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Abstract

While many post-hoc model interpretability techniques
exist for image classification, image segmentation has
not received the same attention. An extension of Grad-
CAM, Seg-Grad-CAM was proposed as a local inter-
pretability technique for image segmentation. In this pa-
per, we highlight that by virtue of its design, Seg-Grad-
CAM does not utilize spatial information when it comes
to generating explanations for regions within a segmen-
tation map. Taking inspiration from HiResCAM, we pro-
pose Seg-XRes-CAM in order to solve this problem. We
verify the utility of our proposed method by visually com-
paring explanations generated from Seg-Grad-CAM and
Seg-XRes-CAM against a model-agnostic, perturbation-
based method, RISE. The code is available at https:
//github.com/Nouman97/Seg_XRes_CAM .

1. Introduction

Stemming from their groundbreaking success in image
classification in 2012 [11], deep learning algorithms have
quickly become the standard when it comes to approaching
computer vision problems. Their unparalleled predictive
performance is often a product of them being highly non-
linear, and hence not inherently interpretable. However, it
is often desirable to be able to understand why an algorithm
arrived at its decision for a particular example. This can
be useful in multiple contexts such as debugging the model
when it comes to the developer or improving our confidence
in the model’s prediction when it comes to the end user.

A separate field has since developed with the aim of de-
veloping tools that can be utilized in order to explain in-
dividual predictions, i.e., local interpretability. Primarily,
two streams can be identified in this regard: (a) gradient-
based approaches, and (b) perturbation-based approaches.

Gradient-based approaches utilize the differentiable nature
of neural networks in order to obtain a gradient-based
saliency map. One of the earliest works in this regard was
of Simonyan [20] which extracted saliency for a target class
as the gradient of its score with respect to the input image.
SmoothGrad [22] and IntegratedGradients [23] followed a
similar methodology but aimed at refining the otherwise
noisy gradient. An alternate approach was pursued in Grad-
CAM [19] and its derivatives which backpropagated gra-
dients only up to an intermediate layer. Perturbation-based
approaches, on the other hand, are generally model-agnostic
and treat models as black boxes. They work on the premise
of observing changes to a model’s prediction as the input is
methodically modified. Early work in this regard by Zeiler
and Fergus [25] was based on utilizing occlusion. Further
approaches have since been proposed such as LIME [17],
SHAP [14], and RISE [16] based on generating multiple
modified instances of the original image which are then
modeled using an inherently interpretable model. Most
of these techniques, however, are usually developed in the
context of image classification, and other problem domains
have received much less attention.

The domain of image segmentation, for example, is con-
siderably sparse when it comes to interpretability and rel-
atively few techniques have been developed in its context
[2,3,9,15,24]. One such example is that of Seg-Grad-CAM
introduced by Vinogradova et al. [24] which is an exten-
sion of Grad-CAM [19] towards explaining segmentation
results. Unlike image classification where, for any partic-
ular image, we often only need to explain a single score
from a target class, in image segmentation we might want
to explain either (a) the entire segmentation map for a tar-
get class or (b) a region of that segmentation map for a
target class. In the present work, we demonstrate that, by
virtue of its utilization of Grad-CAM, Seg-Grad-CAM can-
not solve the latter problem i.e. of explaining a region of
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the segmentation map. Inspired by HiResCAM [5], we pro-
pose Seg-XRes-CAM as a modification to Seg-Grad-CAM
which solves this problem and can be utilized in both cases.
HiResCAM has been utilized in image classification as an
alternate to Grad-CAM in order to provide location aware
explanations [6].

In Sec. 2.1, we elaborate on Seg-Grad-CAM and demon-
strate why it cannot provide us with explanations for a re-
gion within the segmentation map. In Sec. 2.2, we introduce
Seg-XRes-CAM and show why it is more suited to the task.
In Sec. 3.1 we mention our experimental configuration. In
Sec. 3.2, we give a brief explanation of a model-agnostic,
perturbation-based interpretability method, RISE [16] in the
context of image segmentation. RISE is chosen for com-
parison due to its model-agnostic and gradient independent
nature. In Sec. 3.3 we apply Seg-Grad-CAM, Seg-XRes-
CAM, and RISE to sample images and compare their visu-
alizations. In particular, we focus on the visual agreeability
of RISE with Seg-XRes-CAM. In Sec. 3.4 we compare the
impact of mean and max pooling on the explanations gen-
erated by Seg-XRes-CAM on sample images.

