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Abstract

When do gradient-based explanation algorithms provide
perceptually-aligned explanations? We propose a criterion:
the feature attributions need to be aligned with the tangent
space of the data manifold. To provide evidence for this
hypothesis, we introduce a framework based on variational
autoencoders that allows to estimate and generate image
manifolds. Through experiments across a range of differ-
ent datasets – MNIST, EMNIST, CIFAR10, X-ray pneumo-
nia and Diabetic Retinopathy detection – we demonstrate
that the more a feature attribution is aligned with the tan-
gent space of the data, the more perceptually-aligned it
tends to be. We then show that the attributions provided
by popular post-hoc methods such as Integrated Gradients
and SmoothGrad are more strongly aligned with the data
manifold than the raw gradient. Adversarial training also
improves the alignment of model gradients with the data
manifold. As a consequence, we suggest that explanation
algorithms should actively strive to align their explanations
with the data manifold. An extended version of this pa-
per is available at https://arxiv.org/abs/2206.
07387.

1. Introduction

Post-hoc explanation algorithms for image classification
often rely on the gradient with respect to the input [4,38,41].
In many cases, however, model gradients and post-hoc ex-
planations [6, 9, 28, 36, 37] posses little visual structure that
can be interpreted by humans [21]. This makes image clas-
sification with neural networks one of the most challenging
applications of explainable machine learning.

Recently, a number of different papers have observed
conditions that lead to perceptually aligned gradients
(PAGs) [16]. In particular, it has been shown that adversar-
ial training, as well as other forms of robust training, lead
to PAGs [21, 23, 34, 42]. However, it remains unclear what
exactly makes a feature attribution perceptually-aligned.

In this work, we try to understand when a feature attri-
bution is perceptually-aligned. We propose and investigate
the following hypothesis:

Hypothesis: Feature attributions are more perceptually-
aligned the more they are aligned with the tangent space
of the image manifold.

To understand the intuition behind the hypothesis,
note that it is widely believed that natural image data con-
centrates around a low-dimensional image manifold [17].
This image manifold captures the geometric structure of the
data. In particular, the tangent space of an image captures
all components of the image that can be slightly changed
while still staying within the realm of natural images. If
an attribution approximately lies in this tangent space, this
means that it highlights visually meaningful components of
the image that contribute to the prediction. If a an attri-
bution lies orthogonal to the tangent space, this means that
it points in some direction that would not lead to realistic
images, and a human would have a hard time understand-
ing its meaning. Random noise, in particular, lies with high
probability orthogonal to the image manifold.

To provide empirical evidence for the hypothesis, we
employ autoencoders to estimate the image manifolds of
five different datasets: MNIST, EMNIST, CIFAR10, X-ray
pneumonia and diabetic retinopathy detection. By project-
ing different feature attributions into the tangent space, we
then provide qualitative evidence that tangent-space com-
ponents are perceptually-aligned, whereas orthogonal com-
ponents visually resemble random noise (Sec. 4.1). As
depicted in Figure 1, we also use variational autoencoders
as generative models. This allows us to generate image
datasets with a completely known manifold structure.

We then show that popular post-hoc methods such as
SmoothGrad, Integrated Gradients and Input × Gradient
improve the alignment of attributions with the data manifold
(Sec 4.2). The same is true for l2-adversarial training, which
significantly aligns model gradients with the data manifold
(Sec. 4.3). These results holds consistently across all the
different datasets.

Apart from the intuitive and empirical plausibility of
the hypothesis, its main appeal is that it provides a clear
perspective on why explaining image classifiers is diffi-
cult: While our empirical investigations show that post-hoc
methods and adversarial training improve the alignment of
attributions with the data manifold, in many cases there re-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3697



Figure 1. Conceptual overview of our approach. We first estimate the data manifold of an existing dataset with a variational autoencoder,
then use the decoder as a generative model. On the generated data, we train a classifier f . For this classifier, we evaluate whether different
gradient-based explanations Ei align with the tangent space of the data manifold. Moving along an explanation aligned with the tangent
space keeps us in the manifold, whereas moving along an orthogonal explanation takes us out of the manifold. Our hypothesis is that the
latter does not lead to perceptually-aligned explanations because it describes changes that lead to unnatural images.

mains much room for improvement. Overall, the manifold
hypothesis is an important step toward understanding when
feature attributions are explanations.

