a few words are selected to
compute rBLEU.

The last example (6) illustrates the reason behind the
disparity between rBLEU and BLEU metrics, explained in
Section 4.3. In this case, despite obtaining a high BLEU
score and an accurate translation, the corresponding rBLEU
score is zero due to the reduced number of remaining words
for rBLEU calculation, which is less than four.

Overall, the findings suggest that the model’s quality is
still suboptimal, as demonstrated by Example (4), which has
comparable metrics to the overall performance. Our anal-
ysis identifies cases where BLEU-guided translations fall
short, and we propose rBLEU as a validation metric that
aligns more closely with translations that effectively cap-
ture the original semantic meaning.

Values
Text preprocessing {yes, no}
Vocabulary size {1k, 4k, 7k}
Batch size {32, 64}
Learning Rate (LR) {5e-2, 1e-3, 5¢-3}
LR scheduler {cosine, inv_sqrt}
Warm-up steps {0, 2k, 4k}
Warm restarts period {0,17k, 22k}
Weight Decay {1e-3, le-2, 1e-1}
Label Smoothing {0, 0.1}
Dropout {0,0.1,0.2, 0.3}
# Layers (encoder-decoder) {2-2, 3-3, 4-2, 6-3}
Embed dim (256, 512}
FFN dim {512, 1024, 2048}
# Attention heads {4, 8}

Table 3. Hyperparameters search space. In bold are the optimal
ones that we found during validation, and underlined are defaults.
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Example rBLEU BLEU
) Reference And that’s a great vital point technique for women’s self defense. 30.29 38.25
Prediction It’s really a great point for women’s self defense. ' ’
Reference In this clip I'm going to show you how to tape your cables down.
2) . S e . . 24.88 64.53
Prediction In this clip I'm going to show you how to improve push ups.
In this segment we’re going to talk about how to load your still for
3) Reference distillation of lavender essential oil. 6.77 29.82
OK, in this clip, we’re going to talk about how to fold the ink for
Ours . .
the lid of the oil.
You are dancing, and now you are going to need the veil and you
@) Reference are going to just grab the veil as far as possible. 493 3,04
Ours So, once you're belly dancing, once you’ve got to have the strap,
’ you’re going to need to grab the thumb, and try to avoid it.
But if you have to setup a new campfire, there’s two ways to do
it in a very low impact; one is with a mound fire, which we should
Reference in the campfire segment earlier and the other way to setup a low
%) impact campfire is to have a fire pan, which is just a steel pan like 0.85 3.79
the top of a trash can.
And other thing I’m going to talk to you is a little bit more space,
Ours a space that’s what it’s going to do, it’s kind of a quick, and then I
don’t want to take a spray skirt off, and then I don’t want it to take
it to the top of it.
Reference So, this is a very important part of the process.
(6) , . 0.0 61.86
Ours It’s a very important part of the process.

Table 4. Qualitative examples from our best-performing model. In bold the words remaining to compute rBLEU. Corresponding manually

selected input frames from examples can be found in Appendix A.2

5.3. Hyperparameter search

Transformer under low-resource conditions is highly de-
pendent on hyperparameter settings [4]. Our experiments
show that using an optimized Transformer improves the
translation quality over 3.47 BLEU points and 1.8 reduced
BLEU points compared to the default hyperparameters for
SLT.

Table 3 shows the hyperparameters that we optimize, or-
dered by tuning order. Default hyperparameters for SLT
come from [|1]. Exploring all possible values in Table 3
is extremely expensive. Possible methodologies of explo-
ration include random search or grid search. We choose a
flexible grid search, which means that we try different val-
ues, and once the hyperparameter is tuned, we fix it. Since
there is no guarantee that this will result in a global opti-
mum, we analyze the results to discard or add experiments
during the exploration.

As highlighted in Section 3, text preprocessing plays an
important role in NLP tasks. In our experiments, we opted
to lowercase our training data. To showcase its efficacy, we
trained our model with both preprocessed text data and raw
text data (i.e., direct production of truecased outputs). Our

results indicate that lowercasing the text data yields signif-
icant improvements in the rBLEU metric, as evidenced in
Table 5.