2. Methods
2.1. Revisiting Seg-Grad-CAM

Grad-CAM [19] (an extension and generalization of
CAM [26]) computes a linear combination of activation
maps from a chosen block of the model (Eq. 1), producing a
class-discriminative localization map Lc

Grad−CAM defined
as:

Lc
Grad−CAM = ReLU(

∑
k

αc
k ·Ak) (1)

where Ak represents the k’th activation map and αc
k rep-

resents the k’th coefficient. c is reflective of the class we
are interested in. ReLU is applied in order to only retain
the positive contributions.

For classification, αc
k is calculated by backpropagating

the gradient from the target class score back to the activa-
tion maps, and for each activation map, the coefficient is
a normalized sum (the global average pooled value) of its
corresponding gradient matrix, as follows:

αc
k = GAP

(
∂Y c

∂Ak

)
(2)

where GAP refers to global average pooling.
In order to extend this approach to segmentation, Seg-

Grad-CAM proposes utilizing a mask in order to highlight
the desired region of the target class followed by summing
up the scores contained within the masked region. This sum
is then backpropagated in order to calculate the Grad-CAM
linear coefficients, as follows:

αc
k = GAP

(
∂
∑

(i,j)∈M Y c
ij

∂Ak

)
(3)

where M indicates the region of interest. Depending on
what one wants to interpret, this region can be the entire
segmentation map of the target class or a certain portion of
that map or, in fact, just a single pixel from the target class
map.

A consequence of each activation map having been as-
signed a single coefficient (obtained after the global aver-
age pooling of the gradient matrix) is that the spatial dis-
tribution of the activation map plays no part in the eventual
linear combination. This can prove to be undesirable when
it comes to explaining segmentation results for a region of
interest belonging to a target class. If a region of interest lies
in the bottom right corner of the image, it is unlikely that the
top left corner of the image would have had any impact on
its segmentation result. Yet, by virtue of its design, Seg-
Grad-CAM would not take this spatial consideration into
account and give the same weight to each spatial location of
an individual activation map.

2.2. Seg-XRes-CAM

HiResCAM [5] proposed a modification to Grad-CAM
in order to incorporate spatial information into the lin-
ear combination of activation maps. It modifies the orig-
inal Grad-CAM equation such that each activation map is
element-wise multiplied (Hadamard product) by its corre-
sponding gradient matrix, yielding the following localiza-
tion map Lc

HiResCAM :

Lc
HiResCAM = ReLU

(∑
k

∂Y c

∂Ak
⊙Ak

)
(4)

This allows each spatial location within a feature map to be
weighted differently. While it was originally proposed in
the context of image classification, its design hints towards
its utility in image segmentation.

We propose a generalization in order to have control over
how fine or coarse we want our gradient matrix to be. This
can simply be achieved by applying a pooling operation
(max or mean) with a window size of h × w over the gra-
dient matrix. A window size of 1 × 1 corresponds to the
HiResCAM formulation whereas a window size of H ×W
where H is the height and W is the width of the activa-
tion map corresponds to a Grad-CAM formulation. The
pooled gradient matrix is then upsampled in order to per-
form the Hadamard product. The resulting localization map
Lc
XRes−CAM for image classification can then be written

as:
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Lc
XRes−CAM = ReLU

(∑
k

Up[Pool

[
∂Y c

∂Ak

]
]⊙Ak

)
(5)

where Pool indicates the pooling operation and Up in-
dicates upsampling (with the resulting dimension being the
same as Ak).

Similar to Seg-Grad-CAM, in the context of segmenta-
tion Y c is replaced with

∑
(i,j)∈M Y c

ij in order to represent
the target region we are interested in obtaining the explana-
tion for.