2. Related Work
Projections on the data manifold. Many different pa-

pers employ techniques where data points or model gradi-
ents are being projected on the data manifold [14, 40]. In
explainable machine learning, it has been shown that expla-
nations can be manipulated by modifying the model outside
of the image manifold, and that one can defend against such
attacks by projecting the explanations back on the manifold
[13]. The hypothesis that natural image data concentrates
around a low-dimensional image manifold is supported by
a number of empirical studies [1, 15, 45].

Evaluating explanations. The unavailability of ground-
truth explanations and the fact that explanations may be sus-
ceptible to adversarial attacks [13, 18] makes it difficult to
evaluate them [20, 32–34]. A literature on sanity checks
has shown that these principal difficulties non-withstanding,
many explanations fail even the most basic tests such as
model parameter randomization [2, 3, 8, 24].

Alignment of the implicit density model with the
ground truth class-conditional density model. Srinivas
et al. [39] have proposed that gradient-based explanations
are more interpretable the more the density model that
is implicit in the classifier f is aligned with the ground
truth class-conditional density model. This criterion can be
shown to be compatible with the manifold hypothesis, given
assumptions on how the data centers around the manifold.

3. Overview of our approach
In order to evaluate our hypothesis, we we need to mea-

sure the alignment of an attribution E ∈ Rd at a point
x ∈ Rd with the tangent space of the data manifold at x.

3.1. Background

Data manifolds and tangent spaces. A k-dimensional
differentiable manifold M ⊂ Rd is a subset of a d-
dimensional space that locally resembles Rk. At every point

x ∈ M, the tangent space Tx is a k-dimensional subspace
of Rd. The tangent space Tx consists of all directions v such
that x+ v, for ∥v∥ small, is close to the manifold.

Model gradients and explanation algorithms. We
consider DNNs that learn functions f : Rd → RC . Here C
is the number of classes and the model prediction is given
by argmaxif(x)i. The gradient of class i at point x with re-
spect to the input is given by gradi(x) =

∂(f(x)i)
∂x . Post-hoc

explanation algorithms [6, 37, 38, 41] provide explanations
as vectors in E ∈ Rd.

3.2. How do we know the data manifold?
In the generative approach, we first train a variational

autoencoder [19, 25] on some existing datasets. After train-
ing, we pass the entire dataset through the autoencoder.
Then we train an auxiliary classifier to reproduce the orig-
inal labels from latent codes and reconstructed images.
Equipped with this labeling function, we sample from the
prior and use decoder and labeling function to generate a
new dataset with completely known manifold structure: the
tangent space at each datapoint can be computed from the
decoder via backpropagation [7, 35]. The main limitation
of the generative approach is that we might not be able to
obtain high-quality samples with reasonably small latent
spaces.1 To evaluate our hypothesis on real-world high-
dimensional image data where it is difficult to obtain real-
istic samples with not-too-large latent spaces, we must rely
on estimating the tangent space. In this reconstructive ap-
proach, we pass the original dataset through an autoencoder
and take the reconstructed images with the original labels as
our new dataset.