Text  BLEU
Preprocessing
(1) no 0.62
2) yes 0.98

Table 5. Impact of text preproceessing.

p  Yocabulary by by
Size

3) 1000 0.85

@ 4000 0.89

(5) 7000 0.98

Table 6. Impact of the vocabulary size.
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Encoder Decoder Embed FFN Attention LR
b Layers Layers Dim Dim Heads LR Scheduler rBLEU
6) 3 3 512 2048 8 0.001 inverse_sqrt 0.98
@) 3 3 512 2048 8 0.001 cosine (T=17k) 0.89
(8) 3 3 256 1024 4 0.001 cosine (T=17k) 1.14
)] 3 3 256 1024 4 0.005 cosine (T=17k) 0.68
(10) 2 2 256 1024 4 0.001  cosine (T=17k) 1.32
(11) 2 2 256 1024 4 0.005 cosine (T=17k) 0.72
(12) 2 2 256 512 4 0.001  cosine (T=17k) 1.37
(13) 4 2 256 1024 4 0.001  cosine (T=17k) 1.14
(14) 4 2 256 1024 4 0.005 cosine (T=17k) 0.64
(15) 6 3 512 2048 8 0.001 cosine (T=17k) 0.87
(16) 6 3 512 2048 8 0.001 cosine (T=22k) 0.75
a7 6 3 256 1024 4 0.001 cosine (T=17k) 0.93

Table 7. Validation scores during the exploration of the model architecture.

As previously discussed in Section 3.2, the selection of
appropriate vocabulary size is a trade-off between enhanc-
ing the representation of rare words or producing shorter se-
quences. In our study, we utilize the SentencePiece [35] to-
kenizer and experiment with dictionary sizes of 1000, 4000,
and 7000 sub-words to evaluate their respective impacts on
NMT performance.

Results in Table 6 show that larger dictionary improves
results, in our experiments it increases 0.14 points of re-
duced BLEU score. Thus, we always use a Sentencepiece
tokenizer with a vocabulary of 7000 sub-words.

A current observation in Transformers is that increasing
the number of parameters will improve the performance.
However, in low-resource languages, increasing the num-
ber of model parameters can hinder performance [64]. We
study the effect of using a deeper and shallower Trans-
former by changing the number of layers in the encoder and
decoder, the number of attention heads, the feed-forward
layer dimension, and embedding dimensions.

Since the optimization of the learning rate (LR) is depen-
dent on the number of parameters of the model, we tune it
together with other hyperparameters related to the architec-
ture size. Furthermore, we introduce the use of LR schedul-
ing of cosine with warm restarts. This scheduler has been
shown to perform better than alternatives [39]. The reset-
ting of the learning rate acts as a simulated restart of the
learning process and is defined by number of steps T.

Table 7 shows the results of our system optimizations.
Experiments point to the direction that smaller models, like
(12) perform better for our dataset. The loss curves indi-
cated a substantial amount of overfitting in the larger mod-
els, which is most likely related to the small amount of pro-
vided data compared to the amount of data needed to tune
a large number of parameters. We see gains in tuning the

learning rate to improve performance. Our results indicate
that it is beneficial to use four attention heads instead of
eight under low-resource conditions. Due to the fact that
the input data is by far more complex than the output, we
choose to carry out further experiments with both the best
symmetric model (12) and the best asymmetric model (17).

Given the observed overfitting, we add regularization by
adding dropout, weight decay, and label smoothing. Con-
sidering it is difficult to perform data augmentation with our
video features, adding regularization helps make the model
more robust to overfitting.

Table 8 shows that we obtain substantial improvements
by increasing regularization techniques. That is to be ex-
pected since overfitting was present in our previous exper-
iments. Surprisingly, it appears that tuning these hyper-
parameters is the most effective measure to improve the
model’s performance. We also show that under these con-
ditions, a larger model paired, such as (22), with regulariza-
tion techniques outperforms a smaller model.