3. Experiments
3.1. Configuration

We experiment with three different model architec-
tures, two of which are standard convolutional networks
(DeepLabV3 [1] and UNet [18]) whereas the third one (UN-
ETR [8]) utilizes a pre-trained version of the recently pro-
posed vision transformer model [4] as its encoder backbone.
We experiment on both natural and medical images, natu-
ral images coming from the COCO 2017 dataset [13] and
medical images coming from the Synapse multi-organ CT
dataset [12].

In the case of natural images, the utilized model was a
DeepLabV3 [1] model already trained on a subset of the
COCO 2017 data1 [13]. Samples for visualization were
also taken from the same dataset. For the medical dataset,
two custom models were utilized: (a) UNet [18] with a pre-
trained VGG-16 backbone [21] and (b) 2D UNETR [8] with
a pre-trained ViT backbone [4]. These models were trained
on the Synapse multi-organ CT dataset [12] from which the
visualization samples were also taken from. In all experi-
ments, we extracted saliency maps from the models’ bottle-
neck.

3.2. RISE

RISE [16] is a perturbation-based model agnostic inter-
pretability method. It works by generating multiple random
masks, and a linear combination of those masks serves as
our explanation. In order to explain a classification deci-
sion, the masks are pointwise multiplied by the input image
and fed into the model. The target class score correspond-
ing to each modified input serves as the linear combination
coefficient for that particular mask. RISE can be extended
from classification to segmentation [3]. In this case, for a
region of interest of the target class, the Dice score (for
that region) between a masked input and the original (un-
modified) input image can serve as the linear combination
coefficient for that particular mask. In all experiments, we

1https : / / pytorch . org / hub / pytorch _ vision _
deeplabv3_resnet101/

utilized RISE [10] with 2000 random masks in order for it
to generate each explanation.

3.3. Visual comparison of saliency maps between
Seg-Grad-CAM, Seg-XRes-CAM, and RISE

Visualizations obtained for sample images can be seen
in Fig. 1. In general, saliency maps obtained from Seg-
Grad-CAM [7] display little awareness of the particular
regions they were supposed to be explanations for. Seg-
XRes-CAM, on the other hand, appears to be taking that
into account and accordingly makes use of spatial informa-
tion making its saliency maps more localized. Additionally,
maps generated by RISE seem to have a higher degree of
agreement with Seg-XRes-CAM as compared to Seg-Grad-
CAM.

3.4. Impact of pooling mechanism on Seg-XRes-
CAM

In contrast to Seg-Grad-CAM, window size and pooling
mechanism are additional hyperparameters for Seg-XRes-
CAM. We experiment with mean and max pooling using
windows of size 2 and 4. Visualizations for sample im-
ages can be seen in Fig. 2 and Fig. 3. In order to deter-
mine whether the region highlighted by our explainability
method is sufficient for the model to predict the target class
in our selected region, we utilize a binarized version of the
generated saliency map to mask out the remaining image.
In all experiments, we used a threshold of 0.2 to binarize
the saliency map. This masked image is then fed to the
model, and a Dice score between the prediction for the se-
lected region of the modified image versus the prediction
from the original image is calculated. Following Mullan
and Sonka [15] we record the dice score as well as the per-
centage of the image which was retained following mask-
ing. The retained portion in the image should be as small as
possible but at the same time it should have enough context
to allow the model to make the correct prediction for the
selected region.

From Fig. 2 and Fig. 3 it appears that saliency maps ob-
tained from max pooling preserve a comparatively higher
percentage of the image as compared to mean pooling.
However, this extra portion leads to a higher dice score and
can potentially avoid cases where mean pooling completely
fails (Fig. 3).
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Figure 1. Saliency maps generated from interpretability methods in order to explain a region (in red) within the segmentation map. (First
Row) the explanation for a point (in red) on the leftmost car - the model being DeepLabV3 (Second Row) explanation for the right bird -
the model being DeepLabV3 (Third Row) explanation for a region in the stomach - the model being 2D UNETR (Fourth Row) explanation
for a region in the liver - the model being UNet with pre-trained VGG-16 backbone. For Seg-XRes-CAM, a pooling window of size 1 and
2 were utilized with mean average pooling