3.3. Measuring alignment with the data manifold
To measure how well an explanation E ∈ Rn is aligned

with Tx, we first project it into the tangent space – denoted
by projTx

E – and then compute the fraction of the attri-

1While there have been great advances in generative modeling, state-of-
the-art models like hierarchical variational autoencoders [43] require large
latent spaces, i.e., k ≈ d. For our analysis,

√
k/d must be small – with

k = d, the fraction of even a random vector in tangent space is always 1.
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Figure 2. The part of an attribution that lies in the tangent space is
perceptually-aligned, whereas the part that is orthogonal to the tan-
gent space is not. (First row) Images from the test set of MNIST32.
(Second row) The part of the attribution that lies in tangent space.
(Third row) The part of attribution that is orthogonal to the tangent
space. Red corresponds to positive, and blue to negative attribu-
tion (best viewed in digital format).

bution in tangent space

Fraction of E in Tx =
∥projTx

E∥2
∥E∥2

∈ [0, 1]. (1)

If the attribution completely lies in tangent space, we have
projTx

E = E. If the attribution is completely orthogonal
to the tangent space, we have projTx

E = 0. When we
quantitatively evaluate (1), we account for the fact that even
a random vector has a non-zero fraction in tangent space.
The expected fraction of a random vector that lies in any
k-dimensional subspace is ≈

√
k/d. In our MNIST32 task,

for example, d = 1024, k = 10 and
√
10/1024 ≈ 0.1.

Thus, we could only say that an explanation is systemati-
cally related to the data manifold if, on average, its fraction
in tangent space is significantly larger than 0.1.

3.4. Datasets

We evaluate the hypothesis on six datasets. This in-
cludes (i) MNIST32 and (ii) MNIST256, two variants of the
MNIST dataset [27] with 60000 grayscale training images
and 10000 grayscale test images of size 32× 32 and 256×
256, respectively. The MNIST32 dataset was obtained from
MNIST with the generative approach, using a β-TCVAE
[10]. It lies on a completely known 10-dimensional im-
age manifold in a 1024-dimensional space. The MNIST256
dataset is an up-scaled version of the MNIST32 dataset. The
(iii) EMNIST128 dataset is a variant of the EMNIST dataset
[12]. EMNIST128 and MNIST256 serves as examples
of high-dimensional problems. The (iv) CIFAR10 dataset
was created from CIFAR10 [26] with the reconstructive ap-
proach, using a convolutional autoencoder with a latent di-
mension of k = 144. We also evaluate the hypothesis on
two high-dimensional medical imaging datasets: (v) X-ray
Pneumonia [22] and (vi) Diabetic Retinopathy Detection2.
These two datasets have been used before to study the prop-
erties of post-hoc explanation methods [5, 8, 11, 29, 31, 44].

2https://www.kaggle.com/c/diabetic-retinopathy-detection
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Figure 3. Post-hoc methods align attributions with the data man-
ifold. The figure depicts the fraction of four different methods in
tangent space on six different datasets. The gray line indicates the
random baseline

√
k/d (compare Sec. 3.3).

4. Experimental Results
Given a dataset, we train a neural network to minimize

the test error. We then apply explanation algorithms and
evaluate how feature attributions relate to the data manifold.

4.1. Qualitative evidence: The part of an attribution
in tangent space is perceptually-aligned

We now demonstrate on MNIST32 that the part of an at-
tribution that lies in tangent space is perceptually-aligned,
whereas the part of the attribution that is orthogonal to the
tangent space is not. Figure 2 depicts the gradient [37] Inte-
grated Gradients [41], Input × Gradient [6], and Smooth-
Grad [38] attributions for a variant of a LeNet [27] that
achieves a test accuracy > 99%. The attributions are de-
composed into the part that lies in tangent space (second
row) and the part that is orthogonal to the tangent space
(third row). We see from Figure 2 that the part of an at-
tribution that lies in tangent space is perceptually-aligned,
whereas the part that is orthogonal is not. In fact, the parts
that are orthogonal to the tangent space consist of seemingly
unrelated spots of positive and negative attribution. Figure
2 also provides qualitative evidence that the part of an at-
tribution that lies in the tangent space is explanatory: The
attributions in the second row of Figure 2 often highlight
parts of the image that are relevant for the predicted class.