ID Base Dropout gfcl(‘j;lt SmI:)E;)k;Ielling rBLEU
©6) - 0.1 0.001 0 0.98
18) (17) 0.2 0.01 0.1 1.17
19 (12) 0.2 0.01 0.1 1.21
20) (6) 0.3 0.1 0.1 1.84
2D  (12) 0.3 0.1 0.1 1.38
22) 17 0.3 0.1 0.1 2.78

Table 8. Validation scores for different regularization techniques.
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6. Discussion

Our experiments yielded several findings. Firstly, we ob-
served that text preprocessing is an important step that can
significantly improve performance, resulting in an increase
of 0.36 rBLEU points. Secondly, we found using a greater
vocabulary size led to an increase of 0.14 rBLEU.

Another finding was that choosing the correct parameters
for the architecture is crucial for achieving optimal perfor-
mance, resulting in a 0.39 rBLEU improvement. Further-
more, our results highlight the difficulty of finding the sweet
spot where regularization techniques help but not hinder
the performance of deep learning models. In our case, we
boosted performance by an impressive 1.8 rBLEU points
after an extensive sweep of hyperparameters and configura-
tions.

During the qualitative analysis, we show that the model
is able to produce meaningful translations. Moreover,
our experiment highlights the importance of considering
rBLEU as an effective metric for evaluating the best check-
point. Higher rBLEU scores indicated a consistent correla-
tion with the model’s ability to capture the semantic mean-
ing from the video.

While our work has shown promising results, there is
still room for improvement. Our current approach only ex-
plores the use of 13D as visual feature. While other works
use pose landmarks as a visual features [12, 31, 33, 43],
our initial exploratory work with MediaPipe [40] poses, ob-
tained unsatisfactory results with BLEU score of 0.8 for the
test partition.

Furthermore, upon qualitative exploration, we realized
the decoder was discarding the conditioning provided by the
encoder and functioning solely as a language model. We
hypothesize that this behavior may be due to our current
approach of feeding poses as sequences of one-dimensional
arrays containing only landmark coordinates. This method
may not be the most effective way of processing the graph-
like structure present in poses. One proposed way of tack-
ling this is extracting optical flow features based on human
pose estimation [42], which worked well for sign language
detection. Similarly to [63], we recognize the need for an
in-depth exploration of visual features appropriate for SLT.

We believe another exciting direction would be the ex-
ploration of using a pre-trained decoder, similar to [18],
where language models that are already trained for spoken
language translation are adapted for sign languages.

Societal Impact. Efficiently translating sign language
videos can have a significant impact on accessibility, open-
ing up a range of useful applications. However, there are
also potential risks associated with this technology, includ-
ing problems associated with the accuracy of models, which
currently produce inaccurate or incomplete translations, bi-
ases present in the datasets, and increased risk of surveil-

lance of signers, similarly how automatic speech recogni-
tion (ASR) technologies may affect the privacy of speakers.

7. Conclusions

In this work, we made an open-source implementation
that serves as a first baseline for sign language translation
on the How2Sign dataset, a large and complex dataset. Our
approach achieved a BLEU score of 8.03, inidicating a cer-
tain level of understanding of the signed utterances, which
is on par with results reported for OpenASL [54], a publicly
available dataset of comparable complexity.

Additionally, our extensive hyperparameter search
demonstrates the necessity of tuning to obtain the best set
of parameters. The best results are obtained with an asym-
metric Transformer trained with great amounts of regular-
ization.

Our evaluations, both quantitative and qualitative, have
led us to conclude that rBLEU is a suitable evaluation met-
ric for similar benchmarks, particularly for low-resource
datasets with frequent repetitive patterns. In contrast to tra-
ditional BLEU score, which may be inflated due to these
patterns, rBLEU provides a more accurate evaluation that
better reflects the model’s performance.

Lastly, we provide the code and models to allow repro-
ducibility and encourage further research and advancements
in sign language translation field.
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