Figure 2. Impact of pooling mechanism - For a sample image, its prediction, and the region to be explained, saliency maps are generated
from Seg-Grad-CAM and Seg-XRes-CAM. Masked versions of the original image are obtained utilizing the saliency maps. Here, the
image is masked based on the explanation generated for the middle woman. The percentage of the retained image as well as the dice
score for the selected region obtained from the masked image are provided (First Row) masking based on the explanations generated by
Seg-Grad-CAM and Seg-XRes-CAM (mean pooling , window sizes 2 and 4) (Second Row) masking based on the explanations generated
by Seg-Grad-CAM and Seg-XRes-CAM (max pooling , window sizes 2 and 4).
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Figure 3. Impact of pooling mechanism - For a sample image, its prediction, and the region to be explained, saliency maps are generated
from Seg-Grad-CAM and Seg-XRes-CAM. Masked versions of the original image are obtained utilizing the saliency maps. Here, the
image is masked based on the explanation generated for the right bird. The percentage of the retained image as well as the dice score
for the selected region obtained from the masked image are provided (First Row) masking based on the explanations generated by Seg-
Grad-CAM and Seg-XRes-CAM (mean pooling , window sizes 2 and 4) (Second Row) masking based on the explanations generated by
Seg-Grad-CAM and Seg-XRes-CAM (max pooling , window sizes 2 and 4).

4. Discussion

Visualization of saliency maps generated by Seg-Grad-
CAM confirms our initial hypothesis that by virtue of its
formulation, it cannot take spatial information into account
when explaining regions within a segmentation map. On the
other hand, visualizations obtained from the proposed Seg-
XRes-CAM seem to be utilizing spatial information in or-
der to generate its explanations. Additionally, explanations
generated by Seg-XRes-CAM tend to agree with those gen-
erated by RISE as far as the localization of the explanation
is concerned.

However, Seg-XRes-CAM, too, seems to be suffer-
ing from a few flaws which require further investigation.
Firstly, explanations generated from Seg-XRes-CAM are
quite fine and tend not to produce sufficient explanations
(dilation can be used as a potential post-processing step).
Secondly, while we investigated the bottleneck layer, the
choice of the layer is for the user to decide, and is therefore
a hyperparameter.

The other two hyperparameters for Seg-XRes-CAM are
its pooling mechanism and the window size. It appears that
compared to mean pooling, max pooling tends to produce
comparatively coarser and more reliable explanations. For
the window size, the bottleneck dimensions need to be taken
into account because while a larger window size can pro-
duce a coarser explanation, it might do so at the expense of
localization.

As far as a comparison of RISE and Seg-XRes-CAM
is concerned, RISE is model agnostic and produces much
coarser explanations compared to Seg-XRes-CAM. How-
ever, RISE is computationally more expensive as Seg-

XRes-CAM (and Seg-Grad-CAM) requires only a single
forward and backward pass through the network whereas
RISE requires as many forward passes as the number of
masks it uses (this can be sped up by batching). Addition-
ally, the number of masks is a relatively important hyperpa-
rameter of RISE as fewer masks generally tend to generate
spurious explanations which are not very informative.

5. Conclusion
Consequently, in this work we identified a potential flaw

in Seg-Grad-CAM when it comes to explaining regions
within a segmentation map, and proposed Seg-XRes-CAM
as a potential improvement. We also highlighted some of
the shortcomings of our proposed method which we plan
on investigating further in the future.

6. Acknowledgments
The authors would like to thank the reviewers for their

deeply insightful comments and suggestions. Additionally,
the authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant Project-
ANR-21-CE23-0013 (project MediSEG).

3737



References
[1] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. In arxiv preprint, arXiv:1706.05587,
2017. 3

[2] Vincent Couteaux, O. Nempont, Guillaume Pizaine, and Is-
abelle Bloch. Towards interpretability of segmentation net-
works by analyzing deepdreams. In MICCAI Workshop on
Interpretability of Machine Intelligence in Medical Image
Computing, 2019. 1

[3] Pierre Dardouillet, Alexandre Benoit, Emna Amri, Philippe
Bolon, Dominique Dubucq, and Anthony Crédoz. Explain-
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