4.2. Post-hoc methods align attributions with the
data manifold

We now demonstrate that the attributions provided by
post-hoc methods are more aligned with the tangent space
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Figure 4. Adversarial training aligns model gradients with the data
manifold. Figure shows the fraction of standard-and l2-robust gra-
dients in tangent space for four datasets.

than the gradient. Figure 3 depicts the fraction in tangent
space (1) of model gradients, SmoothGrad, Integrated Gra-
dients and Input × Gradient on six different datasets. All
attributions have a fraction in tangent space that is consid-
erably larger than random. In particular, the mean fraction
of the raw gradient in tangent space is significantly larger
than random on all datastes. Moreover, the gradient is the
method with the weakest connection to the data manifold.
Integrated Gradients, Input × Gradient and SmoothGrad
improve upon the gradient on all datasets.

4.3. Adversarial training aligns model gradients
with the data manifold

Previous work has observed that model gradients of ad-
versarially trained models are perceptually-aligned [42].
According to our hypothesis, this should imply that model
gradients of adversarially trained models are aligned with
the tangent space of the data manifold. Figure 4 shows that
this is indeed the case. Across four different datasets, the
gradient of a model trained with projected gradient descent
(PGD) against an l2-adversary [30] is consistently more
aligned with the tangent space than the gradient of a stan-
dard model. The alignment effect of adversarial training is
substantial. On MNIST32, the mean fraction of robust gra-
dients in tangent space is 0.68, compared with 0.31 for the
standard model, and 0.40 for Input × Gradient (Figure 3).

4.4. A user study on the perceptual-alignment of
attributions supports the hypothesis

To assess whether attributions that are more aligned with
the data manifold are indeed more perceptually-aligned,
we conducted a user study. The study consisted of three
different tasks on our MNIST32 and CIFAR10 datasets.
Each task took the form of an A/B-test where the partic-
ipants were repeatedly shown images from two different
groups of images (group A and group B). In the first task
on MNIST32, the participants decided that the components
of an attribution in tangent space are more perceptually-
aligned than the corresponding orthogonal components
(NA = 0, NB = 580, t-test p < 0.01). In the second task
on MNIST32, the participants decided that among different
attributions for the same image, those with a larger fraction
in tangent space are more perceptually-aligned (NA = 143,
NB = 315, t-test p < 0.01). In the third task on CIFAR10,

Figure 5. There is evidence that feature attributions that are more
aligned with the data manifold are more explanatory. In a user
study on CIFAR10, participants found that attributions that were
more aligned with the data manifold better highlighted the object
in the image. Figure depicts images and attributions from our
CIFAR10 (Top row), X-Ray Pneumonia (Middle row) and Dia-
betic Retinopathy datasets (Bottom row). The number below an
image depicts the fraction of the attribution in tangent space.

the participants decided that Input x Gradient attributions,
which have on average the larger fraction in tangent space,
better highlighted the object in the image than the gradient
(NA = 36, NB = 217, t-test p < 0.01). Interestingly, the
third task provides evidence that attributions that are more
aligned with the tangent space are also more explanatory.
For a visual comparison, see Figure 5 which depicts differ-
ent attributions with various fractions in tangent space.

5. Conclusion

In this work, we focus on a particular aspect of feature
attributions: whether they aligned with the tangent space
of the data manifold. The main claim of this paper is
that alignment with the data manifold makes attributions
perceptually-aligned. While current models and algorithms
provide only imperfect alignment, it is an open question
whether this is due to the fact that we have not yet found
the right model architecture or algorithm, or because the
problem is more difficult than classification alone.

The objective of this paper is not to claim that the gradi-
ents of existing models provide good explanations, or that
any particular post-hoc method works especially well. In-
stead, we would like to contribute to a line of work that,
independently of particular algorithms, develops criteria by
which explanations can be judged.

A main appeal of the manifold hypothesis is its broad
potential for the analysis and improvement of different ex-
planation algorithms. We believe that it will be interesting
to explore the connections between the manifold hypothesis
and other criteria for the evaluation of explanations, such as
model sanity checks and the ROAR benchmark [2, 3, 20].